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On isolated singularities of Kirchhoff–type Laplacian problems
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Abstract

In this paper, we study isolated singular positive solutions for the following Kirchhoff–type
Laplacian problem:

−

(

θ +

∫

Ω

|∇u|dx

)

∆u = up in Ω \ {0}, u = 0 on ∂Ω,

where p > 1, θ ∈ R, Ω is a bounded smooth domain containing the origin in R
N with N ≥ 2.

In the subcritical case: 1 < p < N/(N − 2) if N ≥ 3, 1 < p < +∞ if N = 2, we employ the
Schauder fixed-point theorem to derive a sequence of positive isolated singular solutions for the
above problem such that Mθ(u) > 0. To estimate Mθ(u), we make use of the rearrangement
argument. Furthermore, we obtain a sequence of isolated singular solutions such that Mθ(u) < 0,
by analyzing relationship between the parameter λ and the unique solution uλ of

−∆u+ λup = kδ0 in B1(0), u = 0 on ∂B1(0).

In the supercritical case: N/(N − 2) ≤ p < (N +2)/(N − 2) with N ≥ 3, we obtain two isolated
singular solutions ui with i = 1, 2 such that Mθ(ui) > 0 under some appropriate assumptions.
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2010 MSC: 35J75, 35B40, 35A01.

1. Introduction and main results

A model with small variation of tension due to the changes of the length of a string is described
by D’Alembert wave equation, it is also well-known as the Kirchhoff equation, see [15], which
states as follows

m
∂2u

∂t2
−

[

τ0 +
κ

2L0

∫ β

α

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2

dx

]

∂2u

∂x2
= 0,
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where τ0 is the tension, L0 = β − α is the length of the string at rest, m is the mass density, κ
is the Young’s modulus. The Kirchhoff–type problems have been attracted great attentions in
the analysis of different nonlinear term due to the gradient term, see [9, 11, 24, 35].
Observe that in the prototype of Kirchhoff model, the tension, for small deformations of the

string, takes the linear form as follows:

M(u) = a+ b

∫

Ω

√

1 + |∇u|2 dx, (1.1)

where a > 0, b > 0. When the displacement gradient is small, i.e. |∇u| ≪ 1, M(u) ∽

a+b|Ω|+ b
2

∫

Ω
|∇u|2dx. The advantage for this approximation makes the problem have variational

structure and the approximating solution could be constructed by variational methods. For
example, the stationary analogue and qualitative properties of solutions to the Kirchhoff–type
equation

−

(

a + b

∫

Ω

|∇u|2dx

)

∆u+ V (x)u = f(x, u) in Ω

has been extensively studied in [9, 10, 14, 19, 16, 28] and extended into the fractional setting
in [25, 26, 31] and the references therein. In this case, M(u) = a + b

∫

Ω
|∇u|2dx is often called

Kirchhoff function. In fact, the Kirchhoff function has been greatly extended for recent years.
For example, the case a = 0, b > 0, which is called degenerate, has been intensely investigated
recently, we refer to [32] for a physical explanation and [8, 38] for related results in this direction.
Our interest of this paper is to study a new Kirchhoff–type problem by taking into account

that |∇u| is not small in a bounded smooth domain Ω and the tension could be vector in a
proper coordinate axis. In this situation, the Kirchhoff function (1.1) may be taken as

Mθ(u) = θ +

∫

Ω

|∇u|dx, (1.2)

where θ is assumed to be real number. Given a sequence of extra pressures {σm} with the support
in B 1

m
(0) and the total force F =

∫

Ω
σmdx = 1 keeps invariant. The limit of {σm} as m → +∞

in the distributional sense is Dirac mass. As we know that the corresponding solutions may blow
up at the origin or blow up in the whole domain. Our aim is to clarify this limit phenomena of
the solutions to some elliptic problems involving the Kirchhoff–type function (1.2).
More precisely, in this article we are interested in nonnegative singular solutions of the follow-

ing Kirchhoff–type equation:










−Mθ(u)∆u = up in Ω \ {0},

u = 0 on ∂Ω,

(1.3)

where p > 1, Mθ is defined by (1.2) with θ ∈ R and Ω is a bounded, smooth domain containing
the origin in RN with N ≥ 2. The following parameter plays an important role in obtaining the
solutions of (1.3):

ap = sup
x∈Ω

w1

w0
, (1.4)
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where w0 = GΩ[δ0] and w1 = GΩ[w
p
0], GΩ is Green operator defined as

GΩ[u](x) =

∫

Ω

GΩ(x, y)u(y)dy,

here GΩ is the Green kernel of −∆ in Ω×Ω with zero Dirichlet boundary condition. Note that
ap is well-defined when p is subcritical, that is, p < p∗, where

p∗ =











N

N − 2
if N ≥ 3,

+∞ if N = 2.

(1.5)

Our first existence result about isolated singular solutions with Mθ(u) > 0 is stated as follows.

Theorem 1.1. Assume that N ≥ 2, Mθ is defined by (1.2) with θ ∈ R, ap is given by (1.4), p∗

is given by (1.5) and Ω is a bounded smooth domain containing the origin such that

B1(0) ⊂ Ω and |Br0(0)| = |Ω|

where 1 ≤ r0 < +∞.
Let k > r0θ− with θ− := min{0, θ} be such that

kp−1

θ + r−1
0 k

≤
1

app

(

p− 1

p

)p−1

. (1.6)

Then for p ∈ (1, p∗), problem (1.3) has a nonnegative solution uk satisfying that

Mθ(uk) ≥ θ + r−1
0 k > 0 (1.7)

and uk has following asymptotic behaviors at the origin

lim
|x|→0+

uk(x)Φ
−1(x) = cNk, (1.8)

where cN > 0 is the normalized constant and

Φ(x) =











|x|2−N if N ≥ 3,

− ln |x| if N = 2.

Furthermore, uk is a distributional solution of










−∆u =
up

Mθ(u)
+ kδ0 in Ω,

u = 0 on ∂Ω,

(1.9)

where δ0 is Dirac mass concentrated at the origin.
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Remark 1.1. Note that ap depends on p and Ω and the value p = 2 is critical for assumption
(1.6) for N = 2, 3. Indeed, p∗ > 2 occurs only for N = 2 and N = 3. Due to the parameter θ,
(1.6) gives a rich structure of isolated singular solutions for problem (1.3). Moreover, a discussion
is put in Proposition 2.2 in Section 2.

Involving Kirhchoff function Mθ(u), the classical method of Lions’ iteration argument in [17]
does not work due to the lack of monotonicity of nonlinearity M−1

θ (u)up, and also the variational
method in [27] fails, since (1.3) has no variational structure. Furthermore, it is difficult to
calculate precise value for

∫

Ω
|∇uk| to express Mθ(uk), especially, when Ω is a general bounded

domain. To overcome these difficulties, we make use of the rearrangement argument to estimate
the value of Mθ(u) and employ the Schauder fixed-point theorem to obtain the existence of
isolated singular solutions in the class set of Mθ(u) > 0.

When θ < 0, we can derive a branch of singular solutions such that Mθ(u) < 0.

Theorem 1.2. (i) Let N ≥ 2, p ∈ (1, p∗), θ < 0 and Ω = B1(0). For k ∈ (0,−θ), problem
(1.3) has a nonnegative solution uk, which is a distributional solution of (1.9) with Ω = B1(0),
satisfying that

θ < Mθ(uk) < k + θ < 0

and uk has the asymptotic behavior (1.8).
(ii) Let N ≥ 2, p ∈ (N+1

N−1
, p∗), θ < 0 and Ω is a bounded smooth domain containing the origin.

Then problem (1.3) has a nonnegative solution up, which is not a distributional solution of (1.9),
satisfying that

Mθ(up) < 0

and up has the asymptotic behavior

lim
|x|→0+

up(x)|x|
2

p−1 = cp(−Mθ(up))
1

p−1 ,

where cp =
[

2
p−1

(

2
p−1

+ 2−N
)]

1

p−1

.

For Mθ(u) < 0, problem (1.3) could be written as

−∆u+ λup = 0 in B1(0) \ {0}, u = 0 on ∂B1(0), (1.10)

where λ = −M−1
θ (u) > 0. For λ = 1, the nonlinearity in problem (1.10) is an absorption and

Lions showed in [17] that it is always studied by considering the very weak solutions of

−∆u+ λup = kδ0 in B1(0). (1.11)

Véron in [37] gave a survey on the isolated singularities of (1.10), in which B1(0) is replaced
by general bounded domain containing the origin. With a general Radon measure and a more
general absorption nonlinearity g : R → R satisfies the subcritical assumption:

∫ +∞

1

(g(s)− g(−s))s−1−p∗ds < +∞,
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problem (1.11) has been studied by Benilan-Brézis [1], Brézis [3], by approximating the measure
by a sequence of regular functions, and find classical solutions which converges to a weak solution.
For this approach to work, uniform bounds for the sequence of classical solutions are necessary
to be established. The uniqueness is then derived by Kato’s inequality. Such a method has been
applied to solve equations with boundary measure data in [13, 20, 21, 22] and other extensions
in [2, 5].
In the case λ = −M−1

θ (u), depending on the unknown function u, a different approach has to
be taken into account to study problem (1.11). A branch of solutions such that Mθ(u) < 0 are
derived from the observations that the function F (λ) = −M−1

θ (u)− λ is continuous and it has
a zero, because we will find two values λ1, λ2 such that F (λ1)F (λ2) < 0, where vλ is the unique
solution of problem (1.11). This zero indicates a solution of problem (1.3).
For the singularity as |x|−2/(p−1), the diffusion and the nonlinear terms play the predominant

roles in (1.3), so we just consider λup, where up is the solution of −∆u+ up = 0 in Ω \ {0}. By
scaling λ to meet the Kirchhoff function and then a solution with this type singularity is derived
in Theorem 1.2. This scaling technique could be extended to obtain solutions in the supercritical
case in Theorem 5.1 in Section 5.
It is worth pointing out that the method of searching solutions with the weak singularities as Φ

in Theorem 1.1 could be extended into dealing with general nonlinearity f(u) when 0 ≤ f(u) ≤
c|u|p with p ∈ (1, p∗). This method to prove Theorem 1.2 is based on the homogeneous property
of nonlinearity and when the nonlinearity is not a power function, it is open but challenging to
obtain solutions with such isolated singularity.

The rest of this paper is organized as follows. In Section 2, we introduce the very weak
solution of equation (1.3) involving Dirac mass and give a discussion of (1.6). Section 3 is
devoted to show the existence of a solution to (1.3) with Mθ(u) > 0 in Theorem 1.1. In Section
4, we search the solutions of (1.3) with Mθ(u) < 0 in Theorem 1.2. The supercritical case:
N/(N − 2) ≤ p < (N + 2)/(N − 2) with N ≥ 3, is considered in Section 5, and we obtain there
multiple isolated singular solutions of (1.3) such that Mθ(ui) > 0.

2. Preliminary

2.1. Kirchhoff-type problem with Dirac mass

In order to drive solutions of (1.3) with singularity (1.8), it is always transformed into finding
solutions of (1.9). A function u is said to be a super (resp. sub) distributional solution of (1.9),
if u ∈ L1(Ω), |∇u| ∈ L(Ω), up ∈ L1(Ω, ρdx) and

∫

Ω

[

u(−∆)ξ −
up

Mθ(u)
ξ

]

dµ ≥ (resp. ≤) kξ(0), ∀ ξ ∈ C1.1
0 (Ω), ξ ≥ 0, (2.1)

where ρ(x) = dist(x, ∂Ω). A function u is a distributional solution of (1.9) if u is both super
and sub distributional solutions of of (1.9).
Next we build the connection between the singular solutions of (1.3) and the distributional

solutions of (1.9).
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Theorem 2.1. Assume that N ≥ 2, p > 1 and u ∈ L1(Ω) is a nonnegative classical solution of
problem (1.3) satisfying that Mθ(u) 6= 0 and up ∈ L1(Ω, ρdx). Then u is a very weak solution of
problem (1.9) for some k ≥ 0. Furthermore,
Case 1: Mθ(u) < 0.

(i) For N ≥ 3, p ≥ p∗, problem (1.3) only has zero solution and θ < 0.
(ii) For N ≥ 2, 1 < p < p∗, we have that k > 0 and

lim
|x|→0∗

u(x)Φ−1(x) = cNk. (2.2)

Case 2: Mθ(u) > 0.
(i) For N ≥ 3, p ≥ p∗, we have that k = 0 and

lim
|x|→0

u(x)|x|N−2 = 0;

(ii) Assume more that 1 < p < p∗. If k = 0, then u is removable at the origin, and if k > 0,
then u satisfies (1.8).

In order to prove Theorem 2.1, we need the following lemmas.

Lemma 2.1. Let τ ∈ (0, N), then for x ∈ B1/2(0) \ {0},

GΩ[| · |
−τ ](x) ≤























c2|x|
−τ+2 if τ > 2,

−c2 log(|x|) if τ = 2,

c2 if τ < 2.

(2.3)

For N ≥ 3, p ∈ (1, p∗), there holds

GΩ[G
p
Ω[δ0]] ≤























c2|x|
p(2−N)+2 if p ∈ ( 2

N−2
, p∗),

−c2 log(|x|) if p = 2
N−2

,

c2 if p < 2
N−2

(2.4)

Proof. We follow the idea of Lemma 2.3 in [6]. In fact, from [2, Propsition 2.1] it follows that
the Green kernel verifies that

GΩ(x, y) ≤ cNΦ(x− y),

By direct computation, we get (2.3). Since lim|x|→0+ GΩ[δ0](x)Φ
−1(x) → cN , (2.3) with τ =

(2−N)p implies (2.4). ✷

Proposition 2.1. ([34] or [7, Propostion 5.1]) Let h ∈ Ls(Ω) with s ≥ 1, then there exists
c3 > 0 such that

6



(i)

‖GΩ[h]‖L∞(Ω) ≤ c3‖h‖Ls(Ω) if
1

s
<

2

N
; (2.5)

(ii)

‖GΩ[h]‖Lr(Ω) ≤ c3‖h‖Ls(Ω) if
1

s
≤

1

r
+

2

N
and s > 1; (2.6)

(iii)

‖GΩ[h]‖Lr(Ω) ≤ c3‖h‖L1(Ω) if 1 <
1

r
+

2

N
. (2.7)

Proof of Theorem 2.1. For Mθ(u) 6= 0, we rewrite (1.3) as










−∆u =
up

Mθ(u)
in Ω \ {0},

u = 0 on ∂Ω.

(2.8)

Since up ∈ L1(Ω, ρdx) and u ∈ L1(Ω), we may define the operator L by the following

L(ξ) :=

∫

Ω

[

u(−∆)ξ −
up

Mθ(u)
ξ

]

dx, ∀ξ ∈ C∞
c (RN). (2.9)

First we claim that for any ξ ∈ C∞
c (Ω) with the support in Ω \ {0},

L(ξ) = 0.

In fact, since ξ ∈ C∞
c (Ω) has the support in Ω \ {0}, then there exists r ∈ (0, 1) such that ξ = 0

in Br(0) and then

L(ξ) =

∫

Ω\Br(0)

[

u(−∆)ξ −
up

Mθ(u)
ξ

]

dx =

∫

Ω\Br(0)

(

−∆u −
up

Mθ(u)

)

ξ dx = 0.

From Theorem 1.1 in [4], it implies that

L = kδ0 for some k ≥ 0, (2.10)

that is,

L(ξ) =

∫

Ω

[

u(−∆)ξ −
up

Mθ(u)
ξ

]

dx = kξ(0), ∀ξ ∈ C∞
c (RN ). (2.11)

Then u is a weak solution of (1.9) for some k ≥ 0.
Case 1: Mθ(u) < 0. We observe that

u = kGΩ[δ0]−
1

−Mθ(u)
GΩ[u

q] ≤ kGΩ[δ0],

then

kGΩ[δ0]−
kp

−Mθ(u)
GΩ[GΩ[δ0]

p] ≤ u ≤ kGΩ[δ0] in Ω \ {0}.

7



So if k = 0, we obtain that u ≡ 0, which implies Mθ(u) = θ < 0; and if k > 0

lim
|x|→0+

u(x)Φ−1(x) = cNk.

We prove that k = 0 if p ≥ p∗ with N ≥ 3. By contradiction, if k > 0, then

u ≥ (k/2)Φ in Br0(0) \ {0},

which implies that
up(x) ≥ (k/2)p|x|(2−N)p, ∀x ∈ Br0(0) \ {0},

where (2 − N)p ≤ −N and r0 > 0 is such that B2r0(0) ⊂ Ω. A contradiction is obtained that
up 6∈ L1(Ω). Therefore, when p ≥ p∗, there is no nontrivial nonnegative solution (1.3) such that
Mθ(u) < 0.
Case 2: Mθ(u) > 0. We refer to [17] for the proof. For the reader’s convenience, we give the

details. When p ∈ (1, N/(N − 2)) and k = 0, then

u =
1

Mθ(u)
GΩ[u

p].

We infer from up ∈ Lt0(Ω) with t0 =
1
2
(1 + 1

p
N

N−2
) > 1 and Proposition 2.1 that u ∈ Lt1p(Ω) and

up ∈ Lt1(Ω) with

t1 =
1

p

N

N − 2t0
t0 > t0.

If t1 > Np/2, by Proposition 2.1, u ∈ L∞(Ω) and then it could be improved that u is a classical
solution of

−∆u =
1

Mθ(u)
up in Ω. (2.12)

If t1 < Np/2, we proceed as above. By Proposition 2.1, u ∈ Lt2p(Ω), where

t2 =
1

p

Nt1
N − 2t1

>
1

p

N

N − 2t0
t1 =

(

1

p

N

N − 2t0

)2

t0.

Inductively, let us define

tm =
1

p

Ntm−1

N − 2tm−1

>

(

1

p

N

N − 2t0

)m

t0 → +∞ as m → +∞.

Then there exists m0 ∈ N such that

tm0
>

1

2
Np

and by part (i) in Proposition 2.1,
u ∈ L∞(Ω).

It then follows that u is a classical solution of (2.12).

8



When p ∈ (1, N/(N − 2)) and k 6= 0, we observe that

lim
x→0

GΩ[δ0](x)|x|
N−2 = cN,α

and

u =
1

Mθ(u)
GΩ[u

p] + kGΩ[δ0]. (2.13)

We let

u1 =
1

Mθ(u)
GΩ[u

p] and Γ0 = kGΩ[δ0].

Then by Young’s inequality,
up ≤ 2p (up

1 + Γp
0) . (2.14)

By the definition of u1 and (2.14), we obtain

u1 ≤ 2pGΩ[u
p
1] + Γ1, (2.15)

where u1 ∈ Ls(Ω) for any s ∈ (1, N/(N − 2)) and

Γ1 = 2pGΩ[Γ
p
0].

Denoting µ1 = 2 + (2−N)p, then for 0 < |x| < 1/2,

Γ1(x) ≤























c1|x|
µ1 if µ1 < 0,

−c1 log |x| if µ1 = 0,

c1 if µ1 > 0.

If µ1 ≤ 0, letting
u2 = 2pGΩ[u

p
1],

then u2 ∈ Ls(Ω) with s ∈ [1, N
N−2

), u1 ≤ u2 + Γ1 and

u2 ≤ 2p (GΩ[u
p
2] +GΩ[Γ

p
1]) .

Let µ2 = µ1p+ 2, then µ2 > µ1 and for 0 < |x| < 1
2
,

Γ2(x) := 2pGΩ[Γ
p
1](x) ≤























c2|x|
µ2 if µ2 < 0,

−c2 log |x| if µ2 = 0,

c2 if µ2 > 0.

Inductively, we assume that

un−1 ≤ 2pGΩ[u
p
n−1] + 2pGΩ[Γ

p
n−2],

9



where un−1 ∈ Ls(Ω) for s ∈ [1, N/(N − 2)), Γn−2(x) ≤ |x|µn−2 for µn−2 < 0.
Let

un = 2pGΩ[u
p
n−1], Γn−1 = 2pGΩ[Γ

p
n−2],

and
µn−1 = µn−2p+ 2.

Then un ∈ Ls(Ω) for s ∈ [1, N/(N − 2)) and for 0 < |x| < 1/2,

Γn−1(x) := GΩ[Γ
p
n−2](x) ≤























cn|x|
µn−1 if µn−1 < 0,

−cn log |x| if µn−1 = 0,

cn if µn−1 > 0.

We observe that

µn−1 − µn−2 = p(µn−2 − µn−3) = pn−3(µ2 − µ1)

→ +∞ as n → +∞.

Then there exists n2 ≥ 1 such that

µn2−1 > 0 and µn2−2 ≤ 0

and

u ≤ un2
+

n2−1
∑

i=1

Γi + Γ0, (2.16)

where Γi ≤ c|x|µi and
un2

≤ 2p(GΩ[u
p
n2
] + 1).

Next, we claim that un2
∈ L∞(Ω). Since un2

∈ Ls(Ω) for s ∈ [1, N/(N − 2)), letting

t0 =
1

2

(

1 +
1

p

N

N − 2

)

∈

(

1,
N

N − 2

)

,

then 1
p

N
N−2t0

> 1 and by Proposition 2.1, we have that un2
∈ Lt1(Ω) with

t1 =
1

p

Nt0
N − 2t0

.

Inductively, it implies by un2
∈ Ltn−1(Ω) that un2

∈ Ltn(Ω) with

tn =
1

p

Ntn−1

N − 2tn−1
>

(

1

p

N

N − 2t0

)n

t0 → +∞ as n → ∞.

Then there exists n3 ∈ N such that

sn3
>

Np

2

10



and by part (i) in Proposition 2.1, it infers that

un2
∈ L∞(Ω).

Therefore, it implies by u ≥ Γ0 and (2.16) that

lim
x→0

u(x)|x|N−2 = cN,αk.

This ends the proof. ✷

2.2. Discussion on (1.6)

The following two functions plays an important role in searching distributional solutions of
problem (1.9)

w0 = GΩ[δ0], w1 = GΩ[w
p
0], (2.17)

which are the solutions respectively of










−∆u = δ0 in Ω,

u = 0 on ∂Ω

(2.18)

and










−∆u = wp
0 in Ω,

u = 0 on ∂Ω.

(2.19)

Observe that ap > 0 defined in (1.4) is the smallest constant with p ∈ (1, N
N−2

) such that

w1 ≤ apw0 in Ω \ {0}. (2.20)

Obviously, ap depends on the domain Ω.

Proposition 2.2. Let Ω = B1(0).
(i) If θ > 0 and 1 < p < min{2, p∗}, there exists a∗p > 0 depending θ such that when 0 < ap ≤

a∗p, (1.6) holds for any k > 0; and when ap > a∗p, (1.6) holds for 0 < k ≤ k1 and k2 ≤ k < +∞,
where 0 < k1 < k2 < +∞.
If θ > 0, p∗ > 2 and 2 < p < p∗, there exists k3 > 0 such that for 0 < k ≤ k3, (1.6) holds.
If θ > 0, p∗ > 2 and p = 2, then when a2 >

1
4
, (1.6) holds for 0 < k < θ

4a2−1
; and when a2 ≤

1
4
,

(1.6) holds for any k > 0.

(ii) If θ = 0 and 1 < p < min{2, p∗}, then (1.6) is equivalent to

k ≥

(

(p− 1)p−1

ppap

)− 1

2−p

;

If θ = 0, p∗ > 2 and 2 < p < p∗, then (1.6) is equivalent to

0 < k ≤

(

(p− 1)p−1

ppap

)
1

p−2

.
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If θ = 0, p∗ > 2 and p = 2, then when a2 > 1
4
, there is no k > 0 such that (1.6) holds; and

when a2 ≤
1
4
, (1.6) holds for any k > 0.

(iii) If θ < 0 and 1 < p < min{2, p∗}, then (1.6) holds for k ≥ k4, where

k4 >

(

(p− 1)p−1

ppap

)− 1

2−p

;

If θ < 0, p∗ > 2 and 2 < p < p∗, then a∗∗p = (−θ)2−pp−p(p − 1)(p − 2)p−3 such that when

0 < ap ≤ a∗∗p , (1.6) holds for k5 ≤ k ≤ k6, where 0 < k5 ≤
p−1
2−p

θ ≤ k6 < +∞; and when ap > a∗p,

there is no k > 0 such that (1.6) holds.
If θ < 0, p∗ > 2 and p = 2, then when a2 <

1
4
, (1.6) holds for 0 < k < θ

4a2−1
; and when a2 ≥

1
4
,

(1.6) holds for any k > 0.

Proof. When Ω = B1(0), we have that r0 = 1. Let

h(k) =
kp−1

θ + k
−

1

app

(

p− 1

p

)p−1

, k ∈ (θ−,+∞).

Note that

h′(k) =
(p− 1)kp−2(θ + k)− kp−1

(θ + k)2
.

When p 6= 2, h′(k0) = 0 implies that

k0 =
p− 1

2− p
θ.

When p = 2,

h(k) =
k

θ + k
−

1

4a2
, k ∈ (0,+∞).

The rest of the proof is simple and hence we omit it. ✷

When p = 2, note that 1
4
is a critical value for (1.6) and we show that a2 <

1
4
when Ω is a ball.

Lemma 2.2. Assume that Ω = B1(0), N = 2 or 3, p = 2 and a2 is given by (2.20). Then

α2 <
1

4
.

Proof. When Ω = B1(0), take ξ(x) = 1− |x| as a test function, we derive

∫

B1(0)

|∇w0| dx =

∫

B1(0)

∇w0 · ∇(1− |x|) dx = 1. (2.21)

Since w1 is radial symmetric and decreasing, then

−(rN−1w′
1(r))

′ = rN−1w2
0.

12



So for N = 3,

w′
1(r) =

1

16π2
r−2

∫ r

0

(1− t)2dt

and

w1(r) =
1

48π2

∫ 1

r

s−2[(1− s)3 − 1]ds =
1

48π2

[

3(r − 1)− 3 ln r −
r2 − 1

2

]

.

Then
w1(r)

w0(r)
=

1

12π

[

3r − 3
r ln r

1− r
+

r + r2

2

]

,

then r 7→ w1(r)
w0(r)

is increasing, so

a2 = lim
r→1

w1(r)

w0(r)
=

w′
1(1)

w′
0(1)

.

So for N = 2,

w′
1(r) =

1

4π2
r−1

∫ r

0

(ln t)2t dt

and

w1(r) =
1

8π2

∫ 1

r

[

s(ln s)2 − s ln s−
s

2

]

ds.

Then
w1(r)

w0(r)
=

− r2(ln r)2

2
+ r2 ln r + 1−r2

4

− 1
2π

ln r
,

then r 7→ w1(r)
w0(r)

is increasing, so

a2 = lim
r→1

w1(r

w0(r)
=

w′
1(1)

w′
0(1)

.

We see that

−w′
1(1) =











1

48π2
if N = 3,

1

16π2
if N = 2

and

−w′
0(1) =











1

4π
if N = 3,

1

2π
if N = 2,

so

α2 =











1

12π
if N = 3,

1

8π
if N = 2.

Therefore, we have that α2 < 1/4. The proof is thus complete.
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Corollary 2.1. Assume that N = 2 or 3, p = 2 Mθ is defined by (1.2) with θ ≥ 0, a2 is given
by (1.4), Ω = B1(0). Then for any k > 0, problem (1.3) has a nonnegative solution uk satisfying
(1.7) and (1.8).

3. Solutions with Mθ(u) > 0

In order to do estimates on Mθ(u), we introduce the following lemma.

Lemma 3.1. Let u, v be a radially symmetric, decreasing and nonnegative functions in C1(B1(0)\
{0}) ∩W 1,1

0 (B1(0)) such that

‖u‖L1(B1(0)) ≥ ‖v‖L1(B1(0)) and lim inf
|x|→0+

[u(x)− v(x)]|x|N−1 ≥ 0. (3.1)

Then
∫

B1(0)

|∇u|dx ≥

∫

B1(0)

|∇v|dx.

Proof. For radially symmetric decreasing function f ∈ C1(B1(0) \ {0}) ∩W 1,1
0 (B1(0)), we have

that

ωNf(r)r
N−1 + (N − 1)ωN

∫ 1

r

f(s)sN−2ds = −ωN

∫ 1

r

f ′(s)sN−1ds,

then we have that

ωN lim
|x|→0+

(u− v)(x)|x|N−1 + (N − 1)

∫

B1(0)

[u(x)− v(x)]dx =

∫

B1(0)

|∇u|dx−

∫

B1(0)

|∇v|dx.

From (3.1), we have that
∫

B1(0)

|∇u|dx ≥

∫

B1(0)

|∇v|dx.

This finishes the proof. ✷

Proof of Theorem 1.1. We search for distributional solutions of

−∆u =
1

Mθ(u)
up + kδ0 in Ω, u = 0 on ∂Ω (3.2)

by using the Schauder fixed-point theorem. Let w0, w1 be the solutions of (2.17) and denote

wt = tkpw1 + kw0, (3.3)

where the parameter t > 0.
We claim that there exists kp > 0 independent of θ such that for k ∈ (0, kp], if θ + r−1

0 k > 0
there exists tp > 0 such that

tpk
pw1 ≥

GΩ[w
p
tp]

θ + r−1
0 k

. (3.4)
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We observe that if
(aptk

p + k)p

θ + r−1
0 k

≤ tkp, (3.5)

then wt verifies (3.4), since

GΩ[w
p
tp]

θ + r−1
0 k

≤
(aptk

p + k)pGΩ[w
p
0]

θ + r−1
0 k

=
(aptk

p + k)p

θ + r−1
0 k

w1

≥ tkpw1.

Now we discuss what condition on k guarantee that (3.5) holds for some t > 0. In fact, (3.5)
is equivalent to

(aptk
p−1 + 1)p ≤ t(θ + r−1

0 k) (3.6)

or in the form

s = t(θ + r−1
0 k) and

(

apk
p−1

θ + r−1
0 k

s+ 1

)p

≤ s.

For p > 1, since the function f(s) = (1
p
(p−1

p
)p−1s + 1)p intersects the line g(s) = s at the

unique point sp =
(

p
p−1

)p

, so k may be chosen such that

apk
p−1

θ + r−1
0 k

≤
1

p

(

p− 1

p

)p−1

. (3.7)

In fact, (1.6) implies (3.7). Therefore, for k > r0θ− satisfying (1.6) and taking tp = (θ +

k)−1
(

p
p−1

)p

, function wtp verifies (3.4).

Let

Dk =
{

u ∈ W 1.1
0 (Ω) : 0 ≤ u ≤ tpk

pw1

}

.

Denote

T u =
1

Mθ(u+ kw0)
GΩ[(u+ kw0)

p], ∀ u ∈ Dk.

We claim that
Mθ(u+ kw0) ≥ θ + r−1

0 k > 0 for u ∈ Dk. (3.8)

For u ∈ Dk, we may let vn ∈ C1
0(Ω) be a sequence of nonnegative functions converging to

u in W 1,1
0 (Ω). Let un = vn + kw0, and by the fact that w0 ∈ C1(Ω \ {0}) ∩ W 1,1

0 (Ω), then
un ∈ C1(Ω \ {0}) ∩W 1,1

0 (Ω), un ≥ kw0 in Ω \ {0} and un converge to u + kw0 in W 1,1(Ω). By
the symmetric decreasing arrangement, we may denote u∗

n, the symmetric decreasing rearranged
function of un in Br0(0), where r0 ≥ 1 such that |Br0(0)| = |Ω|. Observe that

lim inf
|x|→0+

u∗
n(x)|x|

N−1 ≥ 0 = k lim
|x|→0+

w0(x)|x|
N−1
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and
∫

Ω

undx ≥ k

∫

Ω

w0dx.

By Pólya-Szegő inequality, we have that

‖∇un‖L1(Ω) ≥ ‖∇u∗
n‖L1(Br0

(0)) = r−1
0 ‖∇w∗

n‖L1(B1(0)).

where w∗
n(x) = r−N

0 u∗
n(r0x) for x ∈ B1(0).

Let wB1(0) = kGB1(0)[δ0], since B1(0) ⊂ Ω, Kato’s inequality implies that

∫

Ω

w0dx ≥

∫

B1(0)

wB1(0)dx.

Thus,
∫

B1(0)

w∗
ndx =

∫

Br0
(0)

u∗
ndx ≥

∫

B1(0)

wB1(0)dx. (3.9)

Thus, by Lemma 3.1, (3.9) and (2.21), we have

‖∇w∗
n‖L1(B1(0)) ≥ ‖∇kwB1(0)‖L1(B1(0)) = k

Therefore, passing to the limit as n → +∞ in the above inequality we get that

Mθ(u+ kw0) ≥ θ + r−1
0 ‖∇kwB1(0)‖L1(B1(0)) = θ + r−1

0 k,

which implies (3.8).
Therefore, from (3.4) it follows that

T u =
GΩ[(kw0 + u)p]

Mθ(kw0 + u)
≤

GΩ[(kw0 + tpk
pw1)

p]

θ + r−1
0 k

≤ tpk
pw1,

then
T Dk ⊂ Dk.

Note that for u ∈ Dk, one has that (u+kw0)
p ∈ Lσ(Ω) with σ ∈ (1, 1

p
N

N−2
), then T Dk ⊂ W 2,σ(Ω),

where σ ∈ (1, 1
p

N
N−2

). Since the embeddings W 2,σ(Ω) →֒ W 1,1(Ω), L1(Ω) are compact and then
T is a compact operator.
Observing that Dk is a closed and convex set in L1(Ω), we may apply the Schauder fixed-point

theorem to derive that there exists vk ∈ Dk such that

T vk = vk.

Since 0 ≤ vk ≤ tpk
pw1, so vk is locally bounded in Ω \ {0}, then uk := vk + kw0 satisfies (1.8),

and by interior regularity results, uk is a positive classical solution of (1.3). From Theorem 2.1
we deduce that uk is a distributional solution of (1.9). ✷
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4. Solutions with Mθ(u) < 0

For θ < 0 and Mθ(u) < 0, equation (1.9) could be written as

−∆u+
1

−Mθ(u)
up = kδ0 in B1(0), u = 0 on ∂B1(0). (4.1)

Lemma 4.1. Let p ∈ (1, p∗) and λ > 0. For any k > 0, the problem

−∆u+ λup = kδ0 in B1(0), u = 0 on ∂B1(0) (4.2)

has a unique positive weak solution uλ,k verifying that

lim
|x|→0+

uλ,k(x)|x|
N−2 = cNk. (4.3)

Furthermore, uλ,k is radially symmetric and decreasing with to |x| and the map λ 7→ uλ,k is
decreasing.

Proof. The existence could be seen [36, theorem 3.7] and uniqueness follows by Kato’s inequality
[36, theorem 2.4]. The radial symmetry of uλ,k and decreasing monotonicity with to |x| could
be derived by the method of moving plane, see [12, 33] for the details. It follows from Kato’s
inequality that the map λ 7→ uλ,k is decreasing. The proof ends. ✷

Proof of Theorem 1.2. (i) Observe that

Mθ(kw0) = k

∫

B1(0)

|∇w0|dx+ θ = k + θ < 0.

From Lemma 4.1 with λ = λ1 := −M−1
θ (kw0), problem (4.2) with λ = λ1 has a unique solution

vλ1
verifying that

0 < vλ1
≤ kw0,

then it implies that

k

∫

B1(0)

|∇vλ1
|dx ≤

∫

B1(0)

|∇kw0| dx

and

Mθ(vλ1
) = k

∫

B1(0)

|∇vλ1
|dx+ θ ≤ k

∫

B1(0)

|∇w0|dx+ θ = k + θ,

thus,
θ < Mθ(vλ1

) < k + θ,

that is,
1

−Mθ(vλ1
)
< λ1. (4.4)

In terms of Lemma 4.1, let λ2 = −M−1
θ (vλ1

) and {vλ2
} be the solution of problem (4.2) with

λ = λ2. Since λ2 > λ1, then
vλ1

< vλ2
< kw0.
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So it follows by Lemma 3.1 that

Mθ(vλ1
) < Mθ(vλ2

) < Mθ(kw0),

that is,
1

−Mθ(vλ2
)
> λ2. (4.5)

We claim that the map λ ∈ [λ2, λ1] 7→ Mθ(uλ,k) is continuous.

At this moment, we assume that the above argument is true. Let

F (λ) =
1

−Mθ(vλ)
− λ,

where vλ is the solution of (4.2) with λ ∈ [λ2, λ1]. Since F is continuous in [λ2, λ1], by (4.4),
(4.5) and the mean value theorem, there exists λ0 ∈ (λ2, λ1) such that F (λ0) = 0, that is, (4.1)
has a solution uk with 1

−Mθ(uk)
= λ0. From standard regularity, we have that uk is a classical

solution of (1.3) and verifies the corresponding properties in the lemma.

Now we prove that the map λ ∈ [λ2, λ1] 7→ Mθ(uλ,k) is continuous. Let λ2 ≤ λ′ < λ′′ ≤ λ1

and uλ′,k and uλ′′,k be the solutions of (4.1) with λ = λ′ and λ = λ′′ respectively. Then

uλ′′,k < uλ′,k

and
Mθ(uλ′′,k) < Mθ(uλ′,k). (4.6)

Let ū = uλ′′,k + (λ
′′−λ′

λ2
)1/pw0. Then

−∆ū + λ′ūp ≥ −∆uλ′′,k +

(

λ′′ − λ′

λ2

)
1

p

(−∆)w0 + λ′up
λ′′,k + λ′λ

′′ − λ′

λ2
wp

0

≥ −∆uλ′′,k + λ′′up
λ′′,k

= kδ0.

Therefore Kato’s inequality implies that

uλ′,k ≤ uλ′′,k +

(

λ′′ − λ′

λ2

)
1

p

w0,

which yields that

Mθ(uλ′,k) ≤ Mθ(uλ′′,k) +

(

λ′′ − λ′

λ2

)
1

p

k.

This together with (4.6), give

|Mθ(uλ′,k)−Mθ(uλ′′,k)| ≤

(

λ′′ − λ′

λ2

)
1

p

k → 0 as |λ′′ − λ′| → 0,
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thus, the map λ ∈ [λ2, λ1] 7→ Mθ(uλ,k) is continuous.

(ii) It is well known that for p ∈ (1, p∗), the problem

−∆u+ up = 0 in Ω \ {0}, u = 0 on ∂Ω (4.7)

has a positive solution vp verifying that

lim
|x|→0+

vp(x)|x|
2

p−1 = cp, (4.8)

where cp = [ 2
p−1

( 2
p−1

+ 2−N)]
1

p−1 . Furthermore, vp is the unique solution of (4.7) such that

lim inf
|x|→0+

u(x)|x|
2

p−2 > 0. (4.9)

We observe that
vλ := λ− 1

p−1vp

is the unique solution of

−∆u+ λup = 0 in Ω \ {0}, u = 0 on ∂Ω (4.10)

in the set of functions satisfying (4.9).
For p ∈ (N+1

N−1
, p∗), we have that

∫

Ω
|∇up|dx < +∞, so that

Mθ(vλ) := λ− 1

p−1m2 + θ < 0 for λ ∈ (λ0,+∞),

where m2 =
∫

Ω
|∇up|dx and λ0 = (m2/(−θ))p−1.

We define

F (λ) :=
1

λ− 1

p−1m2 + θ
+ λ, λ ∈ (λ0,+∞).

Observe that F is continuous, increasing and

lim
λ→λ+

0

F (λ) = −∞, lim
λ→+∞

F (λ) = +∞.

Hence there exists a unique λ̄ such that

−
1

λ̄− 1

p−1m2 + θ
= λ̄.

Meaning that −M−1
θ (vλ̄) = λ̄. We then conclude that (1.3) has a solution up := vλ̄ with

Mθ(up) < 0. From (4.8) and the definition of vλ, we know that up is not a weak solution of
problem (1.9).
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5. In the supercritical case

In the super critical case that p∗ ≤ p < 2∗ − 1, we have the following existence results.

Theorem 5.1. (i) Let N ≥ 3, p∗ ≤ p < 2∗ − 1, θ ∈ R and Ω be a bounded smooth domain
containing the origin. If
Case 1: p > 2, p ≥ p∗ and θ > 0;
Case 2: p = 2 ≥ p∗, θ > 0 and m2 < 1;
Case 3: p∗ ≤ p < 2 and θ < 0;
Case 4: p∗ ≤ p < 2∗ − 1, p 6= 2 and θ = 0,
then problem (1.3) has two positive solutions ui with i = 1, 2 satisfying that

Mθ(ui) > 0,

if p ∈

(

p∗,
N + 2

N − 2

)

, lim
|x|→0+

ui(x)|x|
2

p−1 = Mθ(ui)
1

p−1 cp (5.1)

and
if p = p∗, lim

|x|→0+
ui(x)|x|

N−2(ln |x|)
N−2

2 = Mθ(ui)
N−2

2 cp∗ , (5.2)

where cp = [ 2
p−1

(N − 2− 2
p−1

)]
1

p−1 and cp∗ = (N−2
4

)N−2.

(ii) Let N = 4, 5, p = 2 ∈ [p∗, 2∗ − 1), θ = 0 and Ω be a bounded smooth domain containing
the origin. If v is a solution of (5.3) such that Mθ(v) = 1, then for any λ > 0, u := λv is a
solution of problem (1.3) satisfying Mθ(u) = λ > 0 and (5.1)–(5.2).

To prove Theorem 5.1, we need the following lemma.

Lemma 5.1. ([29, 30]) Let N ≥ 3, p ∈ [p∗, N+2
N−2

) and Ω be a bounded smooth domain containing
the origin. Then the following problem

−∆u = up in Ω \ {0}, u = 0 on ∂Ω (5.3)

has two positive singular solution v1 and v2 verifying that

if p ∈ (p∗,
N + 2

N − 2
), lim

|x|→0+
vi(x)|x|

2

p−1 = cp (5.4)

and
if p = p∗, lim

|x|→0+
vi(x)|x|

N−2(ln |x|)
N−2

2 = cp∗. (5.5)

Proof of Theorem 5.1. From Lemma 5.1, it is known that for p∗ ≤ p < 2∗ − 1, problem (5.3)
has two positive solutions vi verifying that (5.4) and (5.5).
We observe that

vλ,i = λ− 1

p−1vi

is a solution of
−∆u+ λup = 0 in Ω \ {0}, u = 0 on ∂Ω. (5.6)
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For p∗ ≤ p < 2∗ − 1, we have that
∫

Ω
|∇up|dx < +∞, then

Mθ(vλ,i) = λ− 1

p−1mi + θ > 0

for λ ∈ (0, λ+), where mi =
∫

Ω
|∇vi|dx and

λ+ =











+∞ if θ ≥ 0,

(−mi/θ)
p−1 if θ < 0.

Denote

Fθ(λ) =
1

λ− 1

p−1mi + θ
− λ, λ ∈ (0, λ+),

which is continuous and

lim
λ→λ+

Fθ(λ) =











−∞ if θ > 0,

+∞ if θ < 0.

Case 1: p > 2, p ≥ p∗ and θ > 0, then there exists t > 0 such that

Fθ(λ) > 0.

Case 2: p = 2 ≥ p∗, θ > 0 and mi < 1, then there exists t > 0 such that

Fθ(λ) > 0.

Case 3: p∗ ≤ p < 2 and θ < 0, then there exists t > 0 such that

Fθ(λ) < 0.

In the above three cases, there exists a unique λ̄i such that

1

λ̄
− 1

p−1

i mi + θ
= λ̄i,

that is, M−1
θ (vλ̄i,i) = λ̄i. Therefore, (1.3) has a solution ui := vλ̄i,i with Mθ(ui) > 0.

When θ = 0,

F0(λ) = λ
1

p−1mi − λ, λ ∈ (0,+∞),

When N ≥ 4, we have that 1/(p− 1) > 1 for p∗ ≤ p < 2∗ − 1, or when N = 3, p∗ ≤ p < 2∗ − 1,

p 6= 2, λ̄i = m
(p−1)/(p−2)
i , then (1.3) has a solution ui := vλ̄i,i.

When N = 4, 5 and p = 2 ∈ [p∗, 2∗ − 1), if mi = 1, then for any λ > 0, u := λ− 1

p−1vi is a
solution (1.3) with Mθ(u) = λ > 0 and verifying (5.1)–(5.2). ✷

Remark 5.1. Our method to prove Theorem 5.1 is based on the homogeneous property of the
nonlinearity. When the nonlinearity is not a power function, this scaling method fails and it is
challenging to provide the existence results of isolated singular solutions.
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