
ar
X

iv
:1

90
9.

07
26

1v
1 

 [
m

at
h.

A
P]

  1
6 

Se
p 

20
19

GRADIENT ESTIMATES IN FRACTIONAL DIRICHLET PROBLEMS

MOUHAMED MOUSTAPHA FALL AND SVEN JAROHS

Abstract. We obtain some fine gradient estimates near the boundary for solutions to
fractional elliptic problems subject to exterior Dirichlet boundary conditions. Our results
provide, in particular, the sign of the normal derivative of such solutions near the boundary
of the underlying domain.

1. Introduction

Let Ω be an open bounded subset of RN with C1,1 boundary and let s ∈ (0, 1). In this paper
we analyze the boundary behavior of distributional solutions u ∈ Cs(RN ) to the equation

(−∆)su = f(x, u) in Ω, u = 0 in R
N \ Ω, (1.1)

where f ∈ L∞
loc(R

N × R) and (−∆)s denotes the fractional Laplacian and is defined for

ϕ ∈ C∞
c (RN ) by

(−∆)sϕ(x) := cN,s lim
ε→0+

∫

RN\Bε(0)

ϕ(x)− ϕ(x+ y)

|y|N+2s
dy, x ∈ R

N

with a normalization constant cN,s =
s4sΓ(N

2
+s)

πN/2Γ(1−s)
. Here and in the following, we assume, in

the case s ∈ (0, 1/2] that, for some σ ∈ (1− 2s, 1) and for all M > 0, there exists a constant
AM such that

sup
t∈(−M,M)

[f(·, t)]C0,σ(Ω) + sup
x∈Ω

[f(x, ·)]C0,1[−M,M ] ≤ AM . (1.2)

We note that, under the assumptions on f , the solution u to (1.1) belongs to C1
loc(Ω) by the

interior regularity theory, see e.g. [6].

To study the boundary behavior of u, we consider a function δ, which coincides with the
distance function dist(·,RN \ Ω) in a neighborhood of ∂Ω and in R

N \ Ω. Moreover, we
suppose that δ is positive in Ω and δ ∈ C1,1(Ω).

Letting ψ = u/δs, the known boundary regularity theory for fractional elliptic equations
(see e.g. Ros-Oton and Serra [8] followed by [2, 5–7]) states that, for any α ∈ (0, s),

‖ψ‖Cα(Ω) ≤ C sup
x∈Ω

|f(x, u(x))|, (1.3)

where C = C(N, s, α,Ω) is a positive constant. Moreover, since u = δsψ, we have that

δ1−s(x)∇u(x) = sψ(x)∇δ(x) + δ(x)∇ψ(x) for all x ∈ Ω. (1.4)

However, the identity (1.4) and the estimate in (1.3) do not provide a fine asymptotic of
∇u(x) near ∂Ω, since one cannot deduce from (1.3) a pointwise estimate of ∇ψ near ∂Ω. In
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particular, the monotonicity of u in the normal direction near the boundary is in general not
known and cannot be deduced from the fractional Hopf lemma, which provides only the sign
of ψ on ∂Ω, see e.g. [3]. The purpose of the present paper is to investigate these questions
and we show that, for some β > 0,

δ1−s∇u ∈ Cβ(Ω) and δ1−s(x)∇u(x) · ∇δ(x) = sψ(x) for all x ∈ ∂Ω. (1.5)

We emphasize that under the assumptions on f , (1.5) does not follow from the known
boundary regularity theory for fractional elliptic equations even if Ω is of class C∞. Indeed,
by the results of Grubb [4], we have that ψ ∈ Cα(Ω) for all α ∈ (0, s) and also if 2s ≤ 1

then by (1.2), ψ ∈ Cs+min(s,σ)(Ω), provided s+min(s, σ) 6∈ N. Clearly, each of these Hölder
regularity on ψ does not imply a pointwise estimate of ∇ψ and cannot imply (1.5).

Our first main result is the following.

Theorem 1.1. Let N ≥ 1, s ∈ (1/2, 1), α ∈ (0, 1) and Ω ⊂ R
N be an open bounded set of

class C1,γ, with γ > s. Let u ∈ Cs(RN ) and g ∈ L∞(RN ) be such that

(−∆)su = g in Ω, u = 0 in R
N \ Ω. (1.6)

Let ψ = u/δs satisfy

‖ψ‖Cα(Ω) ≤ C0

(

‖g‖L∞(RN ) + ‖u‖L∞(Ω)

)

, (1.7)

for some constant C0 > 0. Then provided α 6= s, we have

|∇ψ(x)| ≤ Cδmin(α,s)−1(x)
(

‖g‖L∞(RN ) + ‖u‖L∞(Ω)

)

for almost all x ∈ Ω. (1.8)

If moreover Ω is of class C1,1, then for all β ∈ (0,min(α, 2s − 1)),

‖δ1−s∇u‖Cβ(Ω) ≤ C
(

‖g‖L∞(RN ) + ‖u‖L∞(Ω)

)

(1.9)

and

δ1−s(x)∇u(x) · ∇δ(x) = sψ(x) for all x ∈ ∂Ω. (1.10)

Here, C = C(Ω, N, s, α, γ, β, C0).

We recall that by [1, 6], if Ω is of class C2,ε and g ∈ Cε(RN ), for some ε > 0, then (1.7)
holds for some α > s. In this case, δmin(α,s)−1(x) in (1.8) can be replaced with δs−1(x).

To state our next results, we will consider a function U ∈ Cs(RN ) ∩ C1
loc(Ω) satisfying

(−∆)sU ∈ Cσ(Ω) (1.11)

and

cδs(x) ≤ U(x) ≤
1

c
δs(x) for all x ∈ R

N , (1.12)

for some positive constant c.

Our second main result is the following.

Theorem 1.2. Let N ≥ 1, s ∈ (0, 1/2], and Ω ⊂ R
N be an open bounded set of class C1,1.

Let u ∈ Cs(RN ) be a solution to (1.1), where f satisfies (1.2) and let U satisfy (1.11) and
(1.12). Suppose that u satisfies (1.3), for some α ∈ (0, 1) with α 6= s. Let Ψ := U

δs and

suppose that Ψ ∈ Cα(Ω). Then the following statements holds.

(i) We have

|∇ψ(x)| ≤ C
(

δmin(s,α)−1(x) + |∇Ψ(x)|
)

for all x ∈ Ω. (1.13)
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(ii) If δ1−s∇U ∈ Cγ(Ω), for some γ > 0, then for all β ∈ (0,min{γ, α, s, σ − 1 + 2s}],

‖δ1−s∇u‖Cβ(Ω) ≤ C. (1.14)

For M := ‖u‖L∞(RN ), the constant C above depends only on N , s, β, Ω, γ, σ, α, AM , U and

‖f‖L∞(Ω×[−M,M ]).

As an example of a function U ∈ Cs(RN ) ∩ C1
loc(Ω) satisfying (1.11) and (1.12), we can

consider the solution to

(−∆)sU = 1 in Ω and U = 0 in R
N \ Ω. (1.15)

Here, by [4], if Ω is of class C∞ then Ψ = U/δs ∈ C∞(Ω). Therefore, by combining (1.4),
(1.14) and (1.13), we get (1.5).

Remark 1.3. We notice that the results in Theorem 1.1 and Theorem 1.2 remain valid if we
replace (−∆)s with the anisotropic fractional Laplacian (−∆)sa with a ∈ L∞(SN−1) if 2s ≤ 1
and a ∈ Cσ(SN−1) for some σ > 1− 2s if 2s ≤ 1. Here, the anisotropic fractional Laplacian
is defined for ϕ ∈ C∞

c (RN ) as

(−∆)saϕ(x) := lim
ε→0+

∫

RN\Bε(0)

(

ϕ(x) − ϕ(x+ y)
)a(y/|y|)

|y|N+2s
dy, x ∈ R

N .

In these cases, by [5], the interior and boundary regularity that is needed in the proofs in
Section 2 below remains valid.

Our next result is a consequence of Theorem 1.2 and the recent results in [1] where the
authors show the existence of a function satisfying (1.11) and (1.12) in C1,1 domains.

Corollary 1.4. Let N ≥ 1, s ∈ (0, 1/2], and Ω ⊂ R
N be an open bounded set of class C1,1.

Let u ∈ Cs(RN ) be a solution to (1.1) satisfying (1.3), where f satisfies (1.2). Provided
α 6= s, the following statements hold.

(i) We have

|∇ψ(x)| ≤ Cδmin(s,α)−1(x) for all x ∈ Ω. (1.16)

(ii) For all β ∈ (0,min{α, s, σ − 1 + 2s}],

‖δ1−s∇u‖Cβ(Ω) ≤ C (1.17)

and
δ1−s(x)∇u(x) · ∇δ(x) = sψ(x) for all x ∈ ∂Ω. (1.18)

Here, for M := ‖u‖L∞(RN ), the constant C above depends only on N , s, β, Ω, σ, α, AM and

‖f‖L∞(Ω×[−M,M ]).

Remark 1.5. In view of the above results, the following question remain open. Our argu-
ments yield a bound of |∇ψ| in terms of δmin(s,α). Does the estimate |∇ψ| ≤ Cδα−1 hold for
some α > s?

To prove Theorem 1.1, we consider the function y 7→ vx(y) := δs(y)(ψ(y) − ψ(x)), with
y ∈ B(x, δ(x)). Note that vx(y) = u(y) − δs(y)ψ(x) and its order of vanishing near ∂Ω
is δs+min(α,s)(x). We then apply interior regularity theory to the translated and rescaled

equation for vx to deduce the estimate ‖vx‖C1,β(B(x,δ(x)/2)) ≤ Cδs+min(α,s)(x), from which we
conclude the proof. In the case of Theorem 1.2, we adopt the same strategy as in the proof
of Theorem 1.1. However, since we do not know a sharp result for the Hölder continuity of
(−∆)sδs in C1,1 domains, we replace δs with U in the definition of vx. We then apply interior
regularity theory and a bootstrap argument to the translated and rescaled problem.
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2. Proof of the main results

We recall the interior regularity for the fractional Laplacian for equation to (−∆)sv = g
in B1 with v ∈ L∞(RN ). Then, see e.g. [5], we have the following estimates with a constant
C depending only on N, s and τ .

(i) If 2s > 1 and τ ∈ (0, 2s − 1),

‖v‖C1,τ (B1/2)
≤ C(‖g‖L∞(B1) + ‖v‖L∞(B1) + ‖v‖L1

s
). (2.1)

(ii) If 2s+ τ 6∈ N, then

‖v‖C2s+τ (B1/2) ≤ C(‖g‖Cτ (B1) + ‖v‖L∞(B1) + ‖v‖L1
s
). (2.2)

Here and in the following Bt := B(0, t) denotes the centered ball of radius t > 0 in R
N and

‖v‖L1
s
=

∫

RN

|v(x)|

1 + |x|N+2s
dx.

2.1. Proof of Theorem 1.1. For simplicity, we will assume that

‖u‖L∞(RN ) + ‖g‖L∞(RN ) ≤ 1.

From now on, C always denotes a positive constant depending on N , Ω, s, σ, α, β and γ,
which may change from line to line.

Since Ω is of class C1,γ , we can assume that δ, defined Section 1, is Lipschitz continuous
in R

N . Fix x ∈ Ω and for z ∈ R
N we define

ux(z) := u(x+ zδ(x)), δx(z) := δ(x + zδ(x)), and vx(z) := ux(z)− δsx(z)ψ(x).

Since δ is Lipschitz continuous, for z ∈ B1/2 we have that

1

2
δ(x) ≤ δx(z) ≤ 2δ(x) and |∇δx(z)| ≤ Cδ(x). (2.3)

Since ψ ∈ Cα(Ω) and δs ∈ Cs(RN ), we have for z ∈ R
N

|vx(z)| = δsx(z)|ψ(x) − ψ(x+ δ(x)z)| ≤ Cδs+α(x)|z|α(1 + |z|s)1Ω−x
δ(x)

(z),

where we used that δ is zero on R
N \Ω. As a consequence, for z ∈ B1 we have

|vx(z)| = δsx(z)|ψ(x) − ψ(x+ δ(x)z)| ≤ Cδs+α(x). (2.4)

We observe that for some R = R(Ω), we have Ω−x
δ(x) ⊂ BR/δ(x). In particular, if α 6= s,

‖vx‖L1
s
≤ Cδs+α(x) + Cδs(x)

∫

BR/δ(x)\B1

δα(x)|z|α

|z|N+s
dz

≤ Cδs+α(x) + Cδs+α(x)

∫ R/δ(x)

1
tα−1−s dt

≤ Cδs+α(x)(1 + δs−α(x)).

We then conclude that, for α 6= s,

‖vx‖L1
s
≤ Cδs+min(s,α)(x). (2.5)

Next, we note that by the scaling properties of the fractional Laplacian, we have for z ∈ B1

(−∆)svx(z) = δ2s(x)g(x + δ(x)z) − ψ(x)δ2s(x)[(−∆)sδs](x+ δ(x)z). (2.6)

We now complete the proof of the theorem.
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Proof of Theorem 1.1 completed. We start by recalling that by [7, Proposition 2.6], if Ω is of
class C1,γ with γ > s, then

|(−∆)sδs(x)| ≤ C for all x ∈ Ω.

From the assumptions on g, (2.4), and (2.5) the estimate (2.1) applied to the equation (2.6)
gives, for β ∈ (0, 2s − 1) and α 6= s,

‖vx‖C1,β(B1/4)
≤ C

(

δ2s(x) + δ2s(x) sup
z∈B1/2

|(−∆)sδs(x+ δ(x)z)| + ‖vx‖L∞(B1/2) + ‖vx‖L1
s

)

≤ C
(

δ2s(x) + δs+min(s,α)(x)
)

≤ Cδs+min(s,α)(x). (2.7)

We then deduce from this that, for all x ∈ Ω

|∇u(x)− ψ(x)∇δs(x)| = δ−1(x)|∇vx(0)| ≤ Cδs+min(s,α)−1(x). (2.8)

Since δs(x)∇ψ(x) = ∇u(x)− ψ(x)∇δs(x), we get (1.8).

We now prove (1.9) and we recall our assumption that Ω is of class C1,1. By (2.7), for
α 6= s, we get

‖∇u− ψ(x)∇δs‖L∞(B(x,δ(x)/4)) ≤ Cδs+min(s,α)−1(x) (2.9)

and

[∇u− ψ(x)∇δs]C0,β(B(x,δ(x)/4)) = δ−1−β(x)[∇u− ψ(x)∇δs]C0,β(B(0,1/4))

≤ Cδs+min(s,α)−1−β(x).
(2.10)

Define wx(y) := δ1−s(y) (∇u(y)− ψ(x)∇δs(y)). Then, for y1, y2 ∈ B(x, δ(x)/4)) and by (2.9)
and (2.10), we have

|wx(y1)−wx(y2)|

≤ C
(

δ−s(x)|y1 − y2|δ
s+min(s,α)−1(x) + δ1−s(x)δs+min(s,α)−1−β(x)|y1 − y2|

β
)

≤ C
(

δ1−β−s(x)|y1 − y2|
βδs+min(s,α)−1(x) + δmin(s,α)−β(x)|y1 − y2|

β
)

≤ Cδmin(s,α)−β(x)|y1 − y2|
β ,

where we used that δ ∈ C1(B(x, δ(x)/4))) and (2.3). Hence form this and (2.9), provided
β ∈ (0,min(α, s, 2s − 1)), we get

[wx]Cβ(B(x,δ(x)/4))) ≤ Cδmin(s,α)−β(x) ≤ C.

Therefore, noticing that δ1−s(y)∇u(y) = wx(y) − ψ(x)∇δ(y), ∇δ ∈ C0,1(B(x, δ(x)/4)) and
|ψ(x)| ≤ C, we find, for all β ∈ (0,min(α, s, 2s − 1)), that

[δ1−s∇u]Cβ(B(x,δ(x)/4))) ≤ C.

It then follows from a very similar argument as in the proof of [8, Proposition 1.1] that
[δ1−s∇u]Cβ(Ω) ≤ C. Since ‖δ1−s∇u‖L∞(Ω) ≤ C by (2.8), we get (1.9).

Finally, since Ω is of class C1,1, then ∇δ ∈ C(Ω) and ∇ψ ∈ C(Ω). Therefore (1.10) follows
from (1.4), (1.8) and (1.9). The proof is thus complete. �
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2.2. Proof of Theorem 1.2. To simplify the write up, we assume for the following that
with M = ‖u‖L∞(Ω) we have ‖f‖L∞(Ω×[−M,M ]) ≤ 1 and AM ≤ 1 (recall (1.2)).
From now on, the letter C always denotes a positive constant depending on N , Ω, s, σ, α,
β, γ, U and M , which may change from line to line.

By (1.12) and (1.3), we see that ψ = u
U = ψ

Ψ ∈ Cα(Ω). In the following, we fix r0 ≤ c
1
s ,

with c being the constant appearing in (1.12). Recalling (1.12), for x ∈ Ω and z ∈ RN , we
define

ux(z) := u(x+ zU
1
s (x)), Ux(z) := U(x+ zU

1
s (x)), and vx(z) := ux(z)− Ux(z)ψ(x).

We observe that, since ψ = u/U ,

vx(z) = Ux(z)
(

ψx(z)− ψ(x)
)

.

Therefore in view of (1.12) and the fact that ψ ∈ Cα(Ω), by using similar argument as in the
beginning of Section 2.1, we find that, provided α 6= s,

‖vx‖L1
s
≤ Cδs+min(s,α)(x) (2.11)

and

‖vx‖L∞(Br0/2
) ≤ Cδs+min(s,α)(x). (2.12)

Now direct computations, based on the scaling property of the fractional Laplacian and (1.11),

yield for all r0 ≤ c
1
s and z ∈ Br0/2

(−∆)svx(z) = U2(x)f
(

x+ U
1
s (x)z, ux(z)

)

− ψ(x)U2(x)(−∆)sU(x+ U
1
s (x)z). (2.13)

We now complete the proof of the theorem.

Proof of Theorem 1.2 completed. We start by recalling that 2s ≤ 1. Let

gx(z) = f
(

x+ U
1
s (x)z, ux(z)

)

= f
(

x+ U
1
s (x)z, vx(z) + ψ(x)Ux(z)

)

. (2.14)

Then from the assumptions on f and (1.12), we get

‖gx‖Cmin(s,σ)(Br0/2
) ≤ C

(

1 + ‖vx‖Cs(Br0/2
)

)

. (2.15)

By (1.11), (2.2) and (2.13), provided τ0 = 2s +min(s, σ) /∈ N, we have

‖vx‖Cτ0 (Br0/4
) ≤ C

(

U2(x)‖gx‖Cmin(s,σ)(Br0/2
) + U2(x) + ‖vx‖L∞(Br0/2

) + ‖vx‖L1
s

)

,

and if τ0 ∈ N, we can replace ‖vx‖Cτ0 (Br0/4
) above with ‖vx‖Cτ0−ε(Br0/4

) for an arbitrary small

ε > 0. Hence using (2.15), (2.12), and (2.11) we obtain

‖vx‖Cτ0 (Br0/4
) ≤ C

(

‖vx‖Cmin(s,σ)(Br0/2
) + 1

)

δs+min(s,α)(x) ≤ Cδs+min(s,α)(x). (2.16)

We consider a sequence of numbers ri = c
1
s 2−i−2 and τi+1 = min(2s + τi, σ) for i ∈ N. Then

by (2.13) and (2.14), for all z ∈ Bri , i ∈ N we have

(−∆)svx(z) = U2(x)gx(z)− ψ(x)U2(x)(−∆)sU(x+ U
1
s (x)z).

Hence iterating the above argument, provided τi+1 6∈ N (or else we replace τi+1 with τi+1 − ε
for an arbitrary small ε > 0), we get

‖vx‖Cτi+1 (Bri+1
) ≤ C

(

‖vx‖Cτi (Bri )
+ 1
)

δs+min(s,α)(x).
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Therefore by (2.16) and the fact that 1 > σ > 1− 2s, we must have that for some i0 ∈ N,

‖vx‖C1,σ−1+2s(Bri0
) ≤ Cδs+min(s,α)(x). (2.17)

This implies, in particular that

|∇vx(0)| ≤ Cδs+min(s,α)(x). for all x ∈ Ω,

Therefore, since by (1.12),

|∇u(x)− ψ(x)∇U(x)| = U− 1
s (x)|∇vx(0)| ≤ Cδs+min(s,α)−1(x).

Using that |U∇ψ| = |∇u(x)− ψ(x)∇U(x)| and (1.12), we then get

|∇ψ(x)| ≤ Cδmin(s,α)−1(x) for all x ∈ Ω

and thus, since ψ = ψ
Ψ ,

|∇ψ(x)| ≤ C
(

δmin(s,α)−1(x) + |∇Ψ(x)|
)

for all x ∈ Ω,

which is (1.13).

To see (1.14), we argue as in the proof of the case 2s > 1 in Section 2.1. Indeed, we start
by noting that, using (1.12) and (2.17), we can find a constant c0 = c0(Ω, N, s) > 0 such that

‖vx‖C1,σ−1+2s(B(x,c0δ(x))) ≤ Cδs+min(s,α)(x),

provided α 6= s. This implies that

‖∇u− ψ(x)∇U‖L∞(B(x,c0δ(x))) ≤ Cδs+min(s,α)−1(x) (2.18)

and for all β ∈ (0, σ − 1 + 2s]

[∇u− ψ(x)∇U ]Cβ(B(x,c0δ(x)))Cδ
s+min(s,α)−1−β(x). (2.19)

To finish the proof, we proceed as in Section 2.1. Define wx = δ1−s
(

∇u− ψ(x)∇U
)

and
then, for y1, y2 ∈ B(x, c0δ(x)) and β ∈ (0,min(σ − 1 + 2s)] we have

|wx(y1)−wx(y2)| ≤ Cδmin(s,α)−β(x)|y1 − y2|
β, (2.20)

with the same calculation as in the proof of Theorem 1.1 based on (2.18), (2.19) and the
regularity of δ. Therefore, provided α 6= s, we have for β ∈ (0,min(α, s, σ − 1 + 2s)]

[wx]Cβ(B(x,c0δ(x))) ≤ C.

Next, we define V (y) := δ1−s(y)∇u(y), and we note that

V (y) = wx(y) + δ1−s(y)∇U(y)ψ(x).

By assumption δ1−s∇U ∈ Cγ(Ω) and thus δ∇Ψ ∈ L∞(Ω), so that by (1.13) and (1.4)

‖V ‖L∞(Ω) ≤ C. (2.21)

On the other hand by (2.20) we have

[V ]Cβ(B(x,c0δ(x))) ≤ C for all β ∈ (0,min{γ, α, s, σ − 1 + 2s}],

provided α 6= s. Arguing similarly as in the proof of [8, Proposition 1.1] we have [V ]Cβ(Ω) ≤ C.

This together with (2.21) yield (ii). �



8 MOUHAMED MOUSTAPHA FALL AND SVEN JAROHS

Proof of Corollary 1.4 . First, we observe that the results hold in Ωβ := {x ∈ Ω : δ(x) ≥ β}
for all β > 0. From now on, we fix β > 0 small such that any point x ∈ Ω \Ωβ has a unique

projection σ(x) ∈ ∂Ω and that the map x 7→ σ(x) is C1(Ω \ Ωβ).

By [1], there exists a function U ∈ Cs(RN ) ∩ C2
loc(Ω) satisfying (1.11), (1.12) and, for all

ε ∈ (0, 1), there exists a constant C0 = C0(s,Ω, N, ε) such that

U
1
s ∈ C1,1−ε(Ω) and |D2U

1
s (x)| ≤ C0δ

−ε(x) for all x ∈ Ω. (2.22)

From now on, we fix ε = 1−α ∈ (0, 1). In the following the constant C is as in the statement
of the corollary.
Since U = 0 on ∂Ω, for x ∈ Ω \ Ωβ, by the mean value theorem, we have

U
1
s (x) = δ(x)

∫ 1

0
∇U

1
s (x− tδ(x)∇δ(σ(x))) · ∇δ(σ(x)) dt. (2.23)

From this, (2.22) and the fact that δ is smooth on ∂Ω (in fact it vanishes there), we deduce
that for every x ∈ Ω \ Ωβ,

|∇(U
1
s /δ)| ≤ C0

∫ 1

0
δ (x− tδ(x)∇δ(σ(x)))α−1 dt+C ≤ Cδα−1(x).

It then follows that, for every x ∈ Ω \Ωβ,

|∇Ψ(x)| = |∇(U
1
s /δ)s(x)| = s(U

1
s /δ)s−1(x)|∇(U

1
s /δ)(x)| ≤ Cδα−1(x),

where we used (1.12). Hence by the regularity of U and δ, we obtain

|∇Ψ(x)| ≤ Cδα−1(x) for all x ∈ Ω.

Therefore by applying Theorem 1.2 (i), we obtain (i).

We now prove (ii). We start by noting that, by (2.22), (2.23) and (1.12) we get

U
1
s

δ
∈ Cα(Ω \ Ωβ) and

U
1
s

δ
≥ C in Ω \Ωβ. (2.24)

Direct computations yield

δ1−s∇U = δ1−s∇(U
1
s )s = sδ1−s(U

1
s )s−1∇U

1
s = s(U

1
s /δ)s−1∇U

1
s .

From this, (2.24), (2.22) and (2.23) we obtain δ1−s∇U ∈ Cα(Ω \ Ωβ). We then conclude,

from the regularity of U and δ, that δ1−s∇U ∈ Cα(Ω). Now by Theorem 1.2 (ii) we have
‖δ1−s∇u‖Cβ(Ω) ≤ C and the proof of (1.14) is complete.

Finally (1.18) follows from (1.4), (1.16) and (1.14).
�
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