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UNBOUNDED PERIODIC SOLUTIONS TO SERRIN’S
OVERDETERMINED BOUNDARY VALUE PROBLEM

MOUHAMED MOUSTAPHA FALL, IGNACE ARISTIDE MINLEND, AND TOBIAS WETH

Abstract. We study the existence of nontrivial unbounded domains Ω in R
N such

that the overdetermined problem

−∆u = 1 in Ω, u = 0, ∂νu = const on ∂Ω

admits a solution u. By this, we complement Serrin’s classification result from 1971
which yields that every bounded domain admitting a solution of the above problem is
a ball in R

N . The domains we construct are periodic in some variables and radial in
the other variables, and they bifurcate from a straight (generalized) cylinder or slab.
We also show that these domains are uniquely self Cheeger relative to a period cell
for the problem.

1. Introduction and main result

In 1971, Serrin [23] established a celebrated result on the overdetermined problem
of finding a domain Ω ⊂ R

N and a C2-function u : Ω → R such that

−∆u = 1 in Ω (1.1)

and

u = 0, ∂νu = const on ∂Ω. (1.2)

Here ν is the unit outer normal on ∂Ω. More precisely, in [23] Serrin proved that, if Ω
is a bounded domain of class C2 such that (1.1), (1.2) admits a solution, then Ω is a
ball. The problem (1.1), (1.2) arises in e.g. in fluid dynamics and the linear theory of
torsion, and we refer the reader to [23, 25] for a detailed account on its relevance. As
we shall discuss further below, it is also related to the notion of Cheeger sets, which
in turn has applications in the denoising problem in image processing. The proof of
Serrin’s classification result for (1.1), (1.2) relies on the moving plane method, and it
extends to the much more general problem where (1.1) is replaced by

−∆u = f(u), u > 0 in Ω (1.3)

with a locally Lipschitz continuous nonlinearity f . We note that the positivity as-
sumption in (1.3) is essential, and by the strong maximum principle it is automatically
satisfied for solutions of (1.1), (1.2). The moving plane method, which Serrin estab-
lished in a PDE context, is inspired by Alexandrov’s reflection principle [1] for constant
mean curvature hypersurfaces. On the other hand, Weinberger [28] found a simpler
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argument to prove Serrin’s result for problem (1.1), (1.2) without the moving plane
method, but his argument does not cover the more general problem (1.2), (1.3).

The result of Serrin parallels an earlier important result by Alexandrov [1] which
states that closed embedded hypersurfaces with constant mean curvature (CMC hyper-
surfaces in short) are round spheres. This rigidity result for bounded embedded CMC
hypersurfaces stands in striking contrast to the rich structure of unbounded CMC hy-
persurfaces which has been explored in classical and more recent papers. For a survey,
we refer the reader to [16]. We recall in particular that already in 1841, Delaunay [4]
constructed and classified unbounded surfaces of revolution in R

3 with constant mean
curvature. As Delaunay’s construction shows, these surfaces bifurcate from a straight
cylinder (see also [20, Section 2] for a different proof of the latter statement).

For some time, it was unknown whether the problem (1.2), (1.3) admits solutions
in nontrivial unbounded domains. In fact, in [2], Berestycki, Caffarelli and Nirenberg
conjectured that if Ω ⊂ R

N is an unbounded sufficiently regular domain such that
R

N \ Ω is connected and f : [0,∞) → R is a local Lipschitz continuous function such
that the overdetermined problem (1.2), (1.3) admits a solution, then Ω is an affine half
space or the complement Bc of a ball B ⊂ R

N or a product of the form R
j × B bzw.

R
j × Bc with a ball B ⊂ R

N−j (after a suitable rotation).
This conjecture has been disproved by Sicbaldi [24] in dimensions N ≥ 3. More

precisely, in the case where f(u) = λ1u with λ1 > 0 suitably chosen, it was shown
in [24] that there exist periodic domains of revolution such that the problem (1.3), (1.2)
admits a positive solution. Moreover, these domains bifurcate from the straight cylinder
R×B, where B ⊂ R

N−1 is a ball. The construction in [24] relies on topological degree
theory and therefore does not give rise to a smooth branch of domains; moreover, the
case N = 2 was not included. Later in [20], Sicbaldi and Schlenk extended the result
to dimensions N ≥ 2, and they obtained a smooth branch of domains via the use of
the Crandall-Rabinowitz bifurcation theorem (see [3]).

In further recent papers, different types of nonlinearities f and unbounded domains
have been considered in the context of the general Serrin problem (1.2), (1.3). In
[13,27], the authors study examples of unbounded domains where (1.2), (1.3) is solvable
with f = 0, i.e. with harmonic functions. Moreover, in [5], the authors consider a
monostable nonlinearity f , and they construct domains whose boundary is close to
dilations of a given CMC-hypersurface and such that (1.2), (1.3) is solvable. It is clear
from these works that the existence and shape of such domains depend in a crucial
way on the function f . For negative results, excluding the solvability of (1.2), (1.3) in
nontrivial unbounded domains belonging to certain domain classes (e.g. epigraphs),
we refer the reader to [8–11, 21, 22] and the references therein.

In the present paper, we wish to analyze the original form of Serrin’s problem
(1.1), (1.2), i.e. the case f ≡ 1, in unbounded domains. More precisely, we study
domains of the form

Ωφ := {(z, t) ∈ R
n × R

m : |z| < φ(t)} ⊂ R
N ,
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where N = n +m and φ : Rm → (0,∞) is an even and 2πZm-periodic function. The
following is our main result.

Theorem 1.1. For each n,m ≥ 1 and α ∈ (0, 1), there exists λ∗ = λ∗(n) > 0 and a
smooth map

(−ε0, ε0) −→ (0,∞)× C2,α(Rm)

s 7−→ (λs, ϕs)

with ϕ0 ≡ 0, λ0 = λ∗ and such that for all s ∈ (−ε0, ε0), letting φs = λs + ϕs, there
exists a solution u ∈ C2,α(Ωφs

) of the overdetermined problem






−∆u = 1 in Ωφs

u = 0, ∂νu = −
λs

n
on ∂Ωφs

(1.4)

in the domain

Ωφs
=

{

(z, t) ∈ R
n × R

m : |z| < φs(t)

}

. (1.5)

Moreover, for every s ∈ (−ε0, ε0), the function ϕs is even in t1, . . . , tm, 2π-periodic
in t1, . . . , tm and invariant with respect to permutations of the variables t1, . . . , tm.
Furthermore, we have

ϕs(t) = s
(

m
∑

j=1

cos(tj) + µs(t)
)

for s ∈ (−ε0, ε0)

with a smooth map (−ε0, ε0) → C2,α(Rm), s 7→ µs satisfying
∫

[0,2π]m
µs(t) cos(tj) dt = 0 for s ∈ (−ε0, ε0), j = 1, . . . , m,

and µ0 ≡ 0.

Note here that, since the domain Ωφs
is radially symmetric in z for every fixed

s ∈ (−ε0, ε0), the corresponding solution u is also radially symmetric in the z-variable.
We also remark that the bifurcation value λ∗ in Theorem 1.1 is the unique zero of the
function

σ : (0,∞) → R, σ(ρ) =







ρ tanh(ρ)− 1, in case n = 1,

1

n

(

ρ
Iν+1(ρ)

Iν(ρ)
− 1

)

, in case n ≥ 2,

see Propositions 3.1 and 4.1 below. Here Iν is the modified Bessel function of the first
kind of order ν = n−2

2
. Numerically, λ∗ is given by

λ∗ ≈











1.199 in case n = 1;

1.608 in case n = 2;

1.915 in case n = 3.
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As remarked above, Sicbaldi and Schlenk [20] have derived – in the special case m = 1
– a result analogous to Theorem 1.1 where (1.1) is replaced by (1.3) with f(u) = λ1u.
Our proof of Theorem 1.1 is partly inspired by [20] and also relies on the Crandall-
Rabinowitz Theorem, but there are key differences due to the special form of (1.1).
We believe that our approach can also be generalized to study Serrin’s overdetermined
problem on Riemannian manifolds. Related to this, we mention the recent works [7,18].
In [7, Theorem 5], necessary conditions for the solvability of some overdetermined
problems on manifolds are given, and in [18] the case f(u) = λ1u is studied in the
product manifolds SN × R and HN × R.

The overdetermined problem (1.1), (1.2) is related to a generalized notion of Cheeger
sets. To define this generalized notion, let S, Ω be open subsets of RN . For a subset
A ⊂ S with Lipschitz boundary, we let P (A, S) := HN−1(∂A ∩ S) denote the relative
perimeter of A in S. Here and in the following, HN−1 denotes the N − 1-dimensional
Hausdorff measure. For an equivalent definition which extends to Borel subsets A of
S, see e.g. [15, Def. 13.6]. We then define the Cheeger constant of Ω relative to S as

h(Ω, S) := inf
A⊂Ω∩S

P (A, S)

|A|
, (1.6)

where the infimum is taken over subsets A ⊂ Ω ∩ S with Lipschitz boundary. If this
constant is attained by some subset A ⊂ Ω ∩ S with Lipschitz boundary, then A

will be called a Cheeger set of Ω relative to S. If Ω has a Lipschitz boundary and
A = Ω ∩ S attains the constant h(Ω, S) in (1.6), we say that Ω is self-Cheeger relative
to S. Moreover, if A = Ω ∩ S is the only set which attains h(Ω, S), we say that Ω
is uniquely self-Cheeger relative to S. These notions generalize the classical notions
of the Cheeger constant and Cheeger sets which correspond to the case S = R

N , see
e.g. [14].

We have the following corollary of Theorem 1.1.

Corollary 1.2. For every s ∈ (−ε0, ε0) and a, b ∈ πZm with ai < bi for i = 1, . . . , m,
the set Ωφs

given in Theorem 1.1 is uniquely self-Cheeger relative to the set

Sb
a := R

n × (a1, b1)× · · · × (am, bm) ⊂ R
N = R

n × R
m (1.7)

with corresponding relative Cheeger constant h(Ωφs
, Sb

a) =
n

λs
.

As discussed in detail in the illuminating surveys [14, 19], self-Cheeger sets arise in
various problems as e.g. the construction of prescribed mean curvature graphs or the
regularization of noisy images within the ROF model.

The link between Serrin’s over-determined problem (1.1), (1.2) and Cheeger sets on
N -dimensional Riemannian manifolds was also studied by the second author in [17],
where he proved the existence of a family of uniquely self-Cheeger sets (Ωε)ε∈(0,ε0) with

classical Cheeger constant h(Ωε) =
N
ε
.

The paper is organized as follows. In Section 2 we transform the overdetermined
problem to an equivalent boundary value problem on a fixed underlying domain with a
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φ-dependent metric. In Section 3.1, we then study the eigenvalues and eigenfunctions
of the linearization of the problem at constant functions φ ≡ λ. In particular, we study
the dependence of the eigenvalues on λ > 0. In Section 4, we then complete the proof
of Theorem 1.1 via the Crandall-Rabinowitz Theorem. Finally, in Section 5, we give
the proof of Corollary 1.2.

2. The transformed problem and its linearization

We fix α ∈ (0, 1) in the following. For j ∈ N ∪ {0}, we consider the Banach space

Cj,α
p,e (R

m) :=

{

φ ∈ Cj,α(Rm) : φ is even and 2π-periodic in t1, . . . , tm

}

Let
U := {φ ∈ C2,α

p,e (R
m) : φ > 0}.

For a function φ ∈ U , we define

Ωφ := {(z, t) ∈ R
n × R

m : |z| < φ(t)}

as well as the spaces

Cj,α
p,e (Ωφ,R

k) :=
{

u ∈ Cj,α(Ωφ,R
k) : u is even and 2π-periodic in t1, . . . , tm

}

,

Cj,α
p,e (∂Ωφ,R

k) :=
{

u ∈ Cj,α(∂Ωφ,R
k) : u is even and 2π-periodic in t1, . . . , tm

}

for j = 0, 1, 2, k ∈ N. If k = 1, we simply write Cj,α
p,e (Ωφ) and C

j,α
p,e (∂Ωφ). Moreover, in

the special case φ ≡ 1 we write

Ω := Ω1 = {(z, t) ∈ R
n × R

m : |z| < 1} .

Every φ ∈ U gives rise to a locally C2,α-regular map

Ψφ : Rn+m → R
n+m, Ψφ(z, t) = (φ(t)z, t). (2.1)

such that Ψφ maps Ω diffeomorphically onto Ωφ. Let the metric gφ be defined as the pull
back of the euclidean metric geucl under the map Ψφ, so that Ψφ : (Ω, gφ) → (Ωφ, geucl)
is an isometry. Hence our original problem is equivalent to the overdetermined problem
consisting of the Dirichlet problem

{

−∆gφu = 1 in Ω

u = 0 on ∂Ω
(2.2)

and the additional Neumann condition

∂νφu ≡ −c on ∂Ω. (2.3)

Here
νφ : ∂Ω → R

n+m

is the unit outer normal vector field on ∂Ω with respect to gφ. Since
Ψφ : (Ω, gφ) → (Ωφ, geucl) is an isometry, we have

νφ = [dΨφ]
−1µφ ◦Ψφ on ∂Ω, (2.4)
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where µφ : ∂Ωφ → R
n+m denotes the outer normal on ∂Ωφ with respect to the euclidean

metric geucl given by

µφ(z, t) =
( z
|z| ,−∇φ(t))

√

1 + |∇φ(t)|2
∈ R

n+m for (z, t) ∈ ∂Ωφ. (2.5)

Here and in the following, we distinguish different types of derivatives in our notation.
If f : O → R

ℓ is a C1-map defined on an open set O ⊂ R
k, we write df(x) ∈ L(Rk,Rℓ)

for its derivative at a point x ∈ O. In contrast, we shall use the symbols D or Dφ to
denote functional derivatives. More precisely, if X, Y are infinite dimensional normed
(function) spaces and F ∈ C1(O, Y ), where O ⊂ X is open, we let DF (φ) or DφF (φ) ∈
L(X, Y ) denote the Fréchet derivative of F at a function φ ∈ O.

The following lemma is concerned with the well-posedness of problem (2.2).

Lemma 2.1. For any φ ∈ U , there is a unique solution uφ ∈ C2,α
p,e (Ω) of (2.2), and the

map

C2,α
p,e (R

m) → C2,α
p,e (Ω), φ 7→ uφ (2.6)

is smooth. Moreover we have the following properties.

(i) For any φ ∈ U , the functions uφ : Ω → R and ∂νφuφ : ∂Ω → R are radially
symmetric in the z-variable.

(ii) For a constant function φ ≡ λ > 0, we have uλ(z, t) =
λ2−|λz|2

2n
.

(iii) Let P ⊂ L(Rm) denote the subset of all coordinate permutations in t1, . . . , tm.
If φ ∈ U satisfies

φ(p(t)) = φ(t) for all t ∈ R
m, p ∈ P, (2.7)

then

uφ(z,p(t)) = uφ(z, t) for all (z, t) ∈ Ω, p ∈ P (2.8)

and

∂νφuφ(z,p(t)) = ∂νφuφ(z, t) for all (z, t) ∈ ∂Ω, p ∈ P. (2.9)

Proof. Let

X := {u ∈ C2,α
p,e (Ω) : u = 0 on ∂Ω} and Y = C0,α

p,e (Ω).

Moreover, let L(X, Y ) denote the space of bounded linear operators X → Y , and let
I(X, Y ) ⊂ L(X, Y ) denote the subset of topological isomorphisms X → Y . Since the
metric coefficients of gφ are smooth functions of φ and ∇φ, it is easy to see that the
map

Υ : U → L(X, Y ), φ 7→ Υ(φ) := −∆gφ

is smooth. Moreover, for φ ∈ U , the definition of gφ implies that ∆gφ is an el-

liptic, coercive second order differential operator in divergence form with C1,α(Ω)-
coefficients. This immediately implies that, by the maximum principle and elliptic
regularity, Υ(φ) ∈ I(X, Y ) for every φ ∈ U , and consequently the problem (2.2) has a
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unique solution uφ ∈ X for every φ ∈ U . We now recall that I(X, Y ) ⊂ L(X, Y ) is an
open set and that the inversion

inv : I(X, Y ) → I(Y,X), inv(A) = A−1

is smooth. Since uφ = inv(Υ(φ))1, the smoothness of the map in (2.6) follows.
Next, to show (i), we fix φ ∈ U and note that uφ = ũφ ◦ Ψφ, where ũφ is the unique
solution of the problem

−∆ũφ = 1 in Ωφ, ũφ = 0 on ∂Ωφ.

Since Ωφ is invariant under rotations in the z-variable, the uniqueness implies that ũφ
is radially symmetric in z and hence uφ is also radially symmetric by the definition
of Ψφ. Moreover, the outer unit normal µφ : ∂Ωφ → R

n+m with respect to geucl is
equivariant with respect to rotations in z by (2.5), i.e.,

µφ(Az, t) = Ãµ(z, t) for all (z, t) ∈ ∂Ωφ, A ∈ O(n),

where Ã ∈ O(n+m) is defined by Ã(z, t) = (Az, t). It then follows that the function
∂µφ

ũφ : ∂Ωφ → R is also radially symmetric in z, whereas by (2.4) we have

∂νφuφ = duφνφ = [dũφ ◦Ψφ][µφ ◦Ψφ] = [∂µφ
ũφ] ◦Ψφ on ∂Ω.

As a consequence, the function ∂νφuφ is also radially symmetric in the z-variable, as
claimed.
Next we note that (ii) follows from the fact that in case φ ≡ λ > 0 we have

g
ij
λ = λ−2δij if 1 ≤ i, j ≤ n and gijλ = g

ji
λ = δij for 1 ≤ i ≤ n+m, n+ 1 ≤ j ≤ n+m

(2.10)
and therefore

∆gλ = λ−2∆z +∆t. (2.11)

Consequently, the function (z, t) 7→ λ2−|λz|2
2n

solves (2.2) for φ ≡ λ, and thus it coincides
with uλ, as claimed.
Finally, to show (iii), we fix φ ∈ U such that (2.7) holds, and we let ũφ be defined
as in the proof of (i). Then Ωφ is invariant under coordinate permutations, and by
uniqueness this implies that

ũφ(z,p(t)) = ũφ(z, t) for all (z, t) ∈ Ωφ, p ∈ P.

By definition of Ψφ, we then conclude that the function uφ satisfies (2.8), as claimed.
Moreover, by a similar argument as in the proof of (i), we find that (2.9) holds as well.
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By Lemma 2.1, condition (2.3) is equivalent to

[∂νφuφ](e1, t) = −c for t ∈ R
m, (2.12)

where e1 ∈ R
n is the first coordinate vector. It follows from (2.4) and (2.5) that the

map

U → C1,α
p,e (∂Ω,R

n+m), φ 7→ νφ

is smooth, and thus we have a smooth map

H : U → C1,α
p,e (R

m), H(φ)(t) = ∂νφuφ(e1, t), (2.13)

whereas (2.12) writes as

H(φ) ≡ −c on R
m. (2.14)

In order to find solutions of the latter equation bifurcating from the trivial branch of
solutions φ ≡ λ, λ > 0, we need to study the linearization of H at constant functions.
The following is the main result of this section.

Proposition 2.2. At a constant function λ > 0, the operator Hλ := DH(λ) ∈
L(C2,α

p,e (R
m), C1,α

p,e (R
m)) is given by

[Hλω](t) =
1

n

(

∂νψω,λ(e1, t)− ω(t)
)

for ω ∈ C2,α
p,e (R

m), t ∈ R
m, (2.15)

where ψω,λ ∈ C2,α
p,e (Ω) is the unique solution of the problem
{

∆zψω,λ(z, t) + λ2∆tψω,λ(z, t) = 0 (z, t) ∈ Ω,

ψω,λ(z, t) = ω(t) (z, t) ∈ ∂Ω
(2.16)

and ν is the outer unit normal on ∂Ω with respect to geucl given by ν(z, t) = (z, 0).

The remainder of this section is devoted to the proof of Proposition 2.2. In the
following, we put

ν̃φ(ω) := [Dφνφ]ω ∈ C1,α
p,e (∂Ω,R

n+m) for φ ∈ U , ω ∈ C2,α
p,e (R

m).

We start with the following simple observations.

Lemma 2.3.

(i) The map U → C2,α
p,e (Ω,R

n+m), φ 7→ Ψφ is smooth (recall (2.1)). Moreover, the

derivative DφΨφ ∈ L
(

C2,α
p,e (R

m), C2,α
p,e (Ω,R

n+m)
)

is given by

[DφΨφ]ω(z, t) = (ω(t)z, 0) for (z, t) ∈ Ω, ω ∈ C2,α
p,e (R

m). (2.17)

(ii) Let

g : U → C2,α(Ω), φ 7→ gφ

be a smooth map. Then the map

G : U → C1,α(∂Ω), G(φ) = ∂νφgφ
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is smooth as well and satisfies

DφG(φ)ω = ∂ν̃φ(ω)gφ + ∂νφ

(

[Dφgφ]ω
)

for ω ∈ C2,α
p,e (R

m).

Proof. (i) follows immediately from the definition of Ψφ.
(ii) For φ ∈ U and (z, t) ∈ ∂Ω we have

G(φ)(z, t) = ∂νφgφ(z, t) = dgφ(z, t)νφ(z, t).

Hence G is smooth as a bilinear form composed with two smooth functions, and its
derivative is given by

DφG(φ)ω = d[(Dφgφ)ω]νφ + dgφ
(

ν̃φ(ω)
)

= ∂νφ

(

[Dφgφ]ω
)

+ ∂ν̃φ(ω)gφ,

as claimed.

Next we consider the function

ū : Rn × R
m → R, ū(z, t) = −

|z|2

2n
,

and the smooth map

U → C2,α(Ω), φ 7→ uφ := ū ◦Ψφ.

Since ū satisfies −∆ū = 1 in R
n × R

m, for every φ ∈ U we have

−∆gφu
φ = 1 in Ω. (2.18)

Lemma 2.4. The map

U → C1,α(Rm), φ 7→ ∂νφu
φ(e1, ·)

is smooth, and its derivative at a constant function φ ≡ λ > 0 satisfies

[

Dφ|φ=λ ∂νφu
φ(e1, ·)

]

ω(t) = −
1

n
ω(t) for ω ∈ C2,α

p,e (R
m) and t ∈ R

m. (2.19)

Proof. The smoothness follows directly from Lemma 2.3(ii). To see (2.19), we consider
the smooth function

U → C1,α
p,e (R

m), φ 7→ µ̃φ(·) := µφ(Ψφ(e1, ·)),

where µφ : ∂Ωφ → R
n+m is the unit outer normal with respect to geucl given in (2.5).

Let ω ∈ C2,α
p,e (R

m). Since the map U → C1,α
p,e (R

m), φ 7→ |µ̃φ(·)|
2
geucl

is constant, we have

0 = [Dφ |µ̃φ(·)|
2
geucl

]ω = 2〈[Dφ µ̃φ(·)]ω, µ̃φ(·)〉geucl on R
m. (2.20)

Moreover, by (2.4) we have µ̃φ(t) = dΨφ(e1, t)νφ(e1, t) for t ∈ R
m and therefore

∂νφu
φ(e1, ·) = duφ(e1, ·)νφ(e1, ·) = dū(Ψφ(e1, ·))dΨφ(e1, ·)νφ(e1, ·) = dū(Ψφ(e1, ·))µ̃φ(·)

= 〈µ̃φ(·),∇geuclū(Ψφ(e1, ·))〉geucl
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on R
m. Consequently,

[Dφ|φ=λ ∂νφu
φ(e1, ·)]ω = 〈[Dφ|φ=λ µ̃φ(·)]ω,∇geuclū(Ψλ(e1, ·))〉geucl (2.21)

+ 〈µ̃λ(·), [Dφ|φ=λ [∇geuclū(Ψφ(e1, ·))]ω〉geucl
=: I1(ω) + I2(ω). (2.22)

Since, by definition, ∇geuclū(z, t) = − 1
n
(z, 0) for (z, t) ∈ R

n × R
m, we get

∇geuclū(Ψφ(e1, t)) = −
1

n
(φ(t)e1, 0) for t ∈ R

m (2.23)

and thus

[Dφ|φ=λ[(∇geuclū(Ψφ(e1, ·))]ω(t) = −
1

n
(ω(t)e1, 0) t ∈ R

m.

Noting also that µ̃λ ≡ (e1, 0) ∈ R
n+m on R

m, we infer that

I2(ω)(t) = 〈µ̃λ(t),−
1

n
(ω(t)e1, 0)〉geucl = −

1

n
ω(t) for t ∈ R

m. (2.24)

From (2.23) we also deduce that

(∇geuclū(Ψλ(e1, ·)) ≡ −
1

n
(λe1, 0) ≡ −

λ

n
µ̃λ(·),

so the identity (2.20) with φ = λ implies that

I1(ω) = 0 on R
m. (2.25)

Now (2.19) follows by combining (2.22), (2.24) and (2.25).

We are now in a position to complete the

Proof of Proposition 2.2. For φ ∈ U , we note that the function aφ := uφ − uφ ∈

C2,α
p,e (Ω) satisfies

{

−∆gφaφ = 0 in Ω

aφ = uφ on ∂Ω.
(2.26)

Moreover, in the case where φ ≡ λ > 0, we have uλ(z, t) = − |λz|2
2n

and therefore

aλ(z, t) = −
λ2

2n
for (z, t) ∈ Ω (2.27)

by Lemma 2.1(ii). Now, consider the smooth map T : U → C0,α(Ω) given by

T (φ) = ∆gφaφ = g
ij
φ ∂ijaφ +

1
√

|gφ|
∂i

(
√

|gφ|g
ij
φ

)

∂jaφ.

By (2.26) we have T ≡ 0 on U . Thus for every ω ∈ C2,α
p,e (R

m) we have

0 = DT (φ)ω = ∆gφ[Dφaφ]ω + h
ij
φ ∂ijaφ + ℓ

j
φ∂jaφ (2.28)
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with

h
ij
φ := [Dφg

ij
φ ]ω and ℓ

j
φ :=

[

Dφ
1

√

|gφ|
∂i
(

√

|gφ|g
ij
φ

)]

ω.

Evaluating (2.28) at φ = λ and using that the function aλ is constant in Ω by (2.27),
we find that the function

τω,λ := [Dφ

∣

∣

φ=λ
aφ]ω ∈ C2,α

p,e (Ω)

satisfies
∆zτω,λ + λ2∆tτω,λ = λ2∆gλτω,λ = 0 in C0,α(Ω).

(here the first equality follows from (2.11)). Moreover, differentiating the boundary
condition in (2.26) and using Lemma 2.3(i) gives

τω,λ(z, t) = [Dφ

∣

∣

φ=λ
ū ◦Ψφ]ω(z, t) = dū(Ψλ(z, t))[Dφ

∣

∣

φ=λ
Ψφ]ω(z, t)

= dū(λz, t)(ω(t)z, 0) = −
λ

n
ω(t) for (z, t) ∈ ∂Ω.

By Lemma 2.3(ii) and since aλ is constant in Ω, we also have that

[Dφ

∣

∣

φ=λ
∂νφaφ]ω = ∂ν̃φ(ω)aλ + ∂νλτω,λ =

1

λ
∂ντω,λ on ∂Ω, (2.29)

where ν is the outer unit normal on ∂Ω with respect to geucl given by ν(z, t) = (z, 0).
Combining (2.29) with Lemma 2.4, we thus find that

[Dφ

∣

∣

φ=λ
H(φ)]ω(t) = [Dφ

∣

∣

φ=λ
∂νφ(u

φ − aφ)(e1, ·)]ω(t) = −
1

n
ω(t)−

1

λ
∂ντω,λ(e1, t)

for t ∈ R
m. Putting ψω,λ := −n

λ
τω,λ, we then see that (2.15) and (2.16) hold, as claimed.

3. Spectral properties of the linearization

In this section we study the spectral properties of the linearized operators Hλ =
DH(λ) ∈ L(C2,α

p,e (R
m), C1,α

p,e (R
m)), λ > 0 considered in Proposition 2.2. We start with

the following observation.

Proposition 3.1. Let λ > 0. The functions

ωk ∈ C2,α
p,e (R

m), ωk(s) =
m
∏

j=1

cos(kjsj), k ∈
(

N ∪ {0}
)m

(3.1)

are eigenfunctions of Hλ in the sense that

[Hλωk](t) = σ(|k|λ)ωk(t) for t ∈ R
m with |k| =

√

k21 + · · ·+ k2m. (3.2)

Here the function σ is defined by

σ : [0,∞) → R, σ(ρ) =
1

n

(

ρ
h′(ρ)

h(ρ)
− 1

)

, (3.3)
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where h : [0,∞) → R is the unique solution of the initial value problem






h′′(ρ) +
n− 1

ρ
h′(ρ)− h(ρ) = 0

h(0) = 1, h′(0) = 0.
(3.4)

Furthermore, in case n = 1 we have

σ(ρ) = ρ tanh(ρ)− 1, (3.5)

and in case n ≥ 2 we have

σ(ρ) =
1

n

(

ρ
Iν+1(ρ)

Iν(ρ)
− 1

)

, (3.6)

where Iν is the modified Bessel function of the first kind of order ν = n−2
2
.

Proof. Fix λ > 0 and k ∈
(

N∪{0}
)m

. For ω = ωk ∈ C2,α
p,e (R

m) as defined in (3.1), the
unique solution ψωk,λ of (2.16) is given by ψωk ,λ(z, t) = b(|z|)ωk(t), where the function
b : [0, 1] → R is the unique solution to







b′′ +
n− 1

r
b′ − λ2|k|2b = 0, r ∈ (0, 1)

b′(0) = 0, b(1) = 1.
(3.7)

Hence we have that

[Hλωk](e1, t) =
1

n

(

∂νψωk,λ(e1, t)− ωk(t)
)

=
1

n
(b′(1)− 1)ωk(t) for t ∈ R

m.

Now putting ρ0 = λ|k| and considering h̃ : [0, ρ0] → R defined by h̃(ρ) := b( ρ
ρ0
), we see

that h̃ satisfies






h̃′′(ρ) +
n− 1

ρ
h̃′(ρ)− h̃(ρ) = 0, ρ ∈ (0, ρ0),

h̃′(0) = 0, h̃(ρ0) = 1.
(3.8)

Consequently, h̃ = h
h(ρ0)

in [0, ρ0], where h : [0,∞) → R is the unique solution of the

initial value problem (3.4). Moreover,

1

n
(b′(1)− 1) =

1

n

(

ρ0h̃
′(ρ0)− 1

)

=
1

n

(

ρ0
h′(ρ0)

h(ρ0)
− 1

)

= σ(ρ0),

as claimed in (3.3). Now in case n = 1 we have h(ρ) = cosh(ρ) for ρ > 0 and thus (3.3)
follows.
In case n ≥ 2, we consider g(ρ) := ρνh(ρ) with ν := n−2

2
, so that (3.4) transforms into

the following (modified) Bessel equation:

g′′(ρ) +
1

ρ
g′(ρ)−

(

1 +
ν2

ρ2

)

g(ρ) = 0.
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Up to a constant, the unique locally bounded solution to this equation is the modified
Bessel function of the first kind Iν . Since Iν > 0 on (0,∞), we thus have

h(ρ) = c ρ−νIν(ρ) for ρ > 0 with a constant c > 0. (3.9)

In fact, it will follow from (3.4) and (3.11) below that c = 2νΓ(ν + 1), but we do not
need this. Using (3.9) together with the recurrence formula ρI ′ν(ρ)− νIν(ρ) = ρIν+1(ρ)
(see e.g. [6, Section 7.11]), we find that

h′(ρ)

h(ρ)
=
I ′ν(ρ)−

ν
ρ
Iν(ρ)

Iν(ρ)
=
Iν+1(ρ)

Iν(ρ)
for ρ > 0.

Therefore (3.3) yields

σ(ρ) =
1

n

(

ρ
Iν+1(ρ)

Iν(ρ)
− 1

)

,

as claimed.

The following lemma gives the asymptotic behavior of the function σ.

Lemma 3.2. The function σ : (0,∞) −→ R has the following asymptotic properties:

(i) lim
ρ→∞

σ(ρ)
ρ

=
1

n
,

(ii) lim
ρ→0

σ(ρ) = −
1

n
.

Proof. In case n = 1, both (i) and (ii) follow immediately from (3.5). In case n ≥ 2,
(i) follows from (3.6) and the asymptotic formula

lim
ρ→+∞

Iτ (ρ)
1√
2πρ
eρ

= 1 for every τ ≥ 0,

see [6, Section 7.13.1]. Moreover (see e.g. [6, Section 7.2.2]), for τ ≥ 0, we have the
power series expression of Iτ given by

Iτ (ρ) =

∞
∑

i=0

(1
2
ρ)τ+2i

i!Γ(τ + i+ 1)
, for τ ≥ 0 and ρ > 0. (3.10)

We can write

Iτ (ρ) = (
1

2
ρ)τ

[

1

Γ(τ + 1)
+

∞
∑

i=1

(1
2
ρ)2i

i!Γ(τ + i+ 1)

]

, (3.11)

which shows that lim
ρ→0

ρ
Iτ+1(ρ)
Iτ (ρ)

= 0 for every τ ≥ 0. Together with (3.6) this gives (ii).
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Next, we show that the functions λ 7→ σ(λ) are strictly increasing on (0,∞).

Lemma 3.3. We have σ′(ρ) > 0 for ρ > 0. Moreover, σ has exactly one zero in
(0,∞).

Proof. By Lemma 3.2, we only need to show that σ′(ρ) > 0 for ρ > 0. In case n = 1,
(3.5) gives that σ′(ρ) = ρ

cosh2(ρ)
+ tanh(ρ) > 0 for ρ > 0. In case n ≥ 2, we use (3.3)

and calculate that

nh2(ρ)σ′(ρ) = h′(ρ)h(ρ)+ ρ
(

h′′(ρ)h(ρ)−h′(ρ)2
)

= (2−n)h′(ρ)h(ρ)+ ρ(h2(ρ)−h′(ρ)2)

for ρ > 0. For the latter equality, we used the fact that

h′′(ρ) = h(ρ) +
1− n

ρ
h′(ρ) for ρ > 0 (3.12)

as a consequence of (3.4). It then suffices to show that the function

ρ 7→ j(ρ) := ρn−1nh2(ρ)σ′(ρ) = (2− n)ρn−1h′(ρ)h(ρ) + ρn(h2(ρ)− h′(ρ)2)

is positive on (0,∞). Since j(0) = 0, it suffices to show that j′(ρ) > 0 for ρ > 0. Using
(3.12) again, we find that

j′(ρ) = (n− 1)(2− n)ρn−2h′(ρ)h(ρ) + (2− n)ρn−1
(

h′′(ρ)h(ρ) + h′(ρ)2
)

+ nρn−1
(

h2(ρ)− h′(ρ)2
)

+ 2ρn
(

h(ρ)h′(ρ)− h′(ρ)h′′(ρ)
)

= (n− 1)(2− n)ρn−2h′(ρ)h(ρ) + (2− n)ρn−1
(

h2(ρ) +
1− n

ρ
h′(ρ)h(ρ) + h′(ρ)2

)

+ nρn−1
(

h2(ρ)− h′(ρ)2
)

+ 2(n− 1)ρn−1h′(ρ)2

= ρn−1
(

2h2(ρ) + (2− n)h′(ρ)2 − nh′(ρ)2 + 2(n− 1)h′(ρ)2
)

= 2ρn−1h2(ρ) = 2c2ρI2ν (ρ) for ρ > 0

with ν = n−2
2

and c > 0 as in (3.9). Since Iν(ρ) > 0 for ρ > 0, we thus conclude that
j′(ρ) > 0 for ρ > 0, as required.

In the following, we consider the Sobolev spaces

Hj
p,e :=

{

v ∈ H
j
loc(R

m) : v even, 2π-periodic in t1, . . . , tm

}

, j ∈ N ∪ {0}, (3.13)

and we put L2
p,e := H0

p,e. Note that L2
p,e is a Hilbert space with scalar product

(u, v) 7→ 〈u, v〉L2 :=

∫

[0,2π]m
u(t)v(t) dt for u, v ∈ L2

p,e.

We denote the induced norm by ‖ · ‖L2. For the functions ωk in (3.1) we then have

‖ω0‖L2 = (2π)m/2, ‖ωk‖L2 = πm/2 for k ∈ (N ∪ {0})m, k 6= 0,
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and the functions ωk

‖ωk‖L2
form an orthonormal basis for L2

p,e. Moreover, Hj
p,e ⊂ L2

p,e is

characterized as the subspace of all functions v ∈ L2
p,e such that

∑

k∈(N∪{0})m
(1 + |k|2)j〈v, ωk〉

2
L2 <∞.

Thus, Hj
p,e is also a Hilbert space with scalar product

(u, v) 7→ 〈u, v〉Hj :=
∑

k∈(N∪{0})m
(1 + |k|2)j〈u, ωk〉L2〈v, ωk〉L2 for u, v ∈ Hj

p,e. (3.14)

In the following, we also consider the subspaces

Vℓ := 〈ωk : |k| = ℓ〉 ⊂
⋂

j∈N
Hj

p,e, (3.15)

the corresponding 〈·, ·〉L2-orthogonal projections Pℓ : L
2
p,e → L2

p,e on Vℓ, and the com-
plements

Z
j
ℓ := {v ∈ Hj

p,e : Pℓv = 0} ⊂ Hj
p,e, ℓ ∈ N ∪ {0}. (3.16)

Since the latter spaces are closed subspaces of Hj
p,e, they are also Hilbert spaces with

respect to the scalar product in (3.14).

Proposition 3.4. For fixed λ > 0, the linear map Hλ defined in (2.15) extends to a
continuous linear map

Hλ : H2
p,e → H1

p,e, Hλv =
∑

ℓ∈N∪{0}
σ(λℓ)Pℓv.

Moreover, for any ℓ ∈ N ∪ {0}, the operator

Hλ − σ(λℓ) id : Z2
ℓ → Z1

ℓ is an isomorphism.

Proof. This follows from Proposition 3.1, Lemma 3.2, Lemma 3.3 and the remarks
above.

Remark 3.5. The extension Hλ : H2
p,e → H1

p,e given in Proposition 3.4 can be charac-
terized as follows. For k ∈ N ∪ {0} and 1 ≤ p ≤ ∞, we consider the space

W
k,p
b (Ω) := {ψ ∈ W

k,p
loc

(Ω) : ψ ∈ W k,p(Ω′) for every bounded subset Ω′ ⊂ Ω} (3.17)

Given ω ∈ H2
p,e, standard elliptic theory shows that there is a unique solution ψ ∈

W
2,2
b (Ω) of the problem

{

∆zψ(z, t) + λ2∆tψ(z, t) = 0 (z, t) ∈ Ω,

ψ(z, t) = ω(t) (z, t) ∈ ∂Ω
(3.18)

which is even and 2π-periodic in t1, . . . , tm. Then Hλω is given by

[Hλω](t) =
1

n

(

∂νψ(e1, t)− ω(t)
)

for a.e. t ∈ R
m,
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where ν is the outer unit normal on ∂Ω with respect to geucl and ∂νψ is considered in
the sense of traces. This can be easily seen by approximating ω in H2

p,e with functions

in C2,α
p,e (R

m) and using standard elliptic estimates.

4. Proof of Theorem 1.1

In the following, we let P ⊂ L(Rm) denote the subset of all coordinate permutations,
and we consider the spaces

X := {ϕ ∈ C2,α
p,e (R

m) : ϕ(t) = ϕ(p(t)) for all t ∈ R
m, p ∈ P},

Y := {ϕ ∈ C1,α
p,e (R

m) : ϕ(t) = ϕ(p(t)) for all t ∈ R
m, p ∈ P}.

We also consider the nonlinear operator H defined in (2.13), and we note that H maps
U ∩X into Y by Lemma 2.1(iii). Consider the open set

O := {(λ, ϕ) ∈ R×X : λ > 0, ϕ > −λ} ⊂ R×X. (4.1)

The proof of Theorem 1.1 will be completed by applying the Crandall-Rabinowitz
Bifurcation theorem to the smooth nonlinear operator

G : O ⊂ R×X → Y, G(λ, ϕ) = H(λ+ ϕ) +
λ

n
. (4.2)

Recalling the formula of uλ in Lemma 2.1, we have

G(λ, 0)(t) = H(λ)(t) +
λ

n
= ∂νλuλ(e1, t) +

λ

n
= 0 for t ∈ R

m, λ > 0.

Moreover,

DϕG(λ, 0) = DH(λ)
∣

∣

X
= Hλ|X ∈ L(X, Y ). (4.3)

We have the following.

Proposition 4.1. There exists a unique λ∗ = λ∗(n) > 0 such that σ(λ∗) = 0, where
the function σ is defined in Proposition 3.1. Moreover, the linear operator

H∗ := Hλ∗

∣

∣

X
∈ L(X, Y )

has the following properties.

(i) The kernel N(H∗) of H∗ is spanned by the function

v0 ∈ X, v0(t) = cos(t1) + · · ·+ cos(tm). (4.4)

(ii) The range of H∗ is given by

R(H∗) =
{

v ∈ Y :

∫

[0,2π]m
v(t)v0(t) dt = 0

}

.

Moreover,

∂λ

∣

∣

∣

λ=λ∗

Hλv0 6∈ R(H∗). (4.5)
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Proof. By Lemma 3.3, there exists a unique λ∗ = λ∗(n) > 0 such that σ(λ∗) = 0,
which by Proposition 3.1 is equivalent to Hλ∗

v0 = 0. We put H∗ := Hλ∗
in the

following. Consider the subspaces

X∗ :=
{

v ∈ X :

∫

[0,2π]m
v(t)v0(t) dt = 0

}

⊂ X, (4.6)

Y ∗ :=
{

v ∈ Y :

∫

[0,2π]m
v(t)v0(t) dt = 0

}

⊂ Y.

To show properties (i) and (ii), it clearly suffices to prove that

H∗ defines an isomorphism between X∗ and Y ∗. (4.7)

To prove (4.7), we need to introduce further spaces. We recall the definition of Hj
p,e in

(3.13) and put

H
j
P :=

{

v ∈ Hj
p,e : v(p(t)) = v(t) for t ∈ R

m and p ∈ P}, j ∈ N ∪ {0}, (4.8)

noting that X = H2
P ∩C2,α(Rm) and Y = H1

P ∩C1,α(Rm). Proposition 3.4 implies that
H∗ defines a continuous linear operator

H∗ : H
2
P → H1

P , H∗v =
∑

ℓ∈N∪{0}
σ(λ∗ℓ)Pℓv, (4.9)

Next we put

Ṽ j := H
j
P ∩ V1, Z̃j := H

j
P ∩ Zj

1 ⊂ H
j
P for j = 1, 2,

where the spaces V1 resp. Zj
1 are defined in (3.15) and (3.16), respectively. We note

that Ṽ 1 is one-dimensional and spanned by the function v0 defined in (4.4). Since the
spaces Ṽ j and Z̃j are invariant with respect to coordinate permutations p ∈ P, we
deduce from Proposition 3.4 and our choice of λ∗ that

H∗ defines an isomorphism Z̃2 → Z̃1. (4.10)

Moreover, since X∗ = Z̃2 ∩ X and Y ∗ = Z̃1 ∩ Y , we see that H∗ : X∗ → Y ∗ is well
defined and injective. To establish surjectivity, let f ∈ Y ∗. By (4.10), there exists
ω ∈ Z̃2 ⊂ H2

p,e such that H∗ω = f . As noted in Remark 3.5, we then have

∂νψ(±e1, t)− ω(t) = nf(t) for a.e. t ∈ R
m, (4.11)

where ψ ∈ W
2,2
b (Ω) is the unique solution of (3.18) which is even and 2π-periodic in

t1, . . . , tm. We claim that
ψ ∈ C2,α

p,e (Ω). (4.12)

Indeed, this follows from [12, Theorem 6.2.3.1] once we have shown that

ψ ∈ W
2,p
b (Ω) for some p > N , (4.13)

where the space W 2,p
b (Ω) is defined in (3.17). To see this, we show by induction that

ψ ∈ W
2,pk
b (Ω) (4.14)
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for a sequence of numbers pk ∈ [2,∞) satisfying p0 = 2 and pk+1 ≥ N−1
N−2

pk for k ≥ 0.
We already know that (4.14) holds for p0 = 2. So let us assume that (4.14) holds for
some pk ≥ 2. We distinguish two cases.
If pk < N , then the trace theorem implies that

ψ
∣

∣

∂Ω
∈ W

1,pk+1

loc (∂Ω) with pk+1 := (
N − 1

N − pk
)pk ≥

N − 1

N − 2
pk,

so that ω ∈ W
1,pk+1

loc (Rm). Since also f ∈ C1,α(Rm) ⊂W
1,pk+1

loc (Rm) and, by (4.11),

∂νψ(z, t) + ψ(z, t) = ∂νψ(z, t) + ω(t) = g(t) for (z, t) ∈ ∂Ω

with
g = nf + 2ω ∈ W

1,pk+1

loc (Rm),

we may deduce from [12, Theorem 2.4.2.6] that ψ ∈ W
2,pk+1

b (Ω).

If pk ≥ N , the trace theorem implies that W 1,p
loc (∂Ω) for any p > 2, and then we may

repeat the above argument with arbitrarily chosen pk+1 ≥ N−1
N−2

pk to infer again that

ψ ∈ W
2,pk+1

b (Ω).
We thus conclude that (4.13) holds, and hence (4.12) follows. By passing to the trace

again, we then conclude that ω ∈ C2,α
p,e (R

m). Consequently, ω ∈ C2,α
p,e (R

m) ∩ Z̃2 = X∗,
and thus H∗ : X

∗ → Y ∗ is also surjective. Hence (4.7) is true.
It remains to prove (4.5), which follows from Lemma 3.3 and the identity

∂λ

∣

∣

∣

λ=λ∗

Hλv0 = ∂λ

∣

∣

∣

λ=λ∗

σ(λ)v0 = σ′(λ∗)v0. (4.15)

Proof of Theorem 1.1 (completed). Recalling (4.2) and (2.13), we shall apply the
Crandall-Rabinowitz Bifurcation Theorem to solve the equation

G(λ, ϕ) = H(λ+ ϕ) +
λ

n
= ∂νφuφ(e1, ·) +

λ

n
= 0, (4.16)

where φ = λ + ϕ ∈ U and the function uφ ∈ C2,α(Ωφ) is the unique solution to the
Dirichlet boundary value problem

{

−∆gφuφ = 1 in Ω

uφ = 0 on ∂Ω,

see Lemma 2.1. Once this is done, (2.14) follows and thus we get (2.12), which is
equivalent to (2.3) with c = λ

n
.

To solve equation (4.16), we let λ∗ = λ∗(n) be defined as in Proposition 4.1, and let
X∗ be defined as in (4.6). By Proposition 4.1 and the Crandall-Rabinowitz Theorem
(see [3, Theorem 1.7]), we then find ε0 > 0 and a smooth curve

(−ε0, ε0) → O, s 7→ (λs, ϕs)

such that

(i) G(λs, ϕs) = 0 for s ∈ (−ε0, ε0),
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(ii) λ(0) = λ∗, and
(iii) ϕs = s

(

v0 + µs

)

for s ∈ (−ε0, ε0) with a smooth curve

(−ε0, ε0) → X∗, s 7→ µs

satisfying µ0 = 0.

HereO is defined as in (4.1). Since (λs, ϕs) is a solution to (4.16) for every s ∈ (−ε0, ε0),
the function uφs

∈ C2,α(Ω) solves the overdetermined boundary value problem






−∆gφs
uφs

= 1 in Ω,

uφs
= 0, ∂νuφs

= −
λs

n
on ∂Ω,

where φs = λs + ϕs. Recalling (2.1), we thus find that the map s 7→ (λs, ϕs) and the
function u := uφs

◦Ψ−1
φs

: Ωφs
→ R have the properties asserted in Theorem 1.1.

5. Periodic Cheeger sets

In this section, we prove Corollary 1.2. Considering the notation of Theorem 1.1, we
therefore fix s ∈ (−ε0, ε0). Moreover, we recall that Theorem 1.1 yields a solution u of
the overdetermined problem







−∆u = 1 in Ωφs
,

u = 0, ∂νu = −
λs

n
on ∂Ωφs

,
(5.1)

where φs = λs+ϕs. In the following, we put Es := Ωφs
. We need the following property

which follows by a very simple application of the P-function method, see e.g. [26]. We
include a proof for the convenience of the reader.

Lemma 5.1. We have |∇u| < λs

n
in Es.

Proof. Consider the function

P : Es → R, P (x) := |∇u(x)|2.

It is clear, by standard elliptic regularity, that P is of class C2. Moreover, in Es we
have, since −∆u = 1,

∆P = 2

N
∑

i,j=1

(

∂2u

∂xi∂xj

)2

≥ 2

N
∑

i=1

(

∂2u

∂x2i

)2

≥
2

N
(∆u)2 =

2

N
.

Hence ∆P > 0 in Es, and thus P attains its maximum only on ∂Es by the strong

maximum principle. Since P ≡ λ2
s

n2 on ∂Es by (5.1), the claim follows.
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Proof of Corollary 1.2 (completed). Since the domain Es is 2π-periodic and
symmetric in t1, . . . , tm, the solution u of (5.1) is 2π-periodic and even in t1, . . . , tm.
Next, let a, b ∈ πZm with ai < bi for i = 1, . . . , m, and let Sb

a be defined as in (1.7).
Then ∂Sb

a can be decomposed into a disjoint union ∂Sτ = K ∪ S1 ∪ · · · ∪ Sm, where

Si := R
n × {t ∈ R

m : ti ∈ {ai, bi}, tj ∈ (aj , bj) for j 6= i} for i = 1, . . . , m,

and K has zero (N − 1)-dimensional Hausdorff measure. By the properties of u listed
above, we then have

∂u

∂ti
≡ 0 on Si for i = 1, . . . , m. (5.2)

Next, let A ⊂ Es ∩ S
b
a be a Lipschitz open set. Then HN−1-almost everywhere on ∂A

the outer unit normal νA of A is well-defined, and HN−1-almost everywhere on ∂A∩Si

it coincides with (0, ei) or (0,−ei), where 0 ∈ R
n and ei denotes the i-th coordinate

vector in R
m. Consequently, (5.2) implies that

∂νAu ≡ 0 HN−1-almost everywhere on ∂A ∩ ∂Sb
a. (5.3)

Since u satisfies (5.1), the divergence theorem and (5.3) yield the inequality

|A| = −

∫

A

∆u dx = −

∫

∂A

∂νAu dσ = −

∫

∂A∩Sb
a

∂νAu dσ ≤

∫

∂A∩Sb
a

|∇u|dσ.

Hence Lemma 5.1 implies that

|A| ≤
λs

n
HN−1(∂A ∩ Sb

a) =
λs

n
P (A, Sb

a),

whereas equality holds if and only if HN−1(∂A ∩ Sb
a ∩ Es) = 0, i.e. if A = Es ∩ Sb

a.
This implies that Es is uniquely self-Cheeger relative to Sb

a with corresponding relative
Cheeger constant h(Es, S

b
a) =

n
λs
, as claimed. The proof of Corollary 1.2 is finished.
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