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Abstract

This article is concerned with the mathematical analysis of a class of a nonlin-
ear fractional Schrödinger equations with a general Hartree-type integrand.
We prove existence and uniqueness of global-in-time solutions to the as-
sociated Cauchy problem. Under suitable assumptions, we also prove the
existence of standing waves using the method of concentration-compactness
by studying the associated constrained minimization problem. Finally we
show the orbital stability of standing waves which are the minimizers of the
associate variational problem.
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1. Introduction

A partial differential equation is called fractional when it involves deriva-
tives or integrals of fractional order. Various physical phenomena and ap-
plications require the use of fractional derivatives, for instance quantum me-
chanics, pseudo-chaotic dynamics, dynamics in porous media, kinetic theories
of systems with chaotic dynamics. The latter application is based on the so
called fractional Schrödinger equation. This equation was derived using the
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path integral over a kind of Lévy quantum mechanical path approach by
Laskin in Ref. [14, 15, 16]. The mathematical analysis of the fractional non-
linear Schrödinger equation has been growing continually during the last few
decades. Many results have been obtained and we refer for instance to [5]
and references therein.

This paper deals with the analysis of the following Cauchy problem

S :





i∂tφ+ (−∆)sφ = (G(|φ|) ⋆ V (|x|))G′(φ),

φ(t = 0, x) = φ0.

In the system S , φ(t, x) is a complex-valued function on R × R
N and φ0

is a prescribed initial data in Hs(RN). The operator (−∆)s denotes the
fractional Laplacian of power 0 < s < 1. It is defined as a pseudo-differential
operator F [(−∆)s φ](ξ) = |ξ|2sF [φ](ξ) with F being the Fourier transform.
The symbol ⋆ denotes the convolution operator in RN with the potential
V (|x|) = |x|β−N where β > 0 is such that β > N − 2s. The function G

is a differentiable function from R+ → R+, G′(φ) := dG
dφ

:= F (|φ|)φ, where
F : R → R.

The above Cauchy problem reduces to the massless boson Schrödinger
equation in three dimensions when G(φ) = |φ|2, V (|x|) = |x|−1 and s = 1

2
. In

this case, standing waves of the system S , i.e. solutions of the form φ(t, x) =
u(x)e−iκt, satisfy the following semilinear partial differential equation

(−∆)1/2u− (|x|−1 ∗ u2)u+ κu = 0. (1)

The associated variational problem

Iλ = inf

{
|||ξ| 12F [u](ξ)‖2L2(RN ) −

∫

RN×RN

|u(x)|2|u(y)|2
|x− y| dxdy,

u ∈ H
1
2 (RN),

∫

RN

|u(x)|2 dx = λ

}
, (2)

has played a fundamental role in the mathematical theory of gravitational
collapse of boson stars, [18]. In Ref. [12], the authors studied the associated
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variational problem

IG
λ = inf

{
|||ξ|sF [u](ξ)‖2L2(RN ) −

∫

RN×RN

G(u(x))V (|x− y|)G(u(y))dxdy,

u ∈ Hs(RN),

∫

RN

|u(x)|2 dx = λ

}
,

(3)

for a general nonlinearity G, a kernel V (|x|) = |x|β−N and dimension N ,
where here and the following

Hs(RN) := {u ∈ L2(RNN
), |||ξ|sF [u](ξ)‖2L2(RN ) <∞}.

In the critical case 2s = N − β, they were able to extend the results of [18].
Moreover, in the subcritical 2s > N − β, they have also proved the existence
and symmetry of all minimizers of (3) by using rearrangement techniques.
More precisely, they showed that under suitable assumptions on G, one can
always take a radial and radial by decreasing minimizing sequence of problem
(3).

Another very important issue related to the nonlinear fractional Schrödinger
equation S is the orbital stability of standing waves. For such an issue, it is
essential to show that all the minimizing sequences are relatively compact in
Hs(RN). This is the gist of the breakthrough paper [4]. The line of attach
consists of:

1. Prove the uniqueness of the solutions of S .

2. Prove the conservation of energy and mass of the solutions.

3. Prove the relative compactness of all minimizing sequences of the prob-
lem (3).

Our first result concerns the well-posedness of the system S . Before stating
it, we need to fix some conditions on G. We assume that G is nonnegative
and differentiable such that G(0) = 0 and for all ψ ∈ R+

A0 : ∃µ ∈
[
2, 1 +

2s+ β

N

)
s.t.





G(ψ) ≤ η(|ψ|2 + |ψ|µ),

|G′(ψ)| ≤ η(|ψ|+ |ψ|µ−1).

We have obtained the following
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Theorem 1.1. Let N ≥ 1, 0 < s < 1, 0 < β < N,N − 2s ≤ β, φ0 ∈ Hs(RN)
and G such that A0 holds true. Then, there exists a weak global-in-time
solution φ(t, x) to the system S such that

φ ∈ L∞(R ; Hs(RN)) ∩W 1,∞(R ; H−s(RN)).

Moreover, if N = 1 and 1
2
< s < 1 or if N ≥ 3, N

2(N−1)
< s < 1, N − s+ 1

2
<

β < min(N, 3N
2
− s− N

4s
) and µ (in A0) is such that

max

(
2, 1 +

2β −N

N − 2s

)
< µ < 2 +

N

N − 2s

2s− 1− 2N + 2β

2s− 1 +N
,

then the solution is unique.

The particular case µ = 2 and 2s = N − β was treated in Ref. [5] and
for lightness of the proofs, we shall sometimes omit it and focus on the case
µ ∈

(
2, 1 + 2s+β

N

)
. The proof of the existence part of Theorem 1.1 is based

on a classical contraction argument and the conservation laws associated to
the dynamics of the system S . The uniqueness part for N = 1 of Theorem
1.1 readily follows from the embedding Hs →֒ L∞ for all s > 1

2
. The part

for N ≥ 3 is obtained using mixed norms to be defined later and weighted
Strichartz and convolution inequalities, which require N ≥ 3. It would be
very interesting to find estimates to handle the uniqueness for N = 2. Let us
mention that in Ref. [9] the authors showed the orbital stability of standing
waves in the case of power nonlinearities by assuming energy conservation
and time continuity without proving uniqueness, which is an inescapable and
quite hard step, especially in the fractional setting.

As mentioned before, if φ(t, x) = eiκtu(x) with κ ∈ R is a solution of
the system S , then it is called a standing wave solution and u(x) solves the
following bifurcation problem

S̃ : (−∆)su− κu = (G(|u|) ⋆ V (|x|))G′(u).

In order to study the existence of a solution (κ, u) to the stationary equation
S̃ , we use a variational method based on the following minimization problem

Iλ = inf

{
E(u), u ∈ Hs(RN),

∫

RN

|u(x)|2 dx = λ

}
, (4)
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where λ is a positive prescribed number and

E(u) =
1

2
||∇su||2L2(RN ) −

1

2

∫

RN×RN

G(|u(x)|) V (|x− y|)G(|u(y)|) dxdy,

:=
1

2
||∇su||2L2(RN ) −

1

2
D(G(|u|), G(|u|)).

The kinetic energy is precisely expressed by the formula for all function u in
the Schwarz class

‖∇su‖2L2(RN ) = CN,s

∫

RN×RN

|u(x)− u(y)|2
|x− y|N+2s

dxdy, (5)

with CN,s being a positive normalization constant. In order to prove the
existence of critical points to the functional E and thereby solutions to the
problem S̃ , we will need some extra grows condition on G: for all ψ ∈ R+

A1 :





∃0 < α < 1 + 2s+β
N

s.t. ∀ψ, 0 < ψ ≪ 1, G(ψ) ≥ η ψα,

G(θ ψ) ≥ θ1+
2s+β
2N G(ψ).

Our next main result is contained in the following

Theorem 1.2. Let 0 < s < 1, 0 < β < N,N − β ≤ 2s and G such that
A0 and A1 hold true. Then, for all λ > 0, problem (4) has a minimizer
uλ ∈ Hs(RN) such that Iλ = E(uλ).

In fact we will show that any minimizing sequence of problem 4 is –up to
suitable translations– relatively compact in Hs(RN ). The proof of Theorem
1.2 is based on the concentration-compactness method of P-L. Lions [17].

The last part of the paper deals with the stability of the standing waves.
For that purpose, we introduce the following problem

Îλ = inf

{
J (z), z ∈ Hs(RN),

∫

RN

|z|2 dx = λ

}
,

where z = u+ i v and

J (z) =
1

2
||∇sz||2L2(RN ) −

1

2
D(G(|z(x)|), G(|z(x)|)),

=
1

2
||∇su||2L2(RN ) +

1

2
||∇sv||2L2(RN ) −

1

2
D(G((u2 + v2)

1
2 ), G((u2 + v2)

1
2 )),

:= J (u, v).
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We have obviously E(u) = J (u, 0). Following Ref. [4], we introduce the
following set

Ôλ =

{
z ∈ Hs(RN),

∫

RN

|z|2 dx = λ : J (z) = Îλ

}
.

The set Ôλ is the so called orbit of the standing waves of S with mass
√
λ.

We define the stability of Ôλ as follows

Definition 1.3. Let φ0 ∈ Hs(RN) be an initial data and φ(t, x) ∈ Hs(RN)
the associated solution of problem S . We say that Ôλ is Hs(RN )−stable
with respect to the system S if

• Ôλ 6= ∅.

• For all ε > 0, there exists δ > 0 such that for any φ0 ∈ Hs(RN)
satisfying infz∈Ôλ

|φ0 − z| < δ, we have infz∈Ôλ
|φ(t, x)− z| < ǫ for all

t ∈ R.

The notion of stability depends then intimately on the well-posedness
of the Cauchy problem S and the existence of standing waves. Therefore,
having in hand Theorems 1.1 and 1.2, we prove the following

Theorem 1.4. Let N ≥ 3, N
2(N−1)

< s < 1, N − s + 1
2
< β < min(N, 3N

2
−

s− N
4s
) and let G satisfying A0 and A1 with µ (in A0) such that

max

(
2, 1 +

2β −N

N − 2s

)
< µ < 2 +

N

N − 2s

2s− 1− 2N + 2β

2s− 1 +N
.

Let φ0 ∈ Hs(RN) and φ(t, x) ∈ Hs(RN) the associated solution to the problem
S . Then Ôλ is Hs(RN)−stable with respect to the system S .

The paper is divided into three sections. The first one is dedicated to the
analysis of the dynamics of the system S . More precisely, in this section we
prove Theorem 1.1. First of all, we prove a local-in-time existence of solu-
tions. Second we show that under extra assumptions, this solution is actually
unique. Eventually, we use the conservation laws to show the global-in-time
well-posedness. The second section is devoted to the proof of existence of
solution to the problem S̃ . For that purpose, we use the classical concen-
tration compactness method [17] to prove Theorem 1.2. The last section is
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dedicated to the proof of stability of standing waves, namely Theorem 1.4.
Here, we use ideas and techniques developed in [13].

From this point onward, η will denote variant universal constants that
may change from line to line of inequalities. When η depends on some pa-
rameter, we will write η(·) instead of η. In order to lighten the notation
and the calculation, we shall use Lp and Hs instead of Lp(RN) and Hs(RN)
respectively for real or complex valued functions. Also, we shall use || · ||p
instead of || · ||Lp(RN ) for all p ∈ [1,∞]. The exponent p′ will denotes the con-

jugate exponent of p, that is 1
p
+ 1

p′
= 1. For a more detailed account about

the Sobolev spaces Hs, we refer the reader to any textbook of functional
analysis (see [3] for instance).

2. Well-posedness of the system S

In this section we consider the local and global well-posedness of the
problem S and prove Theorem 1.1. Let us denote the nonlinear term
[V (|x|) ⋆ G(φ)]G′(φ) by N (φ). Since the well-posedness of the case µ =
2, 2s = N − β was treated in [5], in this paper we consider the initial value

problem S with µ ∈
(
2, 1 + 2s+β

N

)
. Let g = G′, that is,

∫ |z|

0
g(α) dα = G(z),

and assume that g(z) = z
|z|
g(|z|), z 6= 0, G(z) ≥ 0. Then, with A0, the

function g satisfies obviously

|g(z)|+ |g′(z)z| ≤ C(|z| + |z|µ−1) for all z ∈ C. (6)

2.1. Weak solutions

We first show existence of weak solutions to S in Hs. For this purpose
we prove that N is Lipschitz map from Lp′ to Lr for some p, r ∈

[
2, 2N

N−2s

)
.

Then the rest of the proof is quite straightforward from the Lipschitz map
and well-known regularizing arguments and we refer the readers to the book
[3].

Proposition 2.1. Let N ≥ 2, 0 < s < 1, 0 < β < N and 2s ≥ N − β. If g
satisfies (6) with µ ∈

(
2, 1 + 2s+β

N

)
. Then there exists a weak solution φ such

that

φ ∈ L∞(−Tmin, Tmax;H
s) ∩W 1,∞(−Tmin, Tmax;H

−s),

||φ(t)||2 = ||φ0||2, J (φ(t)) ≤ J (φ0).
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for all t ∈ (−Tmin, Tmax), where (−Tmin, Tmax) is the maximal existence time
interval of φ for given initial data φ0.

Proof. Let us introduce the following cut-off for the function g, g1(α) =

χ{0≤α<1}g(α) and g2(α) = χ{α≥1}g(α) and Gi(z) =
∫ |z|

0
gi(α) dα with obvious

definition of the Euler function χ. Then, one can writes

N (φ) =
∑

i,j=1,2

Nij(φ) where Nij(φ) =

∫

RN

|x− y|−(N−β)Gi(|φ|) dy gj(φ).

We claim that there exist pij , rij ∈
[
2, 2N

N−2s

)
1 such that

||Nij(φ)−Nij(ψ)||p′ij ≤ η(K)||φ− ψ||rij , (7)

for some constant η(K) with η(K) ≤ η Kaij , aij > 0 for all 1 ≤ i, j ≤ 2,
provided ||φ||Hs + ||ψ||Hs ≤ K. This implies that N : Hs → H−s is a Lipschitz
map on a bounded sets of Hs. Indeed, let µ1 = 2 and µ2 = µ. Then we have

|Nij(φ)−Nij(ψ)| ≤ η

∫

RN

|x− y|−(N−β)(|φ|µi−1 + |ψ|µi−1)|φ− ψ| dy|φ|µj−1

+ η

∫

RN

|x− y|−(N−β)|ψ|µi dy(|φ|µj−2 + |ψ|µj−2)|φ− ψ|.

By Hölder’s and Hardy-Littlewood-Sobolev inequalities with indices pij, rij
such that

1− 1

pij
=
µi

rij
− β

N
+
µj − 1

rij
,
µi

rij
>

β

N
, (8)

we obtain

||Nij(φ)−Nij(ψ)||p′ij ≤ η
[
(||φ||µi−1

rij
+ ||ψ||µi−1

rij
)||φ||µj−1

rij

+||ψ||µi

rij
(||φ||µj−2

rij
+ ||ψ||µj−2

rij
)
]
||φ− ψ||rij .

Thus if pij , rij ∈
[
2, 2N

N−2s

)
, then Sobolev inequality shows (7). Now we show

that there exist pij , rij ∈ [2, 2N
N−2s

) such that the combinations (8) hold true.
If pij , rij satisfy (8), then they are on the line

1

rij
=

1

µi + µj − 1
(1 +

β

N
− 1

pij
). (9)

1If N = 1 and 1

2
≤ s < 1, then 2N

N−2s
is interpreted as ∞.
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Since 1
µi+µj−1

(1+ β
N
− 1

2
) < 1

2
and N−2s

2N
< 1

µi+µj−1
(1+ β

N
− N−2s

2N
), the line (9)

of ( 1
pij
, 1
rij
) always passes through the open square (N−2s

2N
, 1
2
)× (N−2s

2N
, 1
2
). We

have only to find a pair ( 1
pij
, 1
rij
) of line (9) such that µi

rij
> β

N
. If µi

rij
> β

N
,

then
1

pij
< 1− µj − 1

µi

β

N
.

So, it suffices to show that

max

(
1

p0
,
N − 2s

2N

)
< 1− µj − 1

µi

β

N
, (10)

where 1
p0

is the point of line (9) when 1
rij

= 1
2
, that is, 1

p0
= 1+ β

N
− µi+µj−1

2
.

In fact, it is an easy matter to show (10) from the condition µ ∈
(
2, 1 + β+2s

N

)

and we leave the proof to the reader. The proof of Proposition 2.1 follows
now by a straightforward application of a contraction argument.

2.2. Uniqueness

Since the case N = 1 can be treated as in [3], we omit the details.
When N ≥ 3, the uniqueness of weak solutions can be shown by a weighted
Strichartz and convolution estimates. For that purpose, we introduce the
following mixed norm for all 1 ≤ m, m̃ <∞

||h||Lm
ρ Lm̃

σ
:= (

∫ ∞

0

(

∫

SN−1

|h(ρσ)|m̃ dσ)m
m̃ ρn−1dρ)

1
m .

The case m = ∞ or m̃ = ∞ can be defined is a usual way. Then we have
the following.

Proposition 2.2. Let N ≥ 3, N
2(N−1)

< s < 1, N−s+ 1
2
< β < min(N, 3N

2
−

s− N
4s
), and g such that the condition (6) holds true with

max

(
2, 1 +

2β −N

N − 2s

)
< µ < 2 +

N

N − 2s

2s− 1− 2N + 2β

2s− 1 +N
.

Then the Hs-weak solution to the problem S constructed in proposition 2.1
is unique.

The dimension restriction N ≥ 3 is necessary for N
2(N−1)

< s < 1 and

N − s+ 1
2
< β < 3N

2
− s− N

4s
, which are needed for the exponents appearing

in (14).
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Proof. Let U(t) = eit(−∆)s , then the solution φ constructed in Proposition
2.1 satisfies the integral equation

φ(t) = U(t)ϕ− i

∫ t

0

U(t− t′)N (φ(t′)) dt′ a.e. t ∈ (−Tmin, Tmax). (11)

Before going further, let us recall the following weighted Strichartz esti-
mate (see for instance Lemma 6.2 of [5] and Lemma 2 of [6]).

Lemma 2.3. Let N ≥ 2 and 2 ≤ q < 4s. Then, for all ψ ∈ L2, we have

|||x|−δU(t)ψ||
Lq(−t1,t2;L

q
ρL

q̃
σ)

≤ η ||ψ||2,

where δ = N+2s
q

− N
2
, 1

q̃
= 1

2
− 1

N−1

(
2s
q
− 1

2

)
and η is independent of t1, t2.

In [5] it was shown that

|||x|−δD
2s
q
− 1

2
σ U(t)ψ||Lq(−t1,t2;L

q
ρL2

σ)
≤ η||ψ||2.

Lemma 2.3 can be derived by Sobolev embedding on the unit sphere. Here
Dσ =

√
1−∆σ where ∆σ is the Laplace-Beltrami operator on the unit

sphere. Now, let us recall the following weighted convolution inequality we
shall use in the sequel

Lemma 2.4 (Lemma 4.3 of [7]). Let r ∈ [1,∞] and 0 ≤ δ ≤ γ < N − 1. If
1
r
> γ

N−1
, then for all f such that |x|−(γ−δ)f ∈ L1, we have

|||x|δ(|x|−γ ∗ f)||L∞

ρ Lr
σ
≤ η|||x|−(γ−δ)f ||1.

Therefore, using Lemma 2.3 one can readily deduce that

|||x|−δ

∫ t

0

U(t− t′)f(t′)||
Lq(−t1,t2;L

q
ρL

q̃
σ)

≤ η||f ||L1(−t1,t2;L2). (12)

10



Thus, if we set f = N (φ)−N (ψ) and γ = N − β. Then from (11) we infer

||φ− ψ||L∞(−t1,t2;L2) + |||x|−δ(φ− ψ)||
Lq(−t1,t2;L

q
ρL

q̃
σ)

≤ η

2∑

i,j=1

∫ t2

−t1

||Nij(φ)−Nij(ψ)||2 dt′,

≤ η

2∑

i,j=1

∫ t2

−t1

||
∫

RN

|x− y|−γ(|φ|µi−1 + |ψ|µi−1)|φ− ψ| dy|φ|µj−1||2 dt′,

+ η

2∑

i,j=1

∫ t2

−t1

||
∫

RN

|x− y|−γ|ψ|µi dy(|φ|µj−2 + |ψ|µj−2)|φ− ψ|||2 dt′,

≡
2∑

i,j=1

(T 1
ij + T 2

ij ).

We first estimate T 1
ij using Hölder’s and Hardy-Littlewood-Sobolev inequal-

ities. On the one side if (i, j) = (1, 2), since µ ∈
(
1 + 2β−N

N−2s
, 1 + β+2s

N

)
,

0 < β < N and 2s > γ = N − β, we can find r ∈
[
2, 2N

N−2s

]
such that

β

N
=

1

r
+

(µ− 1)(N − 2s)

2N
,

1

r
+

1

2
>

β

N
.

Thus, we can write

T 1
12 ≤ η

∫ t2

−t1

(||φ||r + ||ψ||r)||φ− ψ||2|φ|µ−1
2N

N−2s

dt′,

≤ η(t1 + t2)(||φ||µL∞(−t1,t2;Hs) + ||ψ||µL∞(−t1,t2;Hs))||φ− ψ||L∞(−t1,t2;L2).

On the opposite side, if (i, j) 6= (1, 2), then we can choose r ∈
[
2, 2N

N−2s

]
such

that
β

N
=
µi − 1

r
+

(µj − 1)

r
,
µi − 1

r
+

1

2
>

β

N
.

Such a combination is always possible thanks to our conditions on µ, β and
s. Therefore, we get as above

T 1
ij ≤ η

∫ t2

−t1

(||φ||µi−1
r + ||ψ||µi−1

r )||φ− ψ||2||φ||
µj−1

r
µj−1

dt′,

≤ η(t1 + t2)(||φ||µi+µj−2

L∞(−t1,t2;Hs) + ||ψ||µi+µj−2

L∞(−t1,t2;Hs))||φ− ψ||L∞(−t1,t2;L2).
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We are kept with the estimates of T 2
ij . If j = 1, then we can use Hardy-

Sobolev inequality such that for 0 < q < N and 2 ≤ p <∞
|||x|− q

pf ||p ≤ η||f ||
Ḣ

N
2 −

N−q
p
. (13)

In fact, we have

T 2
11 ≤

∫ t2

−t1

||
∫

RN

|x− y|−γ|ψ|2 dy||L∞

x
||φ− ψ||2 dt′,

≤ η

∫ t2

−t1

||ψ||2
Ḣ

γ
2
||φ− ψ||2 dt′,

≤ η(t1 + t2)||ψ||2L∞(−t1,t2;Hs)||φ− ψ||L∞(−t1,t2;L2).

Since N
2
− β

µ
≤ s we also have

T 2
21 ≤

∫ t2

−t1

||
∫

RN

|x− y|−γ|ψ|µ dy||L∞

x
||φ− ψ||2 dt′,

≤ C

∫ t2

−t1

||ψ||µ
Ḣ

N
2 −

β
µ

||φ− ψ||2 dt′,

≤ C(t1 + t2)||ψ||2L∞(−t1,t2;Hs)||φ− ψ||L∞(−t1,t2;L2).

When j = 2, we use the weighted convolution inequality (Lemma 2.4). The
hypothesis on β, µ guarantees the existence of exponents q, q̃ and r satisfying
the conditions of Lemmas 2.3, 2.4 and also the following combination

1

2
=

(µ− 2)(N − 2s)

2N
+

1

q
=

1

r
+

(µ− 2)(N − 2s)

2N
+

1

q̃
. (14)

Hence, using the Hardy-Sobolev inequality (13) we write

T 2
i,2 ≤

∫ t2

−t1

|||x|δ
∫

RN

|x− y|−γ|ψ|µi dy||L∞
ρ Lr

σ

(
||φ||µ−2

2N
N−2s

+ ||ψ||µ−2
2N

N−2s

)
×

× |||x|−δ(φ− ψ)||
Lq
ρL

q̃
σ
dt′,

≤ η

∫ t2

−t1

|||x|(−γ−δ)|ψ|µi||1
(
|||φ||µ−2

Hs + ||ψ||µ−2
Hs

)
|||x|−δ(φ− ψ)||

Lq
ρL

q̃
σ
dt′,

≤ η

∫ t2

−t1

||ψ||µi

Ḣ
N
2 −

β+δ
µi

(
||φ||µ−2

Hs + ||ψ||µ−2
Hs

)
|||x|−δ(φ− ψ)||

Lq
ρL

q̃
σ
dt′,

≤ η(t1 + t2)
1− 1

q

(
||φ||µi+µ−2

L∞(−t1,t2;Hs) + ||ψ||µi+µ−2
L∞(−t1,t2;Hs)

)
×

× |||x|−δ(φ− ψ)||
Lq(−t1,t2;L

q
ρL

q̃
σ)
.

12



Now, if (−t1, t2) ⊂ [−T1, T2] and ||φ||L∞(−T1,T2;Hs)+||ψ||L∞(−T1,T2;Hs) ≤ K, then
by combining all the estimates above we infer

||φ− ψ||L∞(−t1,t2;L2) + |||x|−δ(φ− ψ)||
Lq(−t1,t2;L

q
ρL

q̃
σ)

≤ η(K2 +K2µ−2)×

× (t1 + t2)
1− 1

q

(
||φ− ψ||L∞(−t1,t2;L2) + |||x|−δ(φ− ψ)||

Lq(−t1,t2;L
q
ρL

q̃
σ)

)
.

Thus, φ = ψ on [−t1, t2] for sufficiently small t1, t2. Let I = (−a, b) be the
maximal interval of [−T1, T2] with

||φ− ψ||L∞(−c,d;L2) + |||x|−δ(φ− ψ)||
Lq(−c,d;Lq

ρL
q̃
σ)

= 0, c < a, d < b.

Assume that a < T1 or b < T2. Without loss of generality, we may also
assume that a < T1 and b < T2. Then for a small ε > 0 we can find
a < t1 < T1, b < t2 < T2 such that

||φ− ψ||L∞(−t1,t2;L2) + |||x|−δ(φ− ψ)||
Lq(−t1,t2;L

q
ρL

q̃
σ)

≤ (K2 +K2µ−2)(t1 + t2 − a− b)1−
1
q×

×
(
||φ− ψ||L∞(−t1,t2;L2) + |||x|−δ(φ− ψ)||

Lq(−t1,t2;L
q
ρL

q̃
σ)

)
,

≤ (1− ε)
(
||φ− ψ||L∞(−t1,t2;L2) + |||x|−δ(φ− ψ)||

Lq(−t1,t2;L
q
ρL

q̃
σ)

)
.

This contradicts the maximality of I. Thus I = [−T1, T2]. Since [−T1, T2] is
arbitrarily taken in (−Tmin, Tmax), we finally get the whole uniqueness and
the Proposition 2.2 is now proved.

2.3. Global well-posedness

Using the argument of [3], one can show that the uniqueness implies
actually well-posedness and conservation laws:

• φ ∈ C(−Tmin, Tmax;H
s) ∩ C1(−Tmin, Tmax;H

−s),

• φ depends continuously on φ0 in Hs,

• ||φ(t)||2 = ||φ0||2 and J (φ(t)) = J (φ0) ∀ t ∈ (−Tmin, Tmax).

The proofs of these points are standard, we omit them and refer to [3]. Now
we remark that the well-posedness is actually global by establishing a uniform
bound on the Hs norm of φ(t) for all t ∈ (−Tmin, Tmax).

13



We first consider the global existence of weak solutions. Suppose φ is a
weak solution on (−Tmin, Tmax) as in Proposition 2.1. We show that ||φ(t)||Hs

is bounded for all t ∈ (−Tmin, Tmax). For this purpose let us introduce the
following notation

D(G(|φ|), G(|φ|)) =
2∑

i,j=1

Di,j(|φ|), Di,j(|φ|) := D(Gi(|φ|), Gj(|φ|)), (15)

where obviously we set Gi :=
∫ |z|

0
gi(α) dα and recall that the gi are defined

as g1(α) = χ{0≤α<1}g(α) and g2(α) = χ{α≥1}g(α). Using Hardy-Littlewood-
Sobolev and the fractional Gagliardo-Nirenberg inequalities and the assump-
tion A0 we can write the following estimates

D1,1 ≤ η ||u||44N
N+β

≤ η||u||4−
N−β

s

2 ||u||
N−β

s

Ḣs
, (16)

D2,2 ≤ η ||u||2µ2Nµ
N+β

≤ η||u||2µ−
N(µ−1)−β

s

2 ||u||
N(µ−1)−β

s

Ḣs
, (17)

D1,2, D2,1 ≤ η ||u||µ+2−Nµ−2β
2s

2 ||u||
Nµ−2β

2s

Ḣs
. (18)

Since N−β < 2s, then 0 < N−β
s

< 2 and 4− N−β
s

> 2. As well since 2 ≤ µ <

1 + 2s+β
N

, then 0 < N−β
s

≤ N(µ−1)−β
s

< 2 and 2 < µ − N(µ−1)−β
s

. Eventually,

we have 0 < N−β
s

≤ Nµ−2β
2s

and 2 ≤ µ < µ + 1 + β−N
2s

< µ+ 2− Nµ−2β
2s

. The
estimates above can be summarized as follows with µ1 = 2 and µ2 = µ.

Di,j(|u|) ≤ η

∫

RN×RN

|u(x)|µi |u(y)|µj

|x− y|N−β
dxdy,

≤ η ||u||µi+µj−γi,j
2 ||u||γi,j

Ḣs
(19)

where

γi,j =
N

s

(
1 +

β

N

)
−
(
N

2s
− 1

)
(µi + µj).

Thus, we have clearly

1

2
||φ||2Hs =

1

2
||φ||22 + J (φ) +D(G(|φ|), G(|φ|)),

≤ 1

2
||φ0||22 + J (φ0) + η

∑

i,j=1,2

||φ0||
2γij

2−µi−µj+γij

2 +
1

4
||φ||2Hs.
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Thus
||φ||Hs ≤ η (||φ0||Hs) , for all t ∈ (−Tmin, Tmax).

Therefore Tmin = Tmax = ∞. If s, β, µ satisfy the hypothesis of Proposition
2.2, then we get the global well-posedness. Eventually, combining this fact
with the Propositions 2.1 and 2.2 prove Theorem 1.1.

3. Existence of standing waves

In this section we study the minimization problem S̃ . We prove the exis-
tence of a solution to S̃ using a variational approach via the concentration-
compactness method of P-L. Lions [17]. Indeed, we aim to prove the existence
of critical points to the energy functional

E(u) =
1

2
||∇su||22 −

1

2
D(G(|u|), G(|u|)).

In other words, we look for a function uλ such that

E(uλ) = Iλ = inf

{
E(u), u ∈ Hs(RN ),

∫

RN

|u(x)|2 dx = λ

}
.

As noticed in the introduction of this paper, this problem has been studied
in various situation depending on the value of s and the conditions on β and
the integrand G in Ref. [5, 12, 18]. In order to prove the existence of critical
points to the functional E , we start with the following claim

Proposition 3.1. For all λ > 0 and G such that A0 and A1 hold true, we
have

• The functional E ∈ C1(Hs,R) and there exists a constant η > 0 such
that

||E ′(u)||H−s ≤ η

(
||u||Hs + ||u||

2s+β
N

Hs

)
.

• −∞ < Iλ < 0.

• Each minimizing sequence for the problem Iλ is bounded in Hs.

Proof. Let us mention that only assumption A0 is needed to prove the C1

property of the energy functional E . The proof of this claim is standard
and we refer the reader to Ref. [11] for details. Now, we prove the second

15



assertion. Let u ∈ Hs(RN) such that ||u||2 =
√
λ and assume A0. Then,

on the one hand, thanks to (16 –18), it is rather easy to show using Young’s
inequality that for all ǫ1, ǫ2 and ǫ3, there exist Cǫ1, Cǫ2, Cǫ3 > 0 such that

D1,1 ≤ η
(
ǫ1 ||u||2Ḣs + Cǫ1λ

e1
)
, e1 :=

4s+ β −N

2s+ β −N
. (20)

D1,2 ≤ η
(
ǫ2 ||u||2Ḣs + Cǫ2λ

e2
)
, e2 :=

2sµ+ β −N(µ− 1)

2s+ β −N(µ− 1)
. (21)

D1,2, D2,1 ≤ η
(
ǫ1||u||2Ḣs + Cǫ3λ

e3
)
, e3 := 1 +

2sµ

4s−Nµ+ 2β
. (22)

Observe that 0 < 2s + β − N < 4s + β − N so that e1 > 1. Also, 0 <

2s + β − N(µ − 1) < 2sµ + β − N(µ − 1) so that e2 > 1. Eventually,
4s−Nµ+2β > 2s+β−N > 0 so that 2sµ

4s−Nµ+2β
> 0 and e3 > 1. Therefore,

for sufficiently small ǫ1, ǫ2 and ǫ3, one has

E(u) ≥
(
1

2
− η(ǫ1 + ǫ2 + ǫ3)

)
||u||2Hs −

1

2
− η (Cǫ1λ

e1 + Cǫ2λ
e2 + Cǫ3λ

e3) ,

≥ −1

2
λ− η (Cǫ1λ

e1 + Cǫ2λ
e2 + Cǫ3λ

e3) .

Thus, we obtain Iλ > −∞. On the other hand, let us introduce for all κ ∈ R,
the rescaled function uκ = κ

1
2u(κ

1
N ·). Obviously, one has

∫
RN |uκ|2 = λ and

using A1

E(uκ) ≤
1

2
κ

2s
N

∫

RN

|(−∆)su(x)|2dx− κα−(1+
β
N )

2
D(|u(x)|α, |u(y)|α).

We have 0 < α−
(
1 + β

N

)
< 2s

N
, therefore we can take κ small enough to get

E(uκ) < 0. Thus, Iλ ≤ E(uκ) < 0.

We are kept with the proof of the third assertion. Let (un)n∈N be a
minimizing sequence for the problem Iλ. Therefore, thanks to (20–22), we
have for all u ∈ Hs

D(G(|u|), G(|u|)) ≤ η(ǫ1 + ǫ2 + ǫ3) ||u||2Ḣs + η (Cǫ1λ
e1 + Cǫ2λ

e2 + Cǫ3λ
e3) .

Hence

||un||2Hs = 2 E(un) + ||un||22 +D(G(|un|), G(|un|)),
≤ 2 Iλ + λ+ η(ǫ1 + ǫ2 + ǫ3) ||un||2Hs + η (Cǫ1λ

e1 + Cǫ2λ
e2 + Cǫ3λ

e3) .
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Eventually, we pick ǫ1, ǫ2 and ǫ3 such that η(ǫ1 + ǫ2 + ǫ3) < 1, we get imme-
diately that the minimizing sequence (un)n∈N is bounded in Hs.

Before going further, let us introduce the so called Lévy concentration
function

Qn(r) = sup
y∈RN

∫

B(y,r)

|un(x)|2dx.

It is known that each Qn is nondecreasing on (0,+∞). Also, with the Helly’s
selection Theorem, the sequence (Qn)n∈N has a subsequence that we still
denote (Qn)n∈N by abuse of notation, such that there is a nondecreasing
function Q(r) satisfying

Qn(r) −−−−→
n→+∞

Q(r), for all r > 0.

Since 0 ≤ Qn(r) ≤ λ, there exists β ∈ R such that 0 ≤ β ≤ λ such that

Q(r) −−−−→
r→+∞

γ.

Briefly speaking, a minimizing sequence (un)n∈N for the problem Iλ can only
be in one of the following situations:

• Vanishing, i.e. γ = 0.

• Dichotomy, i.e. 0 < γ < λ.

• Compactness, i.e. γ = λ.

In the sequel we shall proceed by elimination and show that vanishing and
dichotomy do not occur. Therefore, compactness holds true and we are done.
We start with the following

Proposition 3.2. Let λ > 0 and (un)n∈N be a minimizing sequence of prob-
lem Iλ with G such that A0 and A1 hold true. Then γ > 0.

The proposition claims then that the situation of vanishing does not oc-
curs. In the proof of Proposition 3.2, we shall use, for all subset of A ⊂ RN ,
the notation

D|A(G(|u|), G(|u|)) :=
∫

A×A

G(|u(x)|) V (|x− y|)G(|u(y)|) dxdy.

17



Proof. Let us first prove that D(G(|un|), G(|un|)) is lower bounded. In other
words, we show that for n ∈ N large enough there exists δ > 0 such that

δ < D(G(|un|), G(|un|)). (23)

We argue by contradiction and assume that there exist no such δ, therefore
lim infn→+∞D(G(|un|), G(|un|)) ≤ 0, thus

Iλ = lim
n→+∞

E(un) = lim
n→+∞

(
1

2
||∇sun||22 −

1

2
D(G(|un|), G(|un|))

)

≥ −1

2
lim

n→+∞
D(G(|un|), G(|un|)) ≥ 0.

The inequality above is in contradiction with the fact that Iλ < 0. On
the other hand, arguing by contradiction and assuming that the minimizing
sequence (un)n∈N vanishes, i.e. assume that γ = 0. Then there exists a
subsequence (unk

)k∈N of (un)n∈N and a radius r̃ > 0 such that

sup
y∈RN

∫

B(y,r̃)

|unk
(x)|2dx −−−−→

k→+∞
0.

Next, since the sequence (unk
)k∈N is bounded in Hs, then one can find rǫ > 0

such that
D||x−y|≥rǫ(G(|unk

|), G(|unk
|)) ≤ ǫ

2
.

Now, we cover RN by balls of radius r and centers ci for i = 1, 2, . . . such
that each point of RN is contained in at most N + 1 ball. Therefore, there
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exists Nǫ ball and a subsequence (cil)l=1,...,Nǫ such that

D||x−y|≥rǫ(G(|unk
|), G(|unk

|)) ≤ η

2∑

p,q=1

Dp,q||x−y|≥rǫ(|unk
|),

≤ η

2∑

p,q=1

∞∑

l=1

Nǫ∑

i=1

∫

Bx(cl,r)

∫

By(cil ,r)

|unk
(x)|µp |unk

(y)|µq

|x− y|N−β
dxdy,

≤ η

2∑

p,q=1

∞∑

l=1

Nǫ∑

i=1

||unk
||L2(Bx(cl,r))

||
∫

By(cli ,r)

|unk
(y)|µq

|x− y|N−β
dy |unk

|µp−1||L2(Bx(cl,r))
,

≤ Nǫ η

(
∞∑

l=1

||unk
||L2(Bx(cl,r))

)
||unk

||r ||unk
||µ−1

2N
N−2s

sup
y∈RN

||unk
||L2(B(y,r))

+ Nǫ η

2∑

(p,q)6=(1,2),p,q=1

(
∞∑

l=1

||unk
||L2(Bx(cl,r))

)
||unk

||µq−1
rpq

||unk
||µp−1

rpq
µp−1

×

× sup
y∈RN

||unk
||L2(B(y,r)),

where r and rpq are such that

β

N
=

1

r
+ (µ− 1)

(
1

2
− s

N

)
,

1

r
+

1

2
>

β

N
,

µp − 1

rpq
+
µq − 1

rpq
=

β

N
,

µp − 1

rpq
+

1

2
>

β

N
, (p, q) 6= (1, 2).

Since 1 + 2β−N
N−2s

< µ < 1 + β+2s
N
, 0 < β < N and s > N−β

2
, it is rather clear

that one can find (as in section 2) r, rp,q ∈
[
2, 2N

N−2s

]
. Consequently, we have

obviously

D||x−y|≥rǫ(G(|unk
|), G(|unk

|)) ≤ (N + 1)Nǫ η||unk
||2×

×
(
||unk

||µHs + ||unk
||2Hs + ||unk

||2(µ−1)
Hs

)(
sup
y∈RN

∫

B(y,r)

|unk
|2
) 1

2

.

−−−−→
n→+∞

0.

This shows that if the minimizing sequence (un)n∈N vanishes, then

D(G(|un|), G(|un|)) −−−−→
n→+∞

0.
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This is in contradiction with the property (23), namely for n ∈ N large enough
there exists γ > 0 such that D(G(|un|), G(|un|)) > γ. Thus, vanishing does
not occurs.

Now, we show the following

Proposition 3.3. Let 0 < π < λ and G such that A0 and A1 hold true.
Then the mapping λ 7→ Iλ is continuous and Iλ < Iπ + Iλ−π.

Proof. Let λ > 0 and (λk)k∈N be a sequence of positive numbers such that
λk −−−−→

k→+∞
λ. Let ǫ > 0 and u ∈ Hs(RN ) such that ||u||2 =

√
λ and

Iλ ≤ E(u) ≤ Iλ +
ǫ

2
.

For all k ∈ N, let uk =
√

λk

λ
u. Obviously uk ∈ Hs(RN) and ||uk||22 = λk

so that for all k ∈ N, Iλk
≤ E(uk). Now, we show that E(uk) −−−−→

k→+∞
E(u).

First, for all k ∈ N

||uk − u||Ḣs ≤ ||uk||Ḣs

∣∣∣∣∣1−
√
λk

λ

∣∣∣∣∣ .

Since any sequence of Iλ is bounded in Hs(RN) and λk −−−−→
k→+∞

λ, then we

have obviously 1
2
||∇suk||22 −−−−→k→+∞

1
2
||∇su||22. Next, following the first assertion

of Proposition 3.1, we have E(u) ∈ C1(Hs(RN),R). In particular, one can
easily see from the proof of this point that D(u) := D(G(|u|), G(|u|)) ∈
C1(Hs(RN ),R) and

|D′(u)| ≤ η

(
||u||Hs + ||u||

2s+β
N

Hs

)
. (24)

We refer to Ref. [11] for details. Therefore, we have

|D(uk)−D(u)| =

∣∣∣∣
∫ t

0

d

dt
D(tuk + (1− t)u)dt

∣∣∣∣ ,

≤ η sup
u∈Hs,||u||Hs≤η

||D′(u)||H−s ||uk − u||Hs ,

≤ η ||uk||Hs

∣∣∣∣∣1−
√
λk

λ

∣∣∣∣∣ −−−−→k→+∞
0.
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Thus, we have E(uk) −−−−→
k→+∞

E(u). Consequently, we have Iλk
≤ Iλ + ǫ for

k large enough. Next, for all k ∈ N, let us choose ũk ∈ Hs(RN ) such that
||ũk||2 =

√
λk and E(ũk) ≤ Iλk

+ 1
k
. Moreover, for all k ∈ N, we set ūk =√

λ
λk
ũk. Obviously, since ūk ∈ Hs(RN) and ||ūk||22 = λ, we have Iλ ≤ E(ūk).

Exactly the same argument as above shows that E(ũk) −−−−→
k→+∞

E(ū) so that

for k large enough, we have Iλ ≤ Iλk
+ ǫ. Whence, λ 7→ Iλ is continuous on

R⋆
+. Eventually, using the energy estimates (16-18) or (19), it is rather easy

to show that Iλ −−−→
λ→0+

0. This shows that the mapping λ 7→ Iλ is continuous.

Let us now prove the strict sub–additivity inequality. For that purpose,
we introduce uθ = θκu(θ

κ
N ) for all κ > N

N+2s
. Obviously uκ ∈ Hs(RN) and

||uθ||L2(RN ) =
√
θλ. Moreover, using A1, we have

E(uθ) =
1

2

∫

RN

|(−∆)
s
2uθ|2dx−

1

2
D(G(|uθ|), G(|uθ|)),

≤ θκ(1+
2s
N )

2

(∫

RN

|(−∆)
s
2u|2dx−D(G(|u|), G(|u|))

)
= θκ(1+

2s
N )E(u).

Thus, we deduce that Iθλ ≤ θκ(1+
2s
N )Iλ for all θ > 0. Now we let 0 < π < λ,

therefore since κ
(
1 + 2s

N

)
> 1 we have

Iλ ≤ λκ(1+
2s
N )I1 < πκ(1+ 2s

N )I1 + (λ− π)κ(1+
2s
N )I1,

≤ πκ(1+ 2s
N )π−κ(1+ 2s

N )Iπ + (λ− π)κ(1+
2s
N )(λ− π)−κ(1+ 2s

N )Iλ−π,

= Iπ + Iλ−π.

In summary, for all 0 < π < λ, we have Iλ < Iπ + Iλ−π.

Now, we are able to claim the following

Proposition 3.4. Let λ > 0 and (un)n∈N be a minimizing sequence of prob-
lem Iλ with G such that A0 and A1 hold true. Then dichotomy does not
occur for (un)n∈N.

Proof. Let us introduce ξ and χ in C∞ such that 0 ≤ ξ, χ ≤ 1 and

ξ(x) =





1 if |x| ≤ 1

0 if |x| ≥ 2
, χ(x) = 1− ξ(x), ||∇ξ||∞, ||∇χ||∞ ≤ 2.
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For all r > 0, let ξr(·) = ξ( ·
R
) and χr(·) = χ( ·

R
). we will show that dichotomy

does not occur by contradicting the fact that for all 0 < π < λ, we have
Iλ < Iπ+Iλ−π proved in Proposition 3.3. Indeed, let (un)n∈N be a minimizing
sequence of problem Iλ and assume that dichotomy holds. Then, using the
construction of [17], there exist

• 0 < π < λ,

• a sequence (yn)n∈N of points in RN ,

• two increasing sequences of positive real number (r1,n)n∈N and (r2,n)n∈N
such that

r1,n −−−−→
n→+∞

+∞ and
r2,n

2
− r1,n −−−−→

n→+∞
+∞,

such that the sequences u1,n = ξr1,n(·−yn)un and u2,n = χr2,n(·−yn)un satisfy






un = u1,n onB(yn, r1,n),

un = u2,n onB
c(yn, r2,n) = RN \B(yn, r2,n),

∫
RN |u1,n|2dx −−−−→

n→+∞
π,
∫
RN |u1,n|2dx −−−−→

n→+∞
λ− π,

||un − (u1,n + u2,n)||p −−−−→n→+∞
0, for all 2 ≤ p < 2N

N−2s
,

||un||Lp(B(yn,r2,n)\B(yn,r1,n))
−−−−→
n→+∞

0, for all 2 ≤ p < 2N
N−2s

,

dist(Supp(u1,n), Supp(u2,n)) −−−−→
n→+∞

+∞.

We have obviously

E(un) = E(u1,n) + E(u2,n) +
1

2

∫

RN

|(−∆)
s
2 un|2 −

1

2
D(G(|un|), G(|un|))dx

− 1

2

∫

RN

(
|(−∆)

s
2 u1,n|2 + |(−∆)

s
2 u2,n|2

)
dx

+
1

2
(D(G(|u1,n|), G(|u1,n|)) +D(G(|u2,n|), G(|u2,n|))) .

22



Now we show the existence of ǫ > 0 such that for sufficiently large radius r1,n
and r1,n we have

1

2

∫

RN

(
|(−∆)

s
2 un|2 − |(−∆)

s
2 u1,n|2 − |(−∆)

s
2 u2,n|2

)
dx ≥ −ηǫ. (25)

Firs of all, it is rather easy to show that by construction of the sequences ui,n
for i = 1, 2, we have
∫

RN

(
|(−∆)

s
2 un|2 − |(−∆)

s
2 u1,n|2 − |(−∆)

s
2 u2,n|2

)
dx

≥ −
∫

RN×RN

|ξr1,n(x− yn)− ξr1,n(y − yn)|2|un(x)|2
|x− y|N+2s

dxdy

−
∫

RN×RN

|χr2,n(x− yn)− χr2,n(y − yn)|2|un(x)|2
|x− y|N+2s

dxdy.

Indeed, the estimate above is justified using the definition (5) combined with
the following basic fact for u1,n

|u1,n(x)− u1,n(y)|2 = |ξr1,n(x− yn)un(x)− ξr1,n(y − yn)un(y)|2

≤ 1

2
|ξr1,n(x− yn)− ξr1,n(y − yn)|2

(
|u1,n(x)|2 + |u1,n(y)|2

)

+
1

2

(
|ξr1,n(x− yn)|2 + |ξr1,n(y − yn)|2

)
|u1,n(x)− u1,n(y)|2.

and equivalently for u2,n

|u2,n(x)− u2,n(y)|2 = |χr2,n(x− yn)un(x)− χr2,n(y − yn)un(y)|2

≤ 1

2
|χr2,n(x− yn)− χr2,n(y − yn)|2

(
|u2,n(x)|2 + |u2,n(y)|2

)

+
1

2

(
|χr2,n(x− yn)|2 + |χr2,n(y − yn)|2

)
|u2,n(x)− u2,n(y)|2.

In order to show (25), it suffices to show that there exist ǫ > 0 such that for
large radius r1,n and r2,n, we have

∫

RN×RN

|ξr1,n(x− yn)− ξr1,n(y − yn)|2|un(x)|2
|x− y|N+2s

dxdy ≤ ηǫ,

∫

RN×RN

|χr2,n(x− yn)− χr2,n(y − yn)|2|un(x)|2
|x− y|N+2s

dxdy ≤ ηǫ.
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We prove the first assertion and the second one follows equivalently. Indeed,
we split the sum in two part as follows

∫

RN×RN

|ξr1,n(x− yn)− ξr1,n(y − yn)|2|un(x)|2
|x− y|N+2s

dxdy

=

∫

|x−y|≤r1,n

|ξr1,n(x− yn)− ξr1,n(y − yn)|2|un(x)|2
|x− y|N+2s

dxdy

+

∫

|x−y|>r1,n

|ξr1,n(x− yn)− ξr1,n(y − yn)|2|un(x)|2
|x− y|N+2s

dxdy := T1 + T2

Now, we write

T1 ≤ r−2
1,n

∫

|x−y|≤r1,n

|un(x)|2
|x− y|N+2s−2

dxdy

≤ r−2
1,n

∫

RN

|un(x)|2dx
∫

|x|≤r1,n

1

|x|N+2s−2
dx ≤ η r−2s

1,n

∫

RN

|un(x)|2dx.

Moreover,

T2 ≤ r−s
1,n

∫

|x−y|>r1,n

|ξr1,n(x− yn)− ξr1,n(y − yn)|2|un(x)|2
|x− y|N+s

dxdy

≤ η r−s
1,n

∫

RN

|un(x)|2dx
∫

|x−y|>r1,n

1

|x− y|N+s
dy ≤ η r−s

1,n

∫

RN

|un(x)|2dx.

Eventually summing up T1 and T2 and use the same argument in order to

handle the term
∫
RN×RN

|χr2,n(x−yn)−χr2,n (y−yn)|2|un(x)|2

|x−y|N+2s dxdy, one ends with

∫

RN

(
|(−∆)

s
2 un|2 − |(−∆)

s
2 u1,n|2 − |(−∆)

s
2 u2,n|2

)
dx

≥ −η (r−2s
1,n + r−s

1,n + r−2s
2,n + r−s

2,n)

∫

RN

|un(x)|2dx.

The estimate (25) follows for r1,n and r2,n large enough. Next, observe that
|un − u1,n − u2,n| ≤ 31(B(yn,r2,n)\B(yn,r1,n)) where 1(B(yn,r2,n)\B(yn,r1,n)) denotes
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the characteristic function of B(yn, r2,n) \B(yn, r1,n). Now, we have

|D(G(|un|), G(|un|))−D(G(|vn|), G(|vn|))−D(G(|wn|), G(|wn|))|

≤
∫

B(yn,2r)\B̄(yn,2r)

(∣∣∣∣
G(|un|)G(|un|)
|x− y|N−β

∣∣∣∣ +
∣∣∣∣
G(|vn|)G(|vn|)
|x− y|N−β

∣∣∣∣

+

∣∣∣∣
G(|wn|)G(|wn|)

|x− y|N−β

∣∣∣∣
)
dxdy,

≤ η

(
||u||4−

N−β
s

L2(B(yn,r2,n)\B(yn,r1,n))
||u||

N−β
s

Hs + ||u||2µ−
N(µ−1)−β

s

L2(B(yn,r2,n)\B(yn,r1,n))
||u||

N(µ−1)−β

s

Hs

)

+ η ||u||µ+2−Nµ−2β
2s

L2(B(yn,r2,n)\B(yn,r1,n))
||u||

Nµ−2β
2s

Hs −−−−→
n→+∞

0.

where we used the estimates (16–18). Thus, for r2,n and r1,n large enough we
have

−1

2
(D(G(|un|), G(|un|))−D(G(|vn|), G(|vn|))−D(G(|wn|), G(|wn|))) ≥ −ηǫ.

(26)
Summing up (25) and (26), we end up for large r1,n and r2,n with

E(un)− E(u1,n)− E(u2,n) ≥ −ηǫ. (27)

Since we have
∫
RN |u1,n|2dx −−−−→

n→+∞
π and

∫
RN |u1,n|2dx −−−−→

n→+∞
λ − π, there

exist two positive real sequences (µ1,n)n∈N and (µ2,n)n∈N such that |µ1,n −
1|, |µ2,n − 1| < ǫ and

∫

RN

|µ1,nu1,n|2dx = π,

∫

RN

|µ2,nu2,n|2dx = λ− π,

so that

Iπ ≤ E(µ1,nu1,n) ≤ E(u1,n) +
ηǫ

2
,

Iλ−π ≤ E(µ2,nu2,n) ≤ E(u2,n) +
ηǫ

2
.

Thus, with (27), we have and the continuity of the mapping λ 7→ Iλ for all
λ > 0, we have

Iπ + Iλ−π − 3ηǫ ≤ E(u1,n) + E(u2,n)− ηǫ ≤ E(un) −−−−→
n→+∞

Iλ.
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In summary, we proved that for all 0 < π < λ, we have Iπ + Iλ−π ≤ Iλ

contradicting the strict sub–additivity inequality proved above. Then, the
dichotomy does not occur.

Now, we finish the proof of Theorem 1.2. Since vanishing and dichotomy
do not occur for any minimizing sequence (un)n∈N for the problem Iλ, then
the compactness certainly occurs. Following the concentration-compactness
principle [17], we know that every minimizing sequence (un)n∈N of Iλ satisfies
(up to extraction if necessary)

lim
r→+∞

lim
n→+∞

sup
y∈RN

∫

B(y,r)

|un(x)|2dx = λ.

That is, for all ǫ > 0, there exist rǫ > 0 and nǫ ∈ N⋆ and {yn} ⊂ RN such
that for all r > rǫ and n ≥ nǫ, we have∫

B(yn,r)

|un(x)|2dx = λ− ǫ

Now, let wn = un(x+yn), we have obviously that ||wn||Hs = ||un||Hs is bounded
inHs(RN), therefore (wn)n∈N (up to extraction if necessary) converges weakly
to w in Hs(RN). In particular (wn)n∈N converges weakly to w in L2(RN) and
||wn||2 =

√
λ. Now, let r̃ǫ > rǫ such that ||w||L2(Bc(0,r̃ǫ))

< ǫ
2
. Thus, there exists

ñǫ ∈ N⋆, ñǫ > nǫ such that for all n ≥ ñǫ, we have ||wn − w||L2(B(0,r̃ǫ))
< ǫ

2
.

Therefore, with the triangle inequality, we have

||w||2 ≥ ||un||2 − ||wn − w||L2(B(0,r̃ǫ))
− ||wn − w||L2(Bc(0,r̃ǫ))

,

≥ ||un||L2(B(yn,r̃ǫ))
− ||wn − w||L2(B(0,r̃ǫ))

− ||w||L2(Bc(0,r̃ǫ))
≥

√
λ− ǫ− ǫ.

Passing to the limit we get ||w||2 ≥
√
λ. Since the L2 is lower semi continuous,

we obtain that ||w||2 ≤ lim infn→+∞ ||wn||2 =
√
λ. Eventually, we get ||w||2 =√

λ, therefore the sequence (wn)n∈N converges strongly in L2(RN ) to w.

Also, we have

|D(G(|wn|), G(|wn|))−D(G(|w|), G(|w|))|

≤
∣∣∣∣
∫ t

0

d

dt
D(tG(|wn|) + (1− t)G(|w|)) dt

∣∣∣∣ ,

≤ η sup
u∈Hs,||u||Hs≤η

||D′(u)||H−s ||wn − w||Hs,

≤ η ||wn − w||2 + η||wn − w|| 2s+β
N

−−−−→
n→+∞

0.
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In the last line we used 24-kind inequality and again we refer to [11] for a
proof. Using the lower semi-continuity of the −s norm, we have ||w||Hs ≤
lim infn→+∞ ||wn||Hs. Summing up, we get clearly

Iλ ≤ E(w) ≤ lim inf
n→+∞

E(wn) = Iλ.

This shows that w is a minimizer of Iλ and wn −−−−→
n→+∞

w inHs(RN). Theorem

1.1 is now proved.

4. Stability of standing waves

In this section, we prove the orbital stability of standing waves in the
sense of Definition 1.3. That is we prove Theorem 1.4.

We argue par contradiction. Assume that Ôλ is not stable, then either
Ôλ is empty or there exist w ∈ Ôλ and a sequence φn

0 ∈ Hs such that
||φn

0 − w||Hs −−−−→
n→+∞

0 as n→ ∞ but

inf
z∈Ôλ

||φn(tn, .)− z||Hs ≥ ε, (28)

for some sequence tn ⊂ R, where φn(tn, .) is the solution of the Cauchy
problem S corresponding to the initial condition φn

0 .

Now let wn = φn(tn, .), since J (w) = Îλ, it follows from the continuity of
the L2 norm and J in Hs that ||φn

0 ||2 −−−−→n→+∞

√
λ and J (wn) = J (φn

0 ) = Îλ.

With the conservation of mass and energy associated with the dynamics of
the system S , we deduce that

||wn||2 = ||φn
0 ||2 −−−−→n→+∞

√
λ and J (wn) = J (φn

0 ) −−−−→
n→+∞

Îλ.

Therefore if (wn)n∈N has a subsequence converging to an element w ∈ Hs:
||w||2 =

√
λ and J (w) = Îc. This shows that w ∈ Ôλ, but

inf
z∈Ôλ

||φn(tn, .)− z||Hs ≤ ||wn − w||Hs

contradicting (28).

In summary, to show the orbital stability of Ôλ, one has to prove that
Ôλ is not empty and that any sequence (wn)n∈N ⊂ Hs such that

||wn||2 −−−−→n→+∞

√
λ and J (wn) −−−−→

n→+∞
Îλ, (29)
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is relatively compact in Hs (up to a translation).

From now on, we consider a sequence (wn)n∈N satisfying (29). Our aim
is to prove that it admits a convergent subsequence to an element w ∈ Hs.

If (wn)n∈N ⊂ Hs, it is easy to see that

(|wn|)n∈N ⊂ Hs ; wn = (un, vn).

Thanks to A0, we have that (wn)n∈N is bounded in Hs and hence by passing
to a subsequence, there exists w = (u, v) ∈ Hs such that





un converges weakly to u in Hs,

vn converges weakly to v in Hs,

the limit when n goes to +∞ of ||∇sun||2 + ||∇svn||2 exists .

(30)

Now, a straightforward calculation shows that

J (wn)− E(|wn|) =
1

2
||∇swn||22 −

1

2
||∇s|wn|||22 ≥ 0. (31)

Thus we have
Î = lim

n→+∞
J (wn) ≥ lim sup

n→+∞
E(|wn|). (32)

But
|||wn|||22 = ||wn||22 = λn −−−−→

n→+∞
λ. (33)

By the continuity of the mapping λ 7→ Iλ (see Proposition 3.3), we obtain

lim
n→+∞

J (wn) ≥ lim inf
n→+∞

Iλn = Iλ ≥ Îλ. (34)

Hence
lim

n→+∞
J (wn) = lim

n→+∞
E(|wn|) = Iλ = Îλ.

The properties (30) and the inequalities (31) and (34) imply that

lim
n→+∞

||∇sun||22 − ||∇svn||22 − ||∇s(u
2
n + v2n)

1/2||22 = 0, (35)

which is equivalent to say that

lim
n→+∞

||∇swn||2 = lim
n→+∞

||∇s|wn|||22. (36)
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The convergence (33), the inequality (34) and Theorem 1.2 imply that |wn|
is relatively compact in Hs (up to a translation). Therefore, there exists
ϕ ∈ Hs such that

(u2n + v2n)
1/2 → ϕ in Hs and ||ϕ||2 =

√
λ with E(ϕ) = Iλ.

Let us prove that ϕ = |w| = (u2+v2)1/2. Using (30), it follows that un −−−−→
n→+∞

u and vn −−−−→
n→+∞

v in L2(B(0, R))

|(u2n + v2n)
1/2 − (u2 + v2)1/2| ≤ |un − u|2 + |vn − v|2,

(u2n + v2n)
1/2 −−−−→

n→+∞
(u2 + v2)1/2 in L2(B(0, R)).

Thus we certainly have that (u2 + v2)1/2 = |w| = ϕ. On the other hand
|||wn|||2 = ||wn||2 −−−−→

n→+∞

√
λ = ||w||2 = |||w|||2. Therefore, we are done

if we prove that limn→∞ ||∇swn||22 = ||∇sw||22. From (36), we have that
limn→+∞ ||∇swn||22 = limn→+∞ |∇s|wn|||22 and limn→+∞ ||∇s|wn|||22 = ||∇s|w|||22.
Hence by the lower semi-continuity of ||∇s · ||2, we obtain

||∇sw||22 ≤ lim
n→+∞

||∇s|wn|||22 = ||∇s|w|||22. (37)

Eventually, using (31), it follows that

||∇sw||22 ≥ ||∇s|w|||22.

Since by (30), we know that wn converges weakly to w in Hs, it follows that
wn −−−−→

n→+∞
w in Hs, which completes the proof.

Now, we turn to the characterization of the Orbit Ôλ. We show the
following

Proposition 4.1. With the same assumptions of Theorem 1.4, we have

Ôλ =
{
eiσw(.+ y), σ ∈ R, y ∈ R

N
}
,

w is a minimizer of (4).
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Proof. Let z = (u, v) ∈ Ôλ and set ϕ = (u2+v2)1/2. By the previous section,
we know that E(ϕ) = Iλ, thus ϕ satisfies the partial differential equation :

(−∆)sϕ+ κϕ = V ⋆ G(|ϕ|)G′(ϕ), (38)

where κ is a Lagrange multiplier. Furthermore the equality ‖∇sw‖2 =
‖∇s|w|‖2 implies that

u(x)v(y)− v(x)u(y) = 0. (39)

By Proposition 4.2, it is plain that ϕ ∈ C(RN) and V ⋆G(|ϕ|) ∈ C(RN). We

can write (−∆)sϕ+κϕ = V ⋆G(|ϕ|)G′(ϕ)
ϕ
χ{ϕ 6=0}ϕ, with χA being the charac-

teristic function of the set A. Since ϕ is nontrivial and V ⋆G(|ϕ|)G′(ϕ)
ϕ
χ{ϕ 6=0} ∈

L∞
loc(R

N), we conclude that ϕ > 0 in RN by the Harnack inequality (see
Lemma 4.9 in [2]) and a standard argument of intersecting balls.

Case 1 : u ≡ 0
Case 2 : v ≡ 0
Case 3 : u 6= 0 and v 6= 0 everywhere.

Then (39) implies that

u(x)

v(x)
=
u(y)

v(y)
∀ x, y ∈ N

N ,

⇒ u(x)

v(x)
= α⇒ u(x) = αv(x) ∀ x ∈ R

N ,

z = (α + i)v ⇒ z = eiσw,w = |z|.

Let us now prove (39). By the fact that J (z) = Îλ, we can find a Lagrange

multiplier α ∈ C such that J ′(z)(ξ) =
α

2

∫

RN

zξ̄ + ξz̄ for all ξ ∈ Hs. Putting
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ξ = z, it follows immediately that α ∈ R and




∫

RN

∇su∇sf −
∫

RN×RN

G(u2 + v2)1/2(y)V (|x− y|)dyG′(f(x))dx

= α

∫

RN

u(x)f(x)dx,

∫

RN

∇sv∇sf −
∫

RN×RN

G(u2 + v2)1/2(y)V (|x− y|)dyG′(f(x))dx

= α

∫

RN

v(x)f(x)dx,

∇s denotes the fractional gradient, for all f ∈ Hs. It follows that u and v

solve the following system




(−∆)s u+

∫
G(u2 + v2)1/2(y)V (|x− y|)dy G′(u(x)) + αu(x) = 0,

(−∆)s v +

∫
G(u2 + v2)1/2(y)V (|x− y|)dyG′(v(x)) + αv(x) = 0.

By Proposition 4.2, we have that u and v ∈ C(RN) because (u2 + v2)1/2 ∈
Hs(RN). Let Ω = {x ∈ RN : u(x) = 0}, obviously Ω is closed since u is
continuous. Let us prove that it is also open. Suppose that x0 ∈ Ω. Knowing
that ϕ(x0) > 0, we can find a ball B centered in x0 such that v(x) 6= 0 for
any x ∈ B. Replacing u and v in (35), we certainly have that

u(x)v(y)− v(x)u(y) = 0 ∀ x, y ∈ B.

This proves the result.

Appendix

In this appendix, we prove the following

Proposition 4.2. Let s ∈ (0, 1), N − 2s ≤ β < N, β > 0, u, ϕ ∈ Hs(RN), G
such that A0 holds and κ is a real number such that

(−∆)su− κu = [V ⋆ G(ϕ)]G′(u). (40)

Then, there exists α ∈ (0, 1) depending only on N, κ, s, β such that u ∈
C

0,α
loc (R

N). Moreover, if ϕ ∈ L∞
loc(R

N), then u ∈ C
0,α
loc (R

N) if β ≤ 1 and
u ∈ C

1,α
loc (R

N ) if β > 1 and in addition V ⋆ G(ϕ) ∈ C
0,α
loc (R

N).
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Proof. We start by recalling the Gagliardo-Nirenberg inequality

||ϕ||Lp(RN ) ≤ cN,s,p||ϕ||Hs(RN ) for all ϕ ∈ Hs(RN) ,

for p ∈
[
2, 2N

N−2s

]
if N > 2s and for all p ∈

[
2, 2N

N−2s

)
and 2s ≥ N (here we

put 2N
N−2s

≡ +∞). Also we recall the Hardy-Littlewood-Sobolev inequality:

‖V ⋆ g‖
L

qN
N−qβ (RN )

≤ CN,β,q‖g‖Lq(RN ) for every g ∈ Lq(RN),

for N − qβ > 0.

First of all we focus on the case N > 2s. Thus, we have

||G(ϕ)||Lq(RN ) ≤ ||ϕ2||Lq(RN ) + |||ϕ|µ||Lq(RN ) = ||ϕ||2L2q(RN ) + ||ϕ||µ
Lµq(RN )

.

Hence, since ϕ ∈ Hs(RN), we infer that G(ϕ) ∈ Lq(RN) provided that
1 ≤ q ≤ N

N−2s
and 2

µ
≤ q ≤ 1

µ
2N

N−2s
, that is 1 ≤ q ≤ N

N−2s
and 1 ≤ q ≤

2N2

(N−2s)(N+2s+β)
. Now, thanks to the fact that N − 2s ≤ β < N , we get

1 < N
β
≤ N

N−2s
and 1 < N

β
≤ 2N2

(N−2s)(N+2s+β)
. In particular, we deduce that

G(ϕ) ∈ Lq(RN) for all q ∈
[
1, N

β

]
. Now, for all ǫ > 0 we let qǫ =

N
β
− ǫ > 1.

Using the Hardy-Littelwood-Sobolev inequality, we get V ⋆G(ϕ) ∈ L
Nqǫ
ǫβ (RN)

which in turns with the fact that β ≥ N − 2s shows that V ⋆G(ϕ) ∈ Lr(RN)

for all r > N
N−β

≥ N
2s
. Now, using the notation b(x) = G′(u)

1+|u|
and sign(u) = u

|u|
,

we reformulate the equation (40) as follows

(−∆)su(x)− κu(x) = [V ⋆ G(ϕ)] b(x) (1 + |u|)),
=

∫

RN

V (|x− y|)G(ϕ(y))dy b(x) (1 + sign(u) u).

Observing that µ− 2 < 2N
N−2s

− 2 = 4s
N−2s

, then for all r > N
2s
, we can write

||[V ⋆ G(ϕ)]b||Lr(RN ) = ||[V ⋆ G(ϕ)]
G′(u)

1 + |u| ||Lr(RN ),

≤ c ||[V ⋆ G(ϕ)]
|u|+ |u|µ−1

1 + |u| ||Lr(RN ),

≤ c ||V ⋆ G(ϕ)||Lr(RN ) + c ||[V ⋆ G(ϕ)]|u|µ−2||Lr(RN ).
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In order to deduce that the right hand side of this estimate is finite, we use
Hölder’s inequality to get

||[V ⋆ G(ϕ)] |u|µ−2||rLr(RN ) ≤ ||V ⋆ G(ϕ)]||
L

r θ
θ−1 (RN )

|||u|||µ−2

Lr (µ−2) θ(RN )
,

for all θ > 1. Therefore, we can choose r > N
2s

and θ > 1 respectively close to
N
2s

and 1 so that 1 < r (µ−2) θ < 2N
N−2s

. Hence using the Gagliardo-Nirenberg

inequality and the fact that V ⋆ G(ϕ) ∈ Lr(RN) for all r > N
N−β

≥ N
2s

and

u ∈ Hs(RN), we end up with [V ⋆ G(ϕ)]b ∈ Lr for some r > N
2s
, hence

u ∈ C
0,α
loc (R

N ).

Now, we write the equation (40) as follows

(−∆)su(x) = c(x)u(x) + d(x) :

c(x) = κ+ [V ⋆ G(ϕ)] b(x) sign(u) ∈ Lr(RN),

d(x) = [V ⋆ G(u)] b(x) ∈ Lr(RN),

for some r > N
2s
. Thus, using the regularity result of Ref. [20], we conclude

that u ∈ C
0,α
loc (R

N) for some α ∈ (0, 1) provided N
2s
> 1. If N = 1 and

s > 1
2
, then it is well-known that Hs(RN) is embedded in C

0,α
loc (R

N ) with

α = s− 1
2
−
[
s− 1

2

]
so that u ∈ C

0,α
loc (R

N). Moreover, if N = 1 and s = 1
2
, we

have obviously u ∈ Lp(RN ) for every p ≥ 2 and classical elliptic regularity
yields u ∈ C

0,α
loc (R

N) for some α ∈ (0, 1).

In the following, [·] stands for the integer part of ·. Let us introduce a
cutoff function η ∈ C∞

c (RN ) such that η ≡ 1 in the closed ball BR of center
0 and radius R > 0 and η ≡ 0 in RN \ B2R. To alleviate the notation, we
denote f = G(ϕ) which belongs to L∞

loc(R
N) ∩ Lq(RN) with 1 < q ≤ N

β
. We

define V1(ϕ) := V ⋆ (ηf) and V2(ϕ) := V ⋆ ((1 − η)f). Then using Fourier

transform, we get (−∆)
β
2 V1(ϕ) = f in the sense of distributions. Now, if

β
2
∈ N⋆, then it is rather easy to show using classical regularity theory that

V ⋆ G(ϕ) ∈ Cβ(RN). Next, if 0 < β
2
< 1, then we apply Proposition 2.1.9 of

Ref. [19] to show that V1(ϕ) ∈ C0,α(RN) for β ≤ 1 and V1(ϕ) ∈ C [β],α(RN)
for β > 1 and some α ∈ (0, 1). Now, V2(ϕ) is smooth on BR since it is
β
2
−harmonic in such a ball, see Ref. [1]. Hence, V ⋆ G(ϕ) ∈ C

0,α
loc (R

N ) for

β ≤ 1 and V ⋆ G(ϕ) ∈ C
[β],α
loc (RN) for β > 1 and some α ∈ (0, 1). Let us now

turn to the case of β
2
> 1 and β

2
6∈ N. we let σ = β

2
−
[
β
2

]
. Using Fourier
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transform, we have

(−∆)[
β
2 ]V1(ϕ) = (−∆)[

β
2 ] ((−∆)σV1(ϕ)) = η f

in the sense of distributions. Again, classical regularity theory arguments
implies that (−∆)σV1(ϕ) ∈ C [β](RN) and so V1(ϕ) ∈ C [β](RN). Similarly, we
have

(−∆)
β
2 V2(ϕ) = (−∆)σ

(
(−∆)[

β
2 ]V2(ϕ)

)
= (1− η) f

in the sense of distributions. Therefore the function g := (−∆)[
β
2 ]V2(ϕ) is

given by

(−∆)[
β
2 ]V2(ϕ)(x) =

∫

RN

(1− η(y)) f(y)

|x− y|N−σ
dy.

Also, using the Hardy-Littelwood-Sobolev inequality, it is rather straight-
forward to see that g ∈ Lp(RN) for some p > 1. Thus, g belongs to the

set
{
u,
∫
RN

|u(x)|
1+|x|N+2σ dx < +∞

}
. Again, since g is σ−harmonic in BR, we

deduce that g is smooth on BR by Ref. [1]. The radius R being arbitrary, it
follows that V2(ϕ) is smooth on RN . In particular, we have V2(ϕ) ∈ C [β](RN)
because

[
β
2

]
is a positive integer. Recalling that we showed V1(ϕ) ∈ C [β](RN ),

we conclude V ⋆ G(ϕ) ∈ C [β](RN).

Let us now summarize and conclude the proof. We considered the partial
differential equation (40) and proved that for some α ∈ (0, 1), we have V ⋆

G(ϕ) ∈ C
0,α
loc (R

N) for β ≤ 1 and V ⋆G(ϕ) ∈ C
[β],α
loc (RN) for β > 1. Since G′ is

locally Lipschitz, we deduce that u ∈ C
0,α
loc (R

N) for β ≤ 1 and u ∈ C
1,α
loc (R

N)
for β > 1 by adapting the proof of Lemma 3.3 of Ref. [8] for N > 2s.
If N = 1 and 2s ≥ 1, we have that [V ⋆ G(ϕ)]G′(u) ∈ C

0,γ
loc (R

N) for some
γ ∈ (0, 1), thus using Proposition 2.1.8 of Ref. [19], we get u ∈ C

1,α
loc (R

N).

Acknowledgments

Y. Cho was supported by NRF grant 2010-0007550 (Republic of Korea).
M. M. Fall is supported by the Alexander von Humboldt foundation.

References

[1] K. Bogdan, T. Byczkowski, Potential theory for the α-stable Schrödinger
operator on bounded Lipschitz domains, Studia Math. 133 (1999), no. 1,
53-92.

34



[2] X. Cabre, Y Sire, Nonlinear equations for fractional Laplacians I: Reg-
ularity, maximum principles, and Hamiltonian estimates. Annales de
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A 268, 298305 (2000).

[15] N. Laskin, Fractional quantum mechanics, Phys. Rev. E 62, 3135 (2000).

[16] N. Laskin, Fractional Schrodinger equations, Phys. Rev. E 66, 056108
(2002).

[17] P.-L. Lions, The concentration-compactness method in the calculus of
variations. The locally compact case. Part I, Ann. Inst. H. pincaré Anal.
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