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REGULARITY ESTIMATES FOR NONLOCAL SCHRÖDINGER EQUATIONS

MOUHAMED MOUSTAPHA FALL

Abstract. We are concerned with Hölder regularity estimates for weak solutions u to nonlocal
Schrödinger equations subject to exterior Dirichlet conditions in an open set Ω ⊂ R

N . The class
of nonlocal operators considered here are defined, via Dirichlet forms, by symmetric kernels K(x, y)
bounded from above and below by |x− y|N+2s, with s ∈ (0, 1). The entries in the equations are in
some Morrey spaces and the underline domain Ω satisfies some mild regularity assumptions. In the
particular case of the fractional Laplacian, our results are new. When K defines a nonlocal operator
with sufficiently regular coefficients, we obtain Hölder estimates, up to the boundary of Ω, for u and
the ratio u/ds, with d(x) = dist(x,RN \Ω). If the kernel K defines a nonlocal operator with Hölder
continuous coefficients and the entries are Hölder continuous, we obtain interior C2s+β regularity
estimates of the weak solutions u. Our argument is based on blow-up analysis and compact Sobolev
embedding.

1. Introduction

We consider s ∈ (0, 1), N ≥ 1 and Ω an open set in R
N of class C1,γ , for some γ > 0. We are

interested in interior and boundary Hölder regularity estimates for functions u solution to the equation

LKu+ V u = f in Ω and u = 0 in Ωc. (1.1)

where Ωc := R
N \Ω and LK is a nonolocal operator defined by a symmetric kernel K ≍ |x− y|−N−2s.

We refer to Section 1.1 below for more details. Our model operator is LK = (−∆)sa, the so called
anisotropic fractional Laplacian, up to a sign multiple. It is defined, for all ϕ ∈ C2

c (R
N ), by

(−∆)saϕ(x) = PV

∫

RN

ϕ(x) − ϕ(x− y)

|y|N+2s
a (y/|y|) dy,

with a : SN−1 → R satisfying

a(−θ) = a(θ) and Λ ≤ a(θ) ≤
1

Λ
for all θ ∈ SN−1, (1.2)

for some constant Λ > 0. Here, the entries V, f in (1.1) belongs to some Morrey spaces.
In the recent years the study of nonlocal equations have attracted a lot of interest due to their
manifestations in the modeling of real-world phenomenon and their rich structures in the mathematical
point of view. In this respect, regularity theory remains central questions. Interior regularity and
Harncak inequality have been intensiveley investigated in last decades, see e.g. [1,3,4,9–11,16,22,33–
37,40,50] and the references therein. On the other hand, boundary regularity and Harnack inequalities
was studied in [2, 5, 7, 13].

Results which are, in particular, most relevent to the content of this paper concern those dealing
with nonlocal operator in ”divergence form” with measurable coefficient, i.e. K is symmetric on
R
N ×R

N and K(x, y) ≍ |x−y|−N−2s, see [39]. In this case the de Giorgi-Nash-Moser energy methods
were used to obtain interior Harnack inequality and Hölder estimates, see [16,17,38,42]. We note that
the papers [38, 39] deal also with more general kernels than those satisfying K(x, y) ≍ |x − y|−N−2s

on R
N × R

N only. We also mention the work of Kuusi, Mingione and Sire in [42] who obtained local
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2 MOUHAMED MOUSTAPHA FALL

pointwise behaviour of solutions to quasilinear nonlocal elliptic equations with measurable coefficients,
provided the Wolff potential of the right hand side satisfies some qualitative properties.

In this paper, we are concerned in both interior and boundary regularity of nonlocal equations
with ”continuous coefficient”. Let us recall that in the classical case of operators in divergence form
with continuous coefficients, after scaling, the limit operator is given by the Laplace operator ∆. The
meaning of ”continuous coefficient” in the nonlocal framework is not immediate due to the singularity
of the kernel K at the diagonal points x = y. However, under nonrestrictive continuity assumptions,
detailed in Section 1.1 below, we find out that the limiting nonlocal operator is the anisotropic frac-
tional Laplacian −(−∆)sa in many situations.

Letting d(x) := dist(x,Ωc), the boundary regularity we are interested in here is the Hölder regularity
estimates of u/ds for the nonlocal operator LK . Such regularity results for solutions to (1.1) has been
studied long time ago when LK = (−∆)1/2. They are of interest e.g. in fracture mechnics, see [15]
and the referenes therein. The general case for (−∆)s, s ∈ (0, 1), has been considered only in the
recent years and it is by now merely well understood when u, V, f ∈ L∞(RN ) and Ω a domain of class
C1,γ , for some γ > 0. Indeed, in the case of the fractional Lapalcian (a ≡ 1) and γ = 1, the first
Hölder regularity estiamte of u/ds in Ω was obtained by Ros-Oton and Serra in [49]. They sharpened
and generalized this result to translation invariant operators, even to fully nonlinear equations, in
their subsequent papers [45,47,48]. We refer the reader to the recent survey paper [46] for a detailed
list of existing results. In the case where V , a, f and Ω are of class C∞, we quote the works of
Grubb, [30–32], where it is proved that u/ds is of class C∞, up to the closure of Ω. Especially in [30],
the enteries V, f are also allowed to belong to some Lp spaces, for some large p. More precisely, when
V ∈ C∞(Ω) and f ∈ Lp(Ω), for some p > N/s, then provided Ω and a are of class C∞, Grubb proved
in [30] that u/ds is of class Cs−N/p(Ω).
Here, we prove sharp Hölder regularity estimates of u/ds, for Ω an open set of class C1,γ and V, f are
in some spaces containing the Lebesgue space Lp for p > N/s. Let us now recall the Morrey space
which will be considered in the following of this paper. For β ∈ [0, 2s), we define the Morrey space
Mβ by the set of functions f ∈ L1

loc(R
N ) such that

‖f‖Mβ
:= sup

x∈RN

r∈(0,1)

rβ−N
∫

Br(x)

|f(y)| dy <∞,

with M0 := L∞(RN ). Such spaces introduced by Morrey in [43], are suitable for getting Hölder
regularity in the study of partial differential equations.

Let us now explain in an abstract form the insight in our consideration of the Morrey space. Indeed,
given a function g ∈ L1

loc(R
N ), we put gr,x0(x) := r2sg(rx + x0), for x0 ∈ R

N and r > 0.
For β ≥ 0, we say that g satisfies a Rescaled Translated Coercivity Property (RTCP, for short) of
order β, if there exists a constant C := C(g,N, s, β) > 0 such that for all x0 ∈ R

N and r ∈ (0, 1), we
have

C

∫

RN

|gr,x0(x)|v
2(x) dx ≤ r2s−β‖v‖2Hs(RN ) for all v ∈ Hs(RN ). (1.3)

Then what we will prove, for solutions u to (1.1) when LK is (up to a scaling) close to (−∆)sa, are the
following implications:

f, V satisfy a RTCP of order β ∈ [0, 2s) =⇒ u ∈ C
min(1,2s−β)−ε
loc (Ω),

f, V satisfy a RTCP of order β ∈ [0, 2s) =⇒ u ∈ C
min(s,2s−β)−ε
loc (Ω),

(1.4)

for every ε > 0 and Ω an open set with C1 boundary. For higher order regularity, under some regularity
assumptions on K and Ω, quantified by some parameter β′ ∈ [0, 2s), we obtain

f, V satisfy a RTCP of order β ∈ (0, 2s) =⇒ u ∈ C
2s−max(β,β′)
loc (Ω),

f, V satisfy a RTCP of order β ∈ (0, s) =⇒ u/ds ∈ C
s−max(β,β′)
loc (Ω),

(1.5)
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provided 2s−max(β, β′) 6= 1. Here and in the following, it will be understood that Cν := C1,ν−1 if
ν ∈ (1, 2). It is not difficult to see that functions g satisfying a RTCP of order β belongs toMβ. On the
other hand the converse, which is not trivial, also holds true, and in fact, we will prove a more general
inequality for the Kato class of functions which could be of independent interest, see Lemma 2.3 below.

Since our results are already new for (−∆)sa, we state first simpler versions of our main results, and
postponed the generalization to LK in Section 1.1 below. To do so, we need to recall the distributional
domain of the operator (−∆)sa. It is given by L1

s, the set of functions u ∈ L1
loc(R

N ) such that

‖u‖L1
s
:=
∫
RN

|u(x)|
1+|x|N+2s dx <∞.

Theorem 1.1. Let s ∈ (0, 1), β ∈ (0, 2s) and a satisfy (1.2). Let Ω ⊂ R
N be an open set of class

C1,γ , γ > 0, in a neighborhood of 0 ∈ ∂Ω. Let u ∈ Hs(B1) ∩ L1
s and f, V ∈ Mβ be such that

(−∆)sau+ V u = f in Ω.

(i) Then for every Ω1 ⊂⊂ Ω ∩B1, there exists a constant C > 0 such that

‖u‖C2s−β(Ω1) ≤ C
(
‖u‖L2(B1) + ‖u‖L1

s
+ ‖f‖Mβ

)
.

(ii) If β ∈ (0, s), and u ≡ 0 in Ωc, then there exist some constants C, ̺ > 0 such that

‖u/ds‖Cmin(γ,s−β)(B̺∩Ω) ≤ C
(
‖u‖L2(B1) + ‖u‖L1

s
+ ‖f‖Mβ

)
,

where d(x) = dist(x,Ωc). The constants C and ̺ above, only depend on s,N, β, γ,Λ,Ω,Ω1 and ‖V ‖Mβ
.

Provided u, V, f ∈ L∞(RN ), by letting β ց 0, we recover the boundary regularity in [45] for C1,γ

domains and partly the one in [47] for C1,1 domains. We mention that in [47], a weaker ellipticity
assumption (second condition in (1.2)) was considered.
Obviously if f ∈ Lp(RN ), with p > 1, then f ∈ MN

p
. For the strict inclusion of Lebesgue spaces

in Morrey spaces, see e.g. [18]. An immediate consequence of Theorem 1.1 is therefore the following
result.

Corollary 1.2. Let s ∈ (0, 1) and a satisfy (1.2). Let Ω ⊂ R
N be an open set of class C1,γ , γ > 0,

in a neighborhood of 0 ∈ ∂Ω. Let f, V ∈ Lp(B1), for some p > N
s , and u ∈ Hs(B1) ∩ L1

s satisfy

(−∆)sau+ V u = f in Ω and u = 0 in Ωc.

Then there exist positive constants C, ̺ > 0 such that

‖u/ds‖Cmin(γ,s−N/p)(B̺∩Ω) ≤ C
(
‖u‖L2(B1) + ‖u‖L1

s
+ ‖f‖Lp(B1)

)
.

The constants C and ̺ depend only on s,N, γ, p,Λ,Ω and ‖V ‖Lp(B1).

As mentioned earlier, we recall that the boundary regularity in Corollary 1.2 was known only when
a ∈ C∞(SN−1) and Ω of class C∞, see [30]. In the classical case of the Laplace operator, the cor-
responding result of Corollary 1.2 is that u is of class C1,min(γ,1−N/p) up to the boundary, see [28].
We note that interior and boundary Harnack inequalities for the operator (−∆)s + V , with V in the
Kato class of potentials (larger than the Morrey space) and Ω a Lipschitz domain have been proven
in [6, 53]. In [19], we shall provide an explicit modulus of continuity for solutions to (1.1), when V
and f belong to the Kato class of potentials.

1.1. Nonlocal operators with possibly continuous coefficients. In the following, for a function
b ∈ L∞(SN−1), we define µb(x, y) = |x− y|−N−2sb((x− y)/|x− y|)) for every x 6= y ∈ R

N .
Let κ > 0 be a positive constant and λ : RN × R

N → [0, κ−1]. We consider the class of kernels
K : RN × R

N → [0,+∞] satisfying the following properties:

(i)K(x, y) = K(y, x) for all x 6= y ∈ R
N ,

(ii)κµ1(x, y) ≤ K(x, y) ≤
1

κ
µ1(x, y) for all x 6= y ∈ R

N ,

(iii) |K(x, y)− µb(x, y)| ≤ λ(x, y)µ1(x, y) for all x 6= y ∈ B2.

(1.6)
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The class of kernels satisfying (1.6) is denoted by K (λ, b, κ).
Let Ω ⊂ R

N be an open set and let f, V ∈ L1
loc(R

N ). For K satisfying (1.6)(i)-(ii), we say that
u ∈ Hs

loc(Ω) ∩ L1
s is a (weak) solution to

LKu+ V u = f in Ω

if uV ∈ L1
loc(Ω) and for all ψ ∈ C∞

c (Ω), we have

1

2

∫

R2N

(u(x) − u(x+ y))(ψ(x) − ψ(x+ y))K(x, x+ y)dxdy +

∫

RN

V (x)u(x)ψ(x)dx =

∫

RN

f(x)ψ(x)dx.

The class of operator LK corresponding to the kernels K satisfying (1.6)(i)-(ii) can be seen as the
nonlocal version of operators in divergence form in the classical case. Here we obtain regularity
estimates for K ∈ K (λ, a, κ) provided λ is small and a satisfies 1.2. We thus include, in particular,
nonlocal operators with ”continuous” coefficients. The meaning of continuous coefficients for nonlocal
operators might be awkward, since one is dealing with kernels which are not finite at the points
x = y. Using polar coordinates, we can depict an encoded limiting operator which is nothing but the
anisotropic fractional Laplacian.

In view of Remark 2.1 below, all results stated below remains valid if we consider kernels K̃ : RN ×
R
N → [0,∞] (with possibly compact support) satisfying

(i) K̃(x, y) = K̃(y, x) for all x 6= y ∈ R
N ,

(ii′)κµ1(x, y) ≤ K̃(x, y) for all x 6= y ∈ B2

(ii′′) K̃(x, y) ≤
1

κ
µ1(x, y) for all x 6= y ∈ R

N .

(1.7)

This is due to the fact that the regularity theory of the operators LK̃ is included in those of the form
LK + V , with K satisfying (2.2)(i)-(ii), for some potential V of class C∞.

We introduce K̃ (κ), the class of kernels K, satisfying (1.7) and such that the map

R
N × (0,∞)× SN−1 → R, (x, r, θ) 7→ rN+2sK(x, x+ rθ)

has an extension λ̃K : RN × [0,∞)× SN−1 → R that is continuous in the variables x, r on B2 × {0}.

That is, for every x0 ∈ B2, we have
∣∣∣λ̃K(x, r, θ)− λ̃K(x0, 0, θ)

∣∣∣→ 0 as |x− x0|+ r → 0.

Now for K ∈ K̃ (κ) and x0 ∈ B2 let us suppose that

sup
θ∈SN−1

∣∣∣λ̃K(x, r, θ) − λ̃K(x0, 0, θ)
∣∣∣→ 0 as |x− x0|+ r → 0

and consider the rescaled kernel around x0, given byKρ,x0(x, y) := ρN+2sK(ρx+x0, ρy+x0). Then we

can show that, provided ρ is small, Kρ,x0 satisfies (1.6)(iii) with b(θ) = λ̃K(x0, 0, θ), for some function
function λρ, satisfying ‖λρ‖L∞(B1×B1) → 0 as ρ → 0. Obviously, to expect the limiting kernel to be

symmetric, we need to require that λ̃K(x0, 0, θ) = λ̃K(x0, 0,−θ), for all θ ∈ SN−1. From this, it is
natural to expect that LK inherits certain regularity properties of (−∆)sa whenever K ∈ K (λ, a, κ),
provided λ is small, in the spirit of Caffarelli [12] and Caffarelli-Silvestre [10]. This is the purpose of
the next results, under mild regularity assumptions on K and Ω.

It is worth to mention that the kernels in K̃ (κ) appear for instance in the study of nonlocal mean
curvature operator about a smooth hypersurface, see e.g. [3, 20]. More generally, a typical example
is when considering a C1-change of coordinates Φ e.g. in the kernel |x − y|−N−2s (could be defined
on the product of hypersurfaces M × M). The singular part of the new kernel is then given by
KΦ(x, y) = |Φ(x)− Φ(y)|−N−2s, for some local diffeomorphism Φ ∈ C1(B4;R

N ). In this case,

λ̃KΦ(x, r, θ) =

∣∣∣∣
∫ 1

0

DΦ(x + rτθ)θ dτ

∣∣∣∣
−N−2s



REGULARITY ESTIMATES FOR NONLOCAL SCHRÖDINGER EQUATIONS 5

and thus KΦ ∈ K̃ (κ), for some κ > 0. As a consequence, λ̃KΦ(x, 0, θ) = |DΦ(x)θ|
−N−2s

, which
is even in θ. We refer to Section 7.1 below in a more general setting. Thanks to the à priori esti-
mates that we are about to state below, we shall prove in [20] optimal regularity results paralleling
the regularity theory for elliptic equations in divergence form, with regular coefficients, and provide
applications in the study of nonlocal geometric problems.

To obtain interior regularity in (1.5), we need to care on the kernels K for which the action of
LK on affine functions can be quantified. In this respect, some regularity on K is required. More
precisely, for K ∈ K (λ, a, κ) and x ∈ R

N , we define

jo,K(x) := (2s− 1)+PV

∫

RN

y {K(x, x+ y)−K(x, x− y)} dy, (1.8)

where ℓ+ := max(ℓ, 0), for ℓ ∈ R. Letting

λ̃o,K(x, r, θ) =
1

2

{
λ̃K(x, r, θ) − λ̃K(x, r,−θ)

}
, (1.9)

we see that

jo,K(x) = 2(2s− 1)+

∫

SN−1

θ

{
PV

∫ ∞

0

r−2sλ̃o,K(x, r, θ) dr

}
dθ.

The main regularity assumption we make on K is that jo,K is locally in Mβ′ , in the sense that
ϕ2jo,K ∈ Mβ′ , for some β′ = β′(K) ∈ [0, 2s). Here and in the following, ϕR ∈ C∞

c (B2R), with ϕR ≡ 1
on BR. Since, β′ depends on K, the main point will be to obtain regularity estimate by constants

independent in β′. We observe that, for example, for a kernel K such that λ̃o,K(x, r, θ) ≤ rα+(2s−1)+ ,
for r ∈ (0, 1) and for some α > 0, then ϕ2jo,K ∈ L∞(RN ) = M0. Of course if s ∈ (0, 1/2] such
additional regularity assumption on K is unnecessary. This is also the case if LK is a translation
invariant, i.e. K(x, y) = k(x− y), for some even function k : RN → R.

Our main result for interior regularity reads as follows.

Theorem 1.3. Let s ∈ (0, 1) and β, δ ∈ (0, 2s). Let a satisfy (1.2). Let K ∈ K (λ, a, κ) and assume
that jo,K defined in (1.8), satisfies

‖ϕ2jo,K‖Mβ′
≤ c0,

for some c0 and β′ = β′(K) ∈ [0, 2s− δ). Let f, V ∈ Mβ and u ∈ Hs(B2) ∩ L1
s be such that

LKu+ V u = f in B2.

Then, provided 2s − max(β, β′) 6= 1, there exist C, ε0 > 0, only depending only on N, s, β,Λ, κ, c0, δ
and ‖V ‖Mβ

, such that if ‖λ‖L∞(B2×B2) ≤ ε0, we have

‖u‖C2s−max(β,β′)(B1)
≤ C

(
‖u‖L2(B2) + ‖u‖L1

s
+ ‖f‖Mβ

)
.

Moreover if 2s ≤ 1, then we can let β′ = 0.

As a consequence, we have the following result.

Corollary 1.4. Let s ∈ (0, 1), β, δ ∈ (0, 2s) and κ > 0. Let K ∈ K̃ (κ) satisfy: for every x1, x2 ∈ B2,
r ∈ (0, 2), θ ∈ SN−1,

•
∣∣∣λ̃K(x1, r, θ)− λ̃K(x2, 0, θ)

∣∣∣ ≤ τ(|x1 − x2|+ r);

• λ̃K(x1, 0, θ) = λ̃K(x1, 0,−θ),

for some modulus of continuity τ ∈ L∞(R+), with τ(t) → 0 as t → 0. Assume that jo,K defined in
(1.8), satisfies

‖ϕ2jo,K‖Mβ′
≤ c0,

for some c0 and β′ = β′(K) ∈ [0, 2s− δ). Let f, V ∈ Mβ and u ∈ Hs(B2) ∩ L1
s be such that

LKu+ V u = f in B2. (1.10)
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Then, provided 2s − max(β, β′) 6= 1, there exists C > 0, only depending on N, s, β, δ, κ, c0, τ and
‖V ‖Mβ

, such that

‖u‖C2s−max(β,β′)(B1)
≤ C

(
‖u‖L2(B2) + ‖u‖L1

s
+ ‖f‖Mβ

)
.

Moreover if 2s ≤ 1, then we can let β′ = 0.

It is natural to expect that under some Hölder regularity assumption on λ̃K and on the entries,
solutions are in fact classical. Indeed we have.

Theorem 1.5. Let s ∈ (0, 1), κ > 0 and let K ∈ K̃ (κ) satisfy:

• for every x1, x2 ∈ R
N , r1, r2 ∈ [0, 2), θ ∈ SN−1,

∣∣∣λ̃K(x1, r1, θ)− λ̃K(x2, r2, θ)
∣∣∣ ≤ c0(|x1 − x2|

α + |r1 − r2|
α);

• for every x1, x2 ∈ B2, r ∈ [0, 2), θ ∈ SN−1, we have λ̃o,K(x1, 0, θ) = 0 and
∣∣∣λ̃o,K(x1, r, θ)− λ̃o,K(x2, r, θ)

∣∣∣ ≤ c0 min(|x1 − x2|
α+(2s−1)+ , rα+(2s−1)+ ),

for some constants α, c0 > 0, where λ̃o,K is given by (1.9). Let f ∈ Cα(B2) and v ∈ Hs(B2)∩C
α(RN )

be such that

LKv = f in B2.

Then there exists α > 0 only depending on s,N, c0, κ and α, such that for all β ∈ (0, α), with 2s+β 6∈ N,

‖v‖C2s+β(B1) ≤ C
(
‖v‖Cβ(RN ) + ‖f‖Cβ(B2)

)
, (1.11)

for some constant C depending only on s,N, c0, κ, α and β.

We note that the Cβ(RN )-norm of v in (1.11) can be replaced with ‖v‖L2(B2) + ‖v‖L1
s
, provided,

we require Hölder regularity of λ̃K in the variable θ i.e. ‖λ̃K‖Cα(RN×[0,2)×SN−1) ≤ c0.

We now turn to our boundary regularity estimates in (1.5). In this case, it is important to consider
those kernels K for which LKd

s can be quantified. Here our assumption is that LKd
s is given by a

function in Mβ′ , for some β′ ∈ [0, s). To be more precise, we consider all kernel K for which, there
exist β′ = β′(Ω,K) ∈ [0, s) and a function gΩ,K ∈ Mβ′ such that

LK(ϕ2d
s) = gΩ,K in the weak sense in Br0 ∩ Ω, (1.12)

where r0 > 0, only depends on Ω, is such that ϕ2d
s ∈ Hs(Br0) ∩ L1

s. We note that gΩ,K might be
singular near the boundary, since we are considering only domains of class C1,γ . In fact, see [45], for
γ 6= s then |(−∆)sad

s(x)| ≤ Cd(γ−s)+(x) for every x ∈ Br0 ∩ Ω, for some r0, only depending on Ω.
This, in particular, shows that there exists a gΩ,µa ∈ M(s−γ)+ satisfying (1.12). We note that (1.12)
encode both the regularity of K and of Ω.

Our next main result is the following.

Theorem 1.6. Let s ∈ (0, 1), β, δ ∈ (0, s) and Ω an open set of class C1,γ , γ > 0, near 0 ∈ ∂Ω. Let
a satisfy (1.2), for some Λ > 0. Let K ∈ K (λ, a, κ) satisfy (1.12), with

‖gΩ,K‖Mβ′
≤ c0,

for some β′ = β′(Ω,K) ∈ [0, s− δ) and c0 > 0. Let f, V ∈ Mβ, and u ∈ Hs(B2) ∩ L1
s be such that

LKu+ V u = f in Ω and u = 0 in Ωc.

Then there exist C, ̺ > 0, only depending only on N, s, β,Λ, κ,Ω, c0, δ and ‖V ‖Mβ
, such that if

‖λ‖L∞(B2×B2) ≤ ε0, we have

‖u/ds‖Cs−max(β,β′)(B̺∩Ω) ≤ C
(
‖u‖L2(B2) + ‖u‖L1

s
+ ‖f‖Mβ

)
.

In the case of uniformly continuous coefficient also, we have the following boundary regularity
estimates.
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Corollary 1.7. Let s ∈ (0, 1), β, δ ∈ (0, s) and Ω an open set of class C1,γ , γ > 0, near 0 ∈ ∂Ω. For

κ > 0, let K ∈ K̃ (κ) satisfy: for every x1, x2 ∈ B2, r ∈ (0, 2), θ ∈ SN−1,

•
∣∣∣λ̃K(x1, r, θ)− λ̃K(x2, 0, θ)

∣∣∣ ≤ τ(|x1 − x2|+ r);

• λ̃K(x1, 0, θ) = λ̃K(x1, 0,−θ),

for some function τ ∈ L∞(R+), with τ(t) → 0 as t→ 0. Suppose also that

‖gΩ,K‖Mβ′
≤ c0,

for some β′ = β′(Ω,K) ∈ [0, s− δ) and c0 > 0. Let f, V ∈ Mβ, and u ∈ Hs(B2) ∩ L1
s be such that

LKu+ V u = f in Ω and u = 0 in Ωc.

Then there exist C, ̺ > 0, only depending on N, s, β, τ, κ,Ω, c0, δ and ‖V ‖Mβ
, such that

‖u/ds‖Cs−max(β,β′)(B̺∩Ω) ≤ C
(
‖u‖L2(B2) + ‖u‖L1

s
+ ‖f‖Mβ

)
.

As an application of the above result together with a global diffeomorphism that locally flatten the
boundary ∂Ω near 0, we get the following

Theorem 1.8. Let s ∈ (0, 1), β ∈ (0, s) and Ω an open set of class C1,1, near 0 ∈ ∂Ω. For κ > 0, let

K ∈ K̃ (κ) satisfy:

• ‖λ̃K‖Cs+δ(B2×[0,2)×SN−1) ≤ c0;

• λ̃K(x, 0, θ) = λ̃K(x, 0,−θ), for every x ∈ B2, and θ ∈ SN−1,

for some δ, c0 > 0. Let f, V ∈ Mβ, and u ∈ Hs(B2) ∩ L1
s be such that

LKu+ V u = f in Ω and u = 0 in Ωc.

Then there exist C, ̺ > 0, only depending on N, s, β, τ, κ,Ω, c0, δ and ‖V ‖Mβ
, such that

‖u/ds‖Cs−β(B̺∩Ω) ≤ C
(
‖u‖L2(B2) + ‖u‖L1

s
+ ‖f‖Mβ

)
.

The proof of Theorem 1.6 and Theorem 1.3 are based on some blow-up analysis argument, where
normalized, rescaled and translated sequence of a solution to a PDE satisfy certain growth control
and converges to a solution on a symmetric space, so that Liouville-type results allow to calssify the
limiting solutions. Here, we are inpired by the work of Serra in [52], see also [45,47,48,51] for boundary
regularity estimates for translation invariant nonlocal operators. Note that in the aforementioned
papers, since entries and solutions are in L∞, the use of barriers to get à priori pointwise estimates
and Arzelà-Ascoli compactness theorems were the main tools to carry out their blow-up analysis. In
our situation, it is clear that there is no hope of using such tools. Our argument will be based on the
estimate of the L2-average mean oscillation of u to get à priori pointwise estimates. Indeed, to prove
(1.4), we show the growth estimates

sup
z∈B1

‖u− (u)Br(z)‖L2(Br(z)) ≤ CrN/2+min(1,2s−β)−ε, (1.13)

with (u)Br(z) :=
1

|Br|

∫
Br(z)

u(x) dx, and

sup
z∈B1∩∂Ω

‖u‖L2(Br(z)) ≤ CrN/2+min(s,2s−β)−ε, (1.14)

for interior regularity and boundary regularity, respectively. The use of Caccioppoli-type estimates, the
rescaled-translated-coercivity condition (1.3) and Liouville-type theorems for semi-bounded nonlocal
operators are crucial to carry out the argument. Note that (1.13) always implies Cmin(1,2s−β)−ε

estimates. On the other hand coupling (1.14) with interior estimates yield Cmin(s,2s−β)−ε estimate up
to the boundary.
To prove Theorem 1.3 we show an expansion of the form

|u(x)− u(z)− (2s− 1)+T (z) · (x− z)| ≤ C|x − z|2s−max(β,β′) for every x, z ∈ B1, (1.15)
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with ‖T ‖L∞(B1) ≤ C, while for Theorem 1.6,

‖u− ψ(z)ds‖L2(Br(z)) ≤ CrN/2+2s−max(β,β′) for every z ∈ B1 ∩ ∂Ω and r ∈ (0, r0), (1.16)

with ‖ψ‖L∞(B1∩∂Ω) ≤ C and the constant C does not depend on β′. Recall that ℓ+ := max(ℓ, 0).

Now using appropriate interior regularity estimates ((1.4) is enough), we translate the L2 estimates
in (1.16) to a pointwise estimate which yields the conclusion of the theorem. The proof of (1.16) uses
blow-up argument that allows to estimate the growth, in r > 0, of the difference between u and its
L2(Br(z))-projection on Rds, the one-dimensional space generated by ds. Similarly the proof of (1.15)
is achieved by estimating the growth, in r > 0, of the difference between u and its L2(Br(z))-projection
on the finite dimensional space of affine functions

{
t+ (2s− 1)+T · (x− z) : t ∈ R and T ∈ R

N
}
.

We obtain Theorem 1.5 by freezing the radial variable r at r = 0 and by using the Shauder estimates
for nontranslation invariant nonlocal operators of Serra [51]. For that, we use our lower order term
estimates Corollary 1.4 together with some approximation procedure and boundary regularity.
Related to this work is the one of Monneau in [44] where blow-up arguments were used to estimate the
modulus of mean oscillation (in Lp average) for solutions to the Laplace equation with Dini-continuous
right hand sides.
Sharp boundary regularity in C1,γ domains and refined Harnack inequalities in C1 domains are useful
tools to obtain sharp regularity of the free boundaries in the study of nonlocal obstacle problems,
see e.g. [8]. We believe that our result and arguments might be of interest in the study of obstacle
problems with non smooth obstacles and for parabolic problems.

For the organization of the paper, we put in Section 2 some notations and preliminary results
related to Kato class of potentials. Section 3 is devoted to interior and boundary L2-growth estimates
of solutions to (1.1) in C1 domains. Statement (1.4), is proved in Section 4. Higher order boundary
and interior regularity are proved in Section 5 and Section 6, respectively. The proof of the main
results (in particular (1.5)) are gathered in Section 7. Finally, we prove the Liouville theorems in
Appendix 8 and we put some useful technical results in Appendix 9.

2. Notations and Preliminary results

In this paper, the ball centered at z ∈ R
N with radius r > 0 is denoted by B(z, r) and Br := Br(0).

Here and in the following, we let ϕ1 ∈ C∞
c (B2) such that ϕ1 ≡ 1 on B1 and 0 ≤ ϕ1 ≤ 1 on R

N . We

put ϕR(x) := ϕ(x/R). For b ∈ L∞(SN−1), we define µb(x, y) = |x− y|−N−2sb
(
x−y
|x−y|

)
.

Recall that (see e.g. [21]), if b is even, there exists C = C(N, s, ‖b‖L∞(SN−1)), such that for all

ψ ∈ C∞
c (RN ) and for every x ∈ R

N , we have
∣∣∣∣PV

∫

RN

(ψ(x) − ψ(y))µb(x, y) dy

∣∣∣∣ ≤ C
‖ψ‖C2(RN )

1 + |x|N+2s
, (2.1)

where PV means that the integral is understood in the principle value sense. Throughout this paper,
for the seminorm of the fractional Sobolev spaces, we adopt the notation

[u]Hs(Ω) :=

(∫

Ω×Ω

|u(x)− u(y)|2µ1(x, y) dxdy

)1/2

and for the Hölder seminorm, we write

[u]Cα(Ω) := sup
x 6=y∈Ω

|u(x) − u(y)|

|x− y|α
,

for α ∈ (0, 1). Letting u ∈ L1
loc(R

N ), the mean value of u in Br(z) is denoted by

uBr(z) = (u)Br(z) :=
1

|Br|

∫

Br(z)

u(x) dx.
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2.1. The class of operators. In the following, it will be crucial to consider certain class of operators
which we describe next.

2.1.1. Symmetric operators with bounded measurable coefficients. Firstly we will consider kernels K :
R
N × R

N → (0,∞] satisfying the following properties:

(i)K(x, y) = K(y, x) for all x 6= y ∈ R
N ,

(ii)κµ1(x, y) ≤ K(x, y) ≤ κ−1µ1(x, y) for all x 6= y ∈ R
N , for some constant κ > 0.

(2.2)

Let Ω ⊂ R
N be an open set and let f, V ∈ L1

loc(R
N ). For K satisfying (2.2), we say that u ∈

Hs
loc(Ω) ∩ L1

s is a (weak) solution to

LKu+ V u = f in Ω

if uV ∈ L1
loc(R

N ) and for all ψ ∈ C∞
c (Ω), we have

1

2

∫

R2N

(u(x)− u(y))(ψ(x) − ψ(y)K(x, y) dxdy +

∫

RN

V (x)u(x)ψ(x) dx =

∫

RN

f(x)ψ(x) dx. (2.3)

Note, in fact, that for the first term in (2.3) to be finite, it is enough that K satisfies only the upper
bound in (2.2)(ii).

Remark 2.1. [Kernels with possible compact support] In many applications, it is important to consider
kernels K ′ with possible compact support. This allows to treat kernels which are only locally symmetric
and locally elliptic ( (2.4) below). As a matter of fact, we note that the regularity theory of the operators
LK′ is included in those of the form LK + V , with K satisfying (2.2), for some potential V of class

C∞. Indeed, consider a kernel K̃ : RN × R
N → [0,+∞] satisfying

(i) K̃(x, y) = K̃(y, x) for all x 6= y ∈ R
N ,

(ii′)κµ1(x, y) ≤ K̃(x, y) for all x 6= y ∈ B2

(ii′′) K̃(x, y) ≤
1

κ
µ1(x, y) for all x 6= y ∈ R

N .

(2.4)

We define η1(x) := 1− ϕ1(x) and η(x, y) = η1(x) + η1(y), which satisfies

η(x, y) ≥

{
1 if (x, y) ∈ R

N × R
N \ (B2 ×B2)

0 if (x, y) ∈ B2 ×B2.

Then letting u ∈ Hs(B2) ∩ L1
s be a weak solution (in the sense of (2.3)) to the equation

LK̃u+ Ṽ u = f̃ in B2,

we then have that
LKu+ V u = f in B1/2,

where K(x, y) = K̃(x, y) + η(x, y)µ1(x, y), V (x) = Ṽ (x) −
∫
|y|≥1

η1(y)µ1(x, y)dy and f(x) = f̃(x) −∫
|y|≥1

u(y)η1(y)µ1(x, y)dy. It is clear that K satisfies (2.2), for a new constant κ > 0. In addition

‖V − Ṽ ‖Ck(B1/2) ≤ C(N, s, k) and ‖f − f̃‖Ck(B1/2) ≤ C(N, s, k)‖u‖L1
s
, for all k ∈ N.

2.1.2. Symmetric translation invariant operators with semi-bounded measurable coefficients. The class
of operators we will consider next appears as limit of rescaled operators LK , for K ∈ K (λ, b, κ) (see
Section 1.1). Let (an)n be a sequence of functions, satisfying (1.2). Then, up to a subsequence, it
converges, in the weak-star topology of L∞(SN−1), to some b ∈ L∞(SN−1). It follows that b is even
on SN−1 and satisfies

0 < Λ

∫

SN−1

|e1 · θ|
2s dθ ≤ inf

η∈SN−1

∫

SN−1

|η · θ|2sb(θ) dθ and ‖b‖L∞(SN−1) ≤
1

Λ
. (2.5)

For such function b, we denote by Lb the corresponding operator, which is given by

Lbψ(x) := PV

∫

RN

(ψ(x) − ψ(y))µb(x, y) dy for every ψ ∈ C∞
c (RN ), (2.6)
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where PV means that the integral is in the principle value sense. Here also solutions u ∈ Hs
loc(Ω)∩L1

s

to the equation Lbu+ V u = f in an open set Ω are functions satisfying (2.3) —replacing K with µb.
The following result is concerned with limiting of a sequence of operators which are close to a trans-
lation invariant operator.

Lemma 2.2. Let (an)n be a sequence of functions, satisfying (1.2) and converging in the weak-star
sense to some b ∈ L∞(SN−1). Let λn : R2N → [0, κ−1], with λn → 0 pointwise on R

N × R
N . Let Kn

be a symmetric kernel satisfying

|Kn(x, y) − µan(x, y)| ≤ λn(x, y)µ1(x, y) for all x 6= y ∈ R
N and for all n ∈ N.

If (vn)n is a bounded sequence in L1
s ∩H

s
loc(R

N ) such that vn → v in L1
s, then∫

RN

v(x)Lbψ(x) dx =
1

2
lim
n→∞

∫

R2N

(vn(x) − vn(y))(ψ(x) − ψ(y))Kn(x, y) dxdy for all ψ ∈ C∞
c (RN ).

Proof. Letting wn = vn − v, then direct computations give
∫

RN

v(x)Lbψ(x) dx −
1

2

∫

R2N

(vn(x)− vn(y))(ψ(x) − ψ(y))Kn(x, y) dxdy

=

∫

RN

v(x)(Lb − Lan)ψ(x) dx +
1

2

∫

R2N

(v(x) − v(y))(ψ(x) − ψ(y))(µan(x, y)−Kn(x, y)) dxdy

−
1

2

∫

R2N

(wn(x)− wn(y))(ψ(x) − ψ(y))Kn(x, y) dxdy. (2.7)

By eveness of an and b, Fubini’s theorem and a change of variable, we can write

(Lb − Lan)ψ(x) =

∫

SN−1

[∫ ∞

0

(ψ(x − tθ) + ψ(x+ tθ)− 2ψ(x))t−1−2s dt

]
(b(θ) − an(θ))dθ.

Clearly, the function θ 7→
∫∞

0
(ψ(x − tθ) + ψ(x + tθ) − 2ψ(x))t−1−2s dt is bounded on SN−1 and

thus belongs to L1(SN−1). Therefore the sequence of functions hn(x) := (Lb − Lan)ψ(x) converges
pointwise to zero on R

N . Moreover by (2.1), we have that |hn(x)| ≤ Cψ(1 + |x|)−N−2s. Since v ∈ L1
s,

it follows from the dominated convergence theorem that
∫

RN

v(x)(Lb − Lan)ψ(x) dx = o(1) as n→ ∞. (2.8)

Next, we put Vn(x, y) := |v(x) − v(y)||ψ(x) − ψ(y)||µan(x, y) − Kn(x, y)|. Pick R > 0 such that
Suppψ ⊂ BR/2. For n large enough so that BR ⊂ B1/(2rn), we have

∫

R2N

Vn(x, y) dxdy ≤

∫

BR×BR

|v(x) − v(y)||ψ(x) − ψ(y)||µan(x, y)−Kn(x, y)| dxdy

+ 2

∫

BR

|ψ(y)|

[∫

RN\BR

|v(x)− v(y)||µan(x, y)−Kn(x, y)| dx

]
dy.

Note that y 7→ |ψ(y)|
∫
RN\BR

|v(x)−v(y)||µan (x, y)−Kn(x, y)| dx is bounded and converges pointwise

to zero, as n → ∞. By the dominated convergence theorem, we then have that
∫
R2N Vn(x, y) dxdy =

o(1), as n→ ∞, so that
∫

R2N

(v(x) − v(y))(ψ(x) − ψ(y))(µan(x, y)−Kn(x, y)) dxdy = o(1) as n→ ∞. (2.9)

Since wn = vn − v is bounded in Hs
loc ∩ L1

s and wn → 0 in L1
s, by similar arguments as above, we get

∫

R2N

(wn(x) − wn(y))(ψ(x) − ψ(y))(µan(x, y)−Kn(x, y)) dxdy = o(1) as n→ ∞.

In addition, since wn → 0 in L1
s, by (2.1),

1

2

∫

R2N

(wn(x) − wn(y))(ψ(x) − ψ(y))µan(x, y) dxdy =

∫

RN

wn(x)Lanψ(x) dx = o(1) as n→ ∞.
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Combining the two estimates above, we conclude that
∫

R2N

(wn(x) − wn(y))(ψ(x) − ψ(y))Kn(x, y) dxdy = o(1) as n→ ∞.

Using this, (2.9) and (2.8) in (2.7), we get the conclusion in the lemma. �

2.2. Coercivity and Caccioppoli type inequality with Kato class potentials. For s > 0, we
let Γs := (−∆)−s be the Riesz potential, which satisfy (−∆)sΓs = δ0 in R

N . Recall that for N 6= 2s,
Γs(z) = cN,s|z|

2s−N and for N = 2s, Γs(z) = cN,s log(|z|), for some normalization constant cN,s. We
consider the Kato class of functions given by

Ks :=

{
V ∈ L1

loc(R
N ) : sup

x∈RN

∫

B1(x)

|V (y)|ωs(|x− y|) dy <∞

}
, (2.10)

where for N ≥ 2s, ωs(|z|) = |Γs(z)| and if 2s > N , we set ωs ≡ 1. Here and in the following, for every
V ∈ Ks and r ∈ (0, 1], we define

ηV (r) := sup
x∈RN

∫

Br(x)

|V (y)|ωs(|x− y|) dy. (2.11)

The following compactness result will be useful in the following. We also note that it holds for all
s > 0, and in this case [u]2Hs(RN ) :=

∫
RN |ξ|2s|û(ξ)|2 dξ, for u ∈ Hs(RN ) with Fourier transform û.

Lemma 2.3. Let s > 0 and V ∈ Ks. Then, there exists a constant c = c(N, s) > 0 such that for
every δ ∈ (0, 1], there exists an other constant cδ = c(N, s, δ) > 0 such that for every u ∈ Hs(RN ),

‖|V |1/2u‖2L2(RN ) ≤ ηV (δ)
(
c[u]2Hs(RN ) + cδ‖u‖

2
L2(RN )

)
. (2.12)

Proof. For r > 0, we consider the Bessel potential Gs,r = (−∆+ r−2)−s/2. See e.g. [29, Section 6.1.2],
there exists a constant c = c(N, s) > 0 such that

Gs,1(x) ≤ cωs(|x|) for |x| ≤ 1/2 and Gs,1(x) ≤ c|x|−N−1+s exp(−|x|/2) for |x| ≥ 1/2,
(2.13)

where ωs is defined in the beginning of this section.
Step 1: We assume that V ∈ L∞(RN ).
For δ > 0, we consider the operator L : L2(RN ) → L2(RN ) given by

Lv = |V |1/2(−∆+ δ−2)−s/2v.

We note that the adjoint of L is given by L∗ = (−∆+ δ−2)−s/2|V |1/2.

Claim: There exists c = c(N, s) > 0 such that for every δ ∈ (0, 1/2],

‖LL∗v‖2L2(RN ) ≤ cηV (δ)
2‖v‖2L2(RN ). (2.14)

By Hölder’s inequality and using the fact that Gs,r(x) = Gs,1(x/r), we obtain

‖LL∗v‖2L2(RN ) = ‖|V |1/2(−∆+ δ−2)−s|V |1/2v‖2L2(RN ) = ‖|V |1/2Gs,δ ⋆ (V
1/2v)‖2L2(RN )

≤

∫

RN

|V (x)|

(∫

RN

|V |1/2(y)|v(y)|Gs,δ((x − y)/δ)dy

)2

dx

≤

∫

RN

|V (x)|

(∫

RN

|V (y)|Gs,δ((x − y)/δ)dy

∫

RN

|v(z)|2Gs,δ((x− z)/δ)dz

)
dx.
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Using a change of variable and (2.13), for x ∈ R
N , we get

∫

RN

|V (y)|Gs,δ(x− y)dy ≤ cηV (δ) +

∫

δ≤|x−y|

|V (y)|Gs,1((x− y)/δ) dy

≤ cηV (δ) +
∞∑

i=1

∫

iδ≤|x−y|≤(i+1)δ

|V (y)|Gs,1((x − y)/δ) dy

≤ cηV (δ) +

∞∑

i=1

δN
∫

i≤|z|≤i+1

|V (δz + x)|Gs,1(z) dz

≤ cηV (δ) + C
∞∑

i=1

i−N−1+s exp(−i/2)δN
∫

i≤|z|≤i+1

|V (δz + x)| dz.

For every fixed i, we cover the annulus Ai := {i ≤ |y| ≤ i+ 1} by n(i) balls B1(zj), with zj ∈ Ai,
n(i) ≤ CiN−1 and C a positive constant only depending on N . Letting ρi := i−N−1+s exp(−i/2), for
every x ∈ R

N and δ ∈ (0, 1/2], we then have

∫

RN

|V (y)|Gs,δ(x− y)dy ≤ cηV (δ) + C

∞∑

i=1

ρi

n(i)∑

j=1

δN
∫

|z−zj|≤1

|V (δz + x)| dz

= cηV (δ) + C

∞∑

i=1

ρi

n(i)∑

j=1

∫

|y−x−δzj|≤δ

|V (y)| dz

≤ cηV (δ) + C
∞∑

i=1

ρi

n(i)∑

j=1

ωs(δ)
−1

∫

|y−x−δzj|≤δ

|V (y)|ωs(|y − x− δzj |) dz

≤ cηV (δ)

(
1 + C

∞∑

i=1

i−2+s exp(−i/2)

)
ωs(δ)

−1 ≤ cηV (δ).

We then get, for every δ ∈ (0, 1/2]

‖LL∗v‖2L2(RN ) ≤ cηV (δ)

∫

RN

|V (x)|

∫

RN

|v(z)|2Gs,1((x− z)/δ)dz dx ≤ c2ηV (δ)
2

∫

RN

|v(z)|2dz.

That is (2.14) as claimed.
Since ‖LL∗‖ = ‖L‖2, it then follows that

‖Lv‖2L2(RN ) ≤ cηV (δ)‖v‖
2
L2(RN ). (2.15)

Now given u ∈ Hs(RN ) and δ ∈ (0, 1], we plug v = (−∆ + (δ/2)−2)s/2u ∈ L2(RN ) in (2.15), and

noting that ‖v‖2L2(RN ) ≤ c
(
[u]2Hs(RN ) + (δ/2)−2‖u‖2L2(RN )

)
, for some positive constant c = c(N, s).

This with the fact that that ηV (δ/2) ≤ ηV (δ) give (2.12), if V ∈ L∞(RN ).

Step 2: For V ∈ L1
loc(R

N ), we consider Vk = min(|V |, k), for k ∈ N. Thence since ηVk
≤ ηV , we get

(2.12) by Fatou lemma. �

The following energy estimate is a consequence of the above coercivity result and a nonlocal
Caccioppoli-type inequality proved in an appendix, Section 9.

Lemma 2.4. We consider Ω an open set with 0 ∈ ∂Ω and K satisfying (1.2). Let v ∈ Hs(RN ) and
V, f ∈ Ks satisfy

LKv + V v = f in B2R ∩ Ω and v = 0 in B2R ∩Ωc. (2.16)
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Then there exists C = C(N, s, κ) > 0 such that for every ε > 0 and every δ ∈ (0, 1], there exists
C = C(ε, δ, s,N, κ) such that

{κ−εC(1 + ηf (δ))− CηV (δ)
} ∫

R2N

(v(x) − v(y))2ϕ2
R(y)µ1(x, y) dxdy ≤ Cηf (1)‖ϕR‖

2
Hs(RN )

+ C (ηV (1) + ηf (1) + 1)

∫

RN

RN |v(x)|2

RN+2s + |x|N+2s
dx+ C (ηV (1) + ηf (1)) ‖vϕR‖

2
L2(RN ).

Proof. By Lemma 9.1 and (2.1), we get

(κ− ε)

∫

R2N

(v(x) − v(y))2ϕ2
R(y)µ1(x, y) dxdy =

∫

RN

|V (x)||v(x)ϕR(x)|
2 dx

+

∫

RN

|f(x)||v(x)|ϕ2
R(x) dx + Cε

∫

RN

RN |v(x)|2

RN+2s + |x|N+2s
dx. (2.17)

Thanks to Lemma 2.3, (2.1) and the fact that
∫
RN (ϕ1(x) − ϕ1(y))

2µ1(x, y) dy ≤ C(1 + |x|N−2s) for

every x ∈ R
N , we have

∫

RN

|V (x)||v(x)ϕR(x)|
2 dx ≤ CηV (δ)

∫

R2N

((vϕR)(x) − (vϕR)(y))
2µ1(x, y) dxdy

+ CηV (δ)‖vϕR‖
2
L2(RN )

≤ CηV (δ)

∫

R2N

(v(x) − v(y))2ϕ2
R(y)µ1(x, y) dxdy

+ CηV (δ)

∫

RN

RN |v(x)|2

RN+2s + |x|N+2s
dx+ CηV (δ)‖vϕR‖

2
L2(RN ). (2.18)

Similarly, by Young’s inequality, (2.12) and (2.1), we get
∫

RN

|f(x)||ϕR(x)|
2|v(x)| dx ≤ ε

∫

RN

|f(x)||v(x)ϕR(x)|
2dx+ Cε

∫

RN

|f(x)|ϕR(x)
2 dx

≤ εCηf (δ)

∫

R2N

((vϕR)(x)− (vϕR)(y))
2µ1(x, y) dxdy + Cεηf (δ)‖vϕR‖

2
L2(RN )

+ Cεηf (δ)‖ϕR‖
2
Hs(RN )

≤ εCηf (δ)

∫

R2N

(v(x) − v(y))2ϕ2
R(y)µ1(x, y) dxdy + Cηf (δ)

∫

RN

RN |v(x)|2

RN+2s + |x|N+2s
dx

+ Cηf (δ)‖vϕR‖
2
L2(RN ) + Cεηf (δ)‖ϕR‖

2
Hs(RN ).

Using the above estimate and (2.18) in (2.17) and using the monotonicity of ηV and ηf , we get the
result.

�

We close this section with the following result.

Lemma 2.5. We consider Ω an open set with 0 ∈ ∂Ω and K satisfying (2.2). Let v ∈ Hs
loc(B2R)∩L1

s

and V, f ∈ Ks satisfy

LKv + V v = f in B2R ∩ Ω and v = 0 in B2R ∩Ωc. (2.19)

Then for every ψ ∈ C∞
c (BR ∩ Ω), we have

∣∣∣∣
∫

R2N

(v(x) − v(y))(ψ(x) − ψ(y))K(x, y) dxdy

∣∣∣∣ ≤ CηV (1)
(
‖vϕR‖

2
Hs(RN ) + ‖ψ‖2Hs(RN )

)

+ Cηf (1)
(
‖ϕR‖

2
Hs(RN ) + ‖ψ‖2Hs(RN )

)
,

where C > 0 is a constant, only depending on N and s.
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Proof. Testing the equation (2.19) with ψ ∈ C∞
c (BR ∩ Ω) and using Young’s inequality, we get

1

2

∣∣∣∣
∫

R2N

(v(x) − v(y))(ψ(x) − ψ(y))K(x, y) dxdy

∣∣∣∣

≤

∫

RN

|V (x)||v(x)ψ(x)|ϕR(x) dx +

∫

RN

|f(x)||ψ(x)|ϕR(x) dx

≤ 2

∫

RN

|V (x)||v(x)ϕR(x)|
2 dx+ 2

∫

RN

|V (x)|ψ2(x) dx + 2

∫

RN

|f(x)|ψ2(x) dx + 2

∫

RN

|f(x)|ϕ2
R(x) dx.

Hence using Lemma 2.3, we conclude that
∣∣∣∣
∫

R2N

(v(x) − v(y))(ψ(x) − ψ(y))K(x, y) dxdy

∣∣∣∣ ≤ CηV (1)
(
‖vϕR‖

2
Hs(RN ) + ‖ψ‖2Hs(RN )

)

+ Cηf (1)
(
‖ψ‖2Hs(RN ) + ‖ϕR‖

2
Hs(RN )

)
,

which finishes the proof. �

3. Interior and boundary growth estimates

We recall the Morrey space already introduced in the first section, for β ∈ [0, 2s), defined as

Mβ :=

{
f ∈ L1

loc(R
N ) : ‖f‖Mβ

:= sup
r∈(0,1),x∈RN

rβ−N
∫

Br(x)

|f(y)| dy <∞

}
.

Let f ∈ Mβ and define fr,x0(x) = r2sf(rx+x0) for x0 ∈ R
N and r > 0. Recalling (2.11), an important

property of ηf we will use frequently in the following is that, for every x0 ∈ R
N and r ∈ (0, 1], we

have

ηfr,x0
(1) ≤ C‖fr,x0‖Mβ

≤ Cr2s−β‖f‖Mβ
, (3.1)

with C a positive constant, only depending on N, s, and β. The first inequality in (3.1) can be easily
checked by change of variables and using summations over annuli with small thickness. We note that
(3.1) and Lemma 2.3 show that functions V, f ∈ Mβ satisfy RTCP of order β (see (1.3)) as mentioned
in the first section.

3.1. Interior growth estimates for solutions to Schrödinger equations. The next result is
merely classical but we add the proof for the sake of completeness.

Lemma 3.1. Let u ∈ L2
loc(R

N ) and α > 0.

(i) Suppose that

‖u− uBρ‖L2(Bρ) ≤ CρN/2+α for every ρ ∈ [1,∞). (3.2)

Then

‖u− uB1‖L2(Bρ) ≤ CCρN/2+α for every ρ ∈ [1,∞),

with C depends only on N and α.

(ii) Suppose that 0 is a Lebesgue point of u and

‖u− uBρ‖L2(Bρ) ≤ CρN/2+α for every ρ ∈ (0, 1). (3.3)

Then

‖u− u(0)‖L2(Bρ) ≤ CCρN/2+α for every ρ ∈ (0, 1),

with C depends only on N and α.
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Proof. First, to prove (i), we note that, for every ρ ≥ 1,

|Bρ|
1/2|uBρ − uB2ρ | ≤ ‖u− uBρ‖L2(Bρ) + ‖u− uB2ρ‖L2(B2ρ) ≤ 2CρN/2+α.

Therefore, for ρ = 2m, with m ≥ 1, we get

|uBρ − uB1 | ≤

m−1∑

i=0

|uB2i
− uB2i+1 | ≤ 2C

m−1∑

i=0

2iα ≤ CCρα,

where C is independent on m, ρ and u. Next, if m is the smallest integer for which, 2m−1 ≤ ρ ≤ 2m,
then using (3.2) and the above estimate, we conclude that

‖u− uB1‖L2(Bρ) ≤ ‖u− uB2m
‖L2(B2m ) + |B2m |1/2|uB2m

− uB1 | ≤ CCρN/2+α.

For (ii), by assumption, we have

|Bρ/2|
1/2|uBρ − uBρ/2

| ≤ ‖u− uBρ‖L2(Bρ) + ‖u− uBρ/2
‖L2(Bρ/2) ≤ 2CρN/2+α.

Therefore

|uBρ − u(0)| ≤

∞∑

i=0

|uB2−iρ
− uB2−iρ/2

| ≤ 2C

∞∑

i=1

(2−iρ)α ≤ CCρα.

Using this and (3.3), we obtain.

‖u− u(0)‖L2(Bρ) ≤ ‖u− uBρ‖L2(Bρ) + |Bρ|
1/2|uBρ − u(0)| ≤ CCρN/2+α,

where C depends only on N and α. �

Let a satisfy (1.2) and K ∈ K (λ, a, κ) (satisfy (2.2)) V, f ∈ Mβ , we define the set of solutions to
the Schrödinger equations with entries V and f by

SK,V,f :=
{
u ∈ Hs(B2) ∩ L

2(RN ) : LKu+ V u = f in B2

}
,

and we note that this set is nonempty thanks to Lemma 2.3 and a direct minimization argument. In
fact this set is nonempty for all f, V ∈ Ks for the same reason.
We consider the class of (normalized) potentials

Vβ :=
{
V ∈ Mβ : ‖V ‖Mβ

≤ 1
}
. (3.4)

Having these notations in mind, we now state the following result.

Proposition 3.2. Let s ∈ (0, 1), β ∈ [0, 2s), α ∈ (0,min(1, 2s− β)) and Λ, κ > 0. Then there exists
ε0 > 0 and C > 0 such that for every λ : R2N → [0, κ−1] satisfying ‖λ‖L∞(B2×B2) < ε0, a satisfying
(1.2), K ∈ K (λ, a, κ), V ∈ Vβ, f ∈ Mβ, u ∈ SK,V,f and for every r > 0, we have

sup
x∈B1

‖u− uBr(x)‖
2
L2(Br(x))

≤ CrN+2α(‖u‖L2(RN ) + ‖f‖Mβ
)2. (3.5)

Proof. The proof of (3.5) will be divided into two steps. Due to the presence of the potential V ,
the set SK,V,f might not be invariant when adding constants to its elements. As a way out to this
difficulty, we prove first a uniform estimate of the form |uBr(x)| ≤ Cr−̺(‖u‖L2(RN ) + ‖f‖Mβ

), for all
̺ > 0. Once we get this, we complete the proof of (3.5) in the second step.

Step 1: We claim that for every ̺ ∈ (0, 1/2), there exist C > 0 and a small number ε0 > 0 such
that for every λ : R2N → [0, κ−1] satisfying ‖λ‖L∞(B2×B2) < ε0, every function a satisfying (1.2),
K ∈ K (λ, a, κ), V ∈ Vβ, f ∈ Mβ , u ∈ SK,V,f , and r > 0, we have

sup
x∈B1

‖u‖2L2(Br(x))
≤ CrN−2̺(‖u‖L2(RN ) + ‖f‖Mβ

)2. (3.6)
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Assume that (3.6) does not hold, then there exists ̺ ∈ (0, 1/2) such that for every n ∈ N, we can find
λn : R2N → [0, κ−1] satisfying ‖λn‖L∞(B2×B2) <

1
n , an satisfying (1.2), Kan ∈ K (λn, an, κ), Vn ∈ Vβ ,

fn ∈ Mβ, un ∈ SKan ,Vn,fn , with ‖un‖L2(RN ) + ‖fn‖Mβ
≤ 1 and rn > 0, such that

r−N+2̺
n sup

x∈B1

‖un‖
2
L2(Brn (x)) > n. (3.7)

We consider the (well defined, because ‖un‖L2(RN ) ≤ 1) nonincreasing function Θn : (0,∞) → [0,∞)
given by

Θn(r) = sup
r∈[r,∞)

r−N+2̺ sup
x∈B1

‖un‖
2
L2(Br(x))

. (3.8)

Obviously by (3.7),

Θn(rn) > n. (3.9)

Clearly, there exists rn ∈ [rn,∞) such that

Θn(rn) ≥ r−N+2̺
n sup

x∈B1

‖un‖
2
L2(Brn(x)) ≥ (1− 1/n)Θn(rn) ≥ (1− 1/n)Θn(rn),

where we used the monotonicity of Θn for the last inequality, while the first inequality comes from
the definition of Θn. In particular, thanks to (3.9), Θn(rn) ≥ (1− 1/n)n. Now since ‖un‖L2(RN ) ≤ 1,

we have that r−N+2̺
n ≥ (1 − 1/n)n, so that rn → 0 as n → ∞. Moreover by (3.9), it is clear that,

there exists xn ∈ B1 such that

r−N+2̺
n ‖un‖

2
L2(Brn (xn))

≥ (1− 1/n− 1/2)Θn(rn). (3.10)

We now define the blow-up sequence of functions

wn(x) = Θn(rn)
−1/2r̺nun(rnx+ xn),

which, by (3.10), satisfy

‖wn‖
2
L2(B1)

≥
3

4
for every n ≥ 2. (3.11)

In view of (3.8), we have that

‖wn‖
2
L2(BR) = Θn(rn)

−1r−N+2̺
n ‖un‖

2
L2(BrnR(xn))

≤ Θn(rn)
−1r−N+2̺

n Θn(rnR)(rnR)
N−2̺ ≤ RN−2̺,

where we have used the monotonicity of Θn for the last inequality. Consequently,

‖wn‖
2
L2(BR) ≤ RN−2̺ for every R ≥ 1 and n ≥ 2. (3.12)

We define

fn(x) := Θn(rn)
−1/2r2sn fn(rnx+ xn) and V n(x) := r2sn Vn(rnx+ xn).

Because un ∈ SKan ,Vn,fn , it is plain that

LKnwn + V nwn = r̺nfn in B1/2rn ,

where

Kn(x, y) = rN+2s
n Kan(rnx+ xn, rny + xn). (3.13)

Clearly Kn satisfies (2.2). Therefore applying Lemma 2.4 and using (3.12), for every 1 < M < 1
2rn

,
we get
{
κ− εC(1 + r̺nηfn

(1))− CηV n
(1)
}
[wn]

2
Hs(BM ) ≤ Cr̺nηfn

(1)‖ϕM‖2Hs(RN )

+ C
(
ηV n

(1) + r̺nηfn
(1) + 1

)∫

RN

MN |wn(x)|
2

MN+2s + |x|N+2s
dx+ C

(
ηV n

(1) + r̺nηfn
(1)
)
‖wn‖

2
L2(B2M ).

By (3.1), we have that ηV n
(1) + ηfn

(1) ≤ Cr2s−βn (recalling that Θn(rn)
−1 ≤ 1). Hence, there exists

a constant C(M) independent on n ≥ 2 such that
(
κ− εC(1 + r2s−β+̺n )− Cr2s−βn

)
[wn]

2
Hs(BM ) ≤ C(M). (3.14)
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Therefore provided ε is small and n is large enough, we deduce that wn is bounded in Hs
loc(R

N ).
Hence by Sobolev embedding, up to a subsequence, wn converges strongly, in L2

loc(R
N ), to some

w ∈ Hs
loc(R

N ). In addition by (3.12), we have that vn → v in L1
s. Moreover, by (3.11) and (3.12), we

deduce that

‖w‖2L2(B1)
≥

3

4
and ‖w‖2L2(BR) ≤ RN−2̺ for every R ≥ 1. (3.15)

We let ψ ∈ C∞
c (BM ), with M < 1

2rn
. By Lemma 2.5, (3.14) and (3.12), we get

∣∣∣∣
∫

R2N

(wn(x)− wn(y))(ψ(x) − ψ(y))Kn(x, y) dxdy

∣∣∣∣

≤ Cr2s−βn

(
‖wnϕM‖2Hs(RN ) + ‖ψ‖2Hs(RN )

)
+ r2s−β+̺n

(
‖ψ‖2Hs(RN ) + ‖ϕM‖2Hs(RN )

)

≤ r2s−βn C(M). (3.16)

Next, we observe that Kn ∈ K (λn, an, κ), with λn(x, y) = λn(rnx+ xn, rny+xn) (see (2.2)). On the
other hand

‖λn‖L∞(B1/rn×B1/rn) = ‖λn‖L∞(B1(xn)×B1(xn)) ≤ ‖λn‖L∞(B2×B2) ≤
1

n
.

In view of this and (3.16), by Lemma 2.2, as n→ ∞, we have that

1

2

∫

R2N

(wn(x) − wn(y))(ψ(x) − ψ(y)Kn(x, y) dxdy →

∫

RN

wLbψ(x) dx = 0,

where b is the weak-star limit of an, which satisfy (2.5). We then conclude that Lbw = 0 in R
N . Now

Lemma 8.3 implies that w is an affine function. This is clearly in contradiction with (3.15) since ̺ > 0.

Step 2: Assuming that (3.5) does not hold true, then as in the first step, we can find sequences
λn : R2N → [0, κ−1] satisfying ‖λn‖L∞(B2×B2) <

1
n , an satisfying (1.2), Kan ∈ K (λn, an, κ), xn ∈ B1,

Vn ∈ Vβ , fn ∈ Mβ , un ∈ SKan ,Vn,fn , with ‖un‖L2(RN ) + ‖fn‖Mβ
≤ 1 and rn → 0, such that

r−N−2α
n ‖un − (un)Brn (xn)‖

2
L2(Brn(xn))

≥
1

8
Θn(rn). (3.17)

Here, for every n ≥ 2, Θn : (0,∞) → [0,∞) is a nonincreasing function satisfying

Θn(r)r
N+2α ≥ ‖un − (un)Br(xn)‖

2
L2(Br(xn))

for every r > 0 (3.18)

and Θn(rn) ≥ n/2. We define

vn(x) = Θn(rn)
−1/2r−αn un(rnx+ xn)−Θn(rn)

−1/2r−αn
1

|B1|

∫

B1

un(rnx+ xn) dx,

so that

‖vn‖
2
L2(B1)

≥
1

8
and

∫

B1

vn(x) dx = 0. (3.19)

Claim: There exists C = C(s,N, α) > 0 such that

‖vn‖
2
L2(BR) ≤ CRN+2α for every R ≥ 1 and n ≥ 2. (3.20)

To prove this claim, we note that by a change of variable, we have

‖vn‖
2
L2(BR) = Θn(rn)

−1r−N−2α
n ‖un − (un)Brn (xn)‖

2
L2(BrnR(xn))

. (3.21)

Since, by (3.18) and the monotonicity of Θn,

‖un − (un)BRrn (xn)‖
2
L2(BRrn (xn))

≤ (rnR)
N+2αΘn(Rrn) ≤ rN+2α

n Θn(rn)R
N+2α for every R ≥ 1,

it follows from Lemma 3.1(i) that

‖un − (un)Brn (xn)‖
2
L2(BRrn (xn))

≤ CrN+2α
n Θn(rn)R

N+2α.
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Using this in (3.21), we get (3.20) as claimed.
Thanks to the choice of α < 2s, by (3.20), we get

‖vn‖L1
s
≤ C. (3.22)

Using the same notations as in Step 1 for V n, fn and Kn ∈ K (λn, an, κ), we see that

LKnvn + V nvn = −Θn(rn)
−1/2r−αn V nAn(rn) + r−αn fn in B1/2rn ,

where An(rn) := 1
|Brn |

∫
Brn(xn)

un(x) dx. Note that from Step 1 and Hölder’s inequality, for every

̺ ∈ (0, (2s− β − α)/2), we can find a constant C > 0 such that for every n ≥ 2,

|An(rn)| ≤
1

|Brn |

∫

Brn (xn)

|un(x)| dx ≤ Cr−̺n . (3.23)

We then define

Fn(x) := −Θn(rn)
−1/2An(rn)V n(x) + fn(x).

As above, we observe that ηV n
(1) ≤ Cr2s−βn , while by (3.23), we have ηFn(1) ≤ Cr2s−β−̺n . On the

other hand

LKnvn + V nvn = r−αn Fn in B1/2rn . (3.24)

By Lemma 9.2, for 1 < M < 1
2rn

, we have

LKn(ϕMvn) + V n(ϕMvn) = r−αn ϕMFn +Gvn,M in BM/2,

where ‖Gvn,M‖L∞(RN ) ≤ C‖vn‖L1
s
≤ C, by (3.22). In view of (3.20), (3.22) and Lemma 2.4, we then

get

(
κ− εC(1 + r2s−β−̺−αn )− Cr2s−βn

)
[ϕMvn]

2
Hs(BM/4)

≤ C(M) whenever 1 < M <
1

2rn
.

Consequently, provided n is large enough and ε small, we obtain

[vn]
2
Hs(BM/4)

≤ C(M). (3.25)

This with (3.20) imply that vn is bounded in Hs
loc(R

N ) and, up to a subsequence, converges strongly,
in L2

loc(R
N )∩L1

s , to some v ∈ Hs
loc(R

N ). Since vn satisfy (3.24), by Lemma 2.5, (3.22) and (3.25), we
have

∣∣∣
∫

R2N

(vn(x)− vn(y))(ψ(x) − ψ(y))Kn(x, y) dxdy
∣∣∣

≤ Cr2s−β−α−̺n

(
‖vnϕM‖2Hs(RN ) + ‖ψ‖2Hs(RN ) + ‖ϕM‖2Hs(RN )

)

≤ r2s−β−α−̺n C(M)

for every ψ ∈ C∞
c (BM ), with M < 1

2rn
. Letting n→ ∞ in the above inequality and using Lemma 2.2,

we find that Lbv = 0 in R
N , with b the limit of an in the weak-star topology of L∞(SN−1). Moreover,

from (3.20), we get
∫

BR

|v(x)|2 dx ≤ CRN+2α.

By Lemma 8.3, v is a constant function (because α < 1), which leads to a contradiction after passing
to the limit in (3.19). �
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3.2. Uniform growth estimates at the boundary for solutions to Schrödinger equations.

Let Ω be an open subset of RN such that ∂Ω ∩B2 is a C1 hypersurface. We will assume that 0 ∈ ∂Ω
and that ∂Ω separates B2 into two domains. As before, for K ∈ K (λ, a, κ), V ∈ Vβ and f ∈ Mβ, we
consider the (nonempty) set of solutions:

SK,V,f ;Ω :=
{
u ∈ Hs(B2) ∩ L

2(RN ) : LKu+ V u = f in B2 ∩ Ω, u = 0 in B2 ∩ Ωc
}
. (3.26)

We have the following result.

Proposition 3.3. Let s ∈ (0, 1), β ∈ [0, 2s), α ∈ (0,min(s, 2s− β)) and Λ, κ > 0. Then there exist
ε1 > 0 small and C > 0 such that for every λ : R2N → [0, κ−1] satisfying ‖λ‖L∞(B2×B2) < ε1, a
satisfying (1.2), K ∈ K (λ, a, κ), V ∈ Vβ, f ∈ Mβ, u ∈ SK,V,f ;Ω and for every r > 0, we have

sup
z∈B1∩∂Ω

‖u‖2L2(Br(z))
≤ CrN+2α(‖u‖L2(RN ) + ‖f‖Mβ

)2. (3.27)

Proof. As in the proof of Proposition 3.2, if (3.27) does not hold, then we can a find sequence
of real numbers rn → 0, sequence of points zn ∈ B1 ∩ ∂Ω, sequences of functions λn satisfying
‖λn‖L∞(B2×B2) <

1
n , an satisfying (1.2), Kan ∈ K (λn, an, κ), Vn ∈ Vβ , fn ∈ Mβ un ∈ SKan ,Vn,fn;Ω,

with ‖un‖L2(RN ) + ‖fn‖Mβ
≤ 1, such that

r−N−2α
n ‖un‖

2
L2(Brn (zn))

≥
1

8
Θn(rn),

where, Θn : (0,∞) → [0,∞), is a nonincreasing function satisfying

Θn(r)r
N+2α ≥ ‖un‖

2
L2(Br(zn))

for every r > 0 and n ≥ 2 (3.28)

and Θn(rn) ≥ n/2 for all integer n ≥ 2. We define

vn(x) = Θn(rn)
−1/2r−αn un(rnx+ zn),

so that

‖vn‖
2
L2(B1)

≥
1

8
. (3.29)

We also let

Ωn :=
1

rn
(Ω− zn),

fn(x) := Θn(rn)
−1/2r2sn fn(rnx+ zn) and V n(x) := r2sn Vn(rnx+ zn).

By (3.1), we get

ηfn
(1) + ηV n

(1) ≤ Cr2s−βn , (3.30)

with a constant C = C(N, s, β, α). It is clear that
{
LKnvn + V nvn = r−αn fn in B1/2rn(−zn) ∩ Ωn

vn = 0 in B1/2rn(−zn) ∩ Ωcn,
(3.31)

where

Kn(x, y) = rN+2s
n Kan(rnx+ zn, rny + zn).

Next, by the monotonicity of Θn and (3.28), we get

‖vn‖
2
L2(BR) = Θn(rn)

−1r−N−2α
n ‖un‖

2
L2(BrnR(zn))

≤ Θn(rn)
−1r−N−2α

n Θn(Rrn)(Rrn)
N+2α.

Hence, for every n ≥ 2,

‖vn‖
2
L2(BR) ≤ RN+2α for every R ≥ 1. (3.32)

This with Hölder’s inequality imply that
∫

BR

|vn(x)|dx ≤ CRN+α for every R ≥ 1. (3.33)
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From now on, we let n0 large, so that B1/(2rn) ⊂ B1/rn(−zn) for every n ≥ n0. Since vn satisfies
(3.31) and Kn satisfies (2.2)(i)-(ii), by Lemma 2.4, (3.30) and (3.32), there exists a constant C(M)
independent on n ≥ n0 such that

[vn]
2
Hs(BM ) ≤ C(M), (3.34)

whenever 1 ≤ M ≤ 1
2rn

. We then deduce that vn is bounded in Hs
loc(R

N ). Hence by Sobolev

embedding, (3.33) and since α < 2s, we may assume that the sequence vn converges strongly, in
L2
loc(R

N ) ∩ L1
s, to some v ∈ Hs

loc(R
N ). Moreover, by (3.29), we deduce that

‖v‖2L2(B1)
≥

1

8
. (3.35)

Next, we note that 1Ωn∩B1/(2rn)
→ 1H in L1

loc(R
N ) as n→ ∞, where H is a half-space, with 0 ∈ H . In

fact H = {x ∈ R
N : (x− z) · ν(z) > 0}, where z = limn→∞ zn ∈ ∂H and ν is the unit interior normal

vector of ∂H . Now, we pick ψ ∈ C∞
c (H ∩ BM ), with M < 1

2rn
. Since Ω is of class C1, provided n

is large enough, we have that ψ ∈ C∞
c (Ωn). Therefore by Lemma 2.5, (3.34), (3.32) and (3.30), we

obtain ∣∣∣∣
∫

R2N

(vn(x) − vn(y))(ψ(x) − ψ(y))Kn(x, y) dxdy

∣∣∣∣ ≤ r2s−β−αn C(M),

with C(M) a constant not depending on n ≥ n0 and large. Denoting by b the weak-star limit of an,
then by Lemma 2.2, we get

Lbv = 0 in H and v = 0 on R
N \H .

Furthermore by (3.32), ‖v‖2L2(BR) ≤ CRN+2α, for every R ≥ 1. Since α < s, it follows from Lemma

8.3 that v = 0, which is impossible by (3.35). �

4. Interior and boundary Hölder regularity estimates

4.1. Interior Hölder regularity. We have the following regularity estimates.

Corollary 4.1. Let s ∈ (0, 1), β ∈ [0, 2s), α ∈ (0,min(1, 2s− β)), κ,Λ > 0. Let a satisfy (1.2) and
K ∈ K (λ, a, κ). Let f, V ∈ Mβ and u ∈ Hs(B2) ∩ L1

s satisfy

LKu+ V u = f in B2.

Then there exists ε0, C > 0, only depending on N, s, β, κ, α, ‖V ‖Mβ
and Λ such that if ‖λ‖L∞(B2×B2) <

ε0, then
‖u‖Cα(B1) ≤ C

(
‖u‖L2(B2) + ‖u‖L1

s
+ ‖f‖Mβ

)
.

Proof. We let x0 ∈ B3/2 and δ ∈ (0, 1/8) and we define λδ(x, y) = λ(δx+ x0, δy+ x0) and Kδ(x, y) =

δN+2sK(δx + x0, δy + x0). Then Kδ ∈ K (λδ , a, κ). For x ∈ B2, we define uδ(x) = u(δx + x0),
fδ(x) = δ2sf(δx+ x0) and Vδ(x) = δ2sV (δx+ x0). Since δ ∈ (0, 1/8), by direct computations, we get

LKδ
uδ + Vδuδ = fδ in B8. (4.1)

By Lemma 9.2, letting vδ := ϕ4uδ we have

LKδ
vδ + Vδ(x)vδ = f̃δ in B2, (4.2)

with ‖f̃δ‖Mβ
≤ ‖fδ‖Mβ

+ C0‖uδ‖L1
s
and

‖Vδ‖Mβ
≤ Cδ2s−β‖V ‖Mβ

,

with C0 depending only on N, s, κ,Λ and β. Hence, there exists δ0 ∈ (0, 1/8), only depending on
N, s, κ,Λ, β and ‖V ‖Mβ

, such that ‖Vδ‖Mβ
≤ 1 for every δ ∈ (0, δ0). Obviously ‖λδ‖L∞(B2×B2) ≤

‖λ‖L∞(B2×B2) for every δ ∈ (0, δ0). Hence by Proposition 3.2, there exists ε0 > 0 and C > 0 such
that if ‖λ‖L∞(B2×B2) < ε0, then for every x ∈ B1, r > 0 and δ ∈ (0, δ0), we have

‖vδ − (vδ)Br(x)‖
2
L2(Br(x))

≤ CrN+2α
(
‖vδ‖L2(RN ) + ‖f̃δ‖Mβ

)2
,
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where, the constant C and ε0 only depend on N, s, β, α,Λ, ‖V ‖Mβ
and κ. By Lemma 3.1(ii), for

almost all x ∈ B1 and for all r ∈ (0, 1], we have

‖vδ − vδ(x)‖
2
L2(Br(x))

≤ CrN+2α
(
‖vδ‖L2(RN ) + ‖f̃δ‖Mβ

)2
. (4.3)

In particular,

‖vδ‖L∞(B1) ≤ C
(
‖vδ‖L2(RN ) + ‖f̃δ‖Mβ

)
. (4.4)

Let x, y ∈ B1/4 be two Lebesgue points of u, and take ρ = |x − y|/2. Then Bρ(x) ⊂ B3ρ(y) ⊂ B1.
Therefore, by (4.3), we get

|Bρ|
N/2|vδ(x)− vδ(y)| = ‖vδ(x) − vδ(y)‖L2(Bρ(x)) ≤ ‖vδ(x)− vδ‖L2(Bρ(x)) + ‖vδ(y)− vδ‖L2(B3ρ(y))

≤ CρN/2+α
(
‖vδ‖L2(RN ) + ‖f̃δ‖Mβ

)
.

That is

|vδ(x) − vδ(y)| ≤ C|x− y|α
(
‖vδ‖L2(RN ) + ‖f̃δ‖Mβ

)
for almost every x, y ∈ B1/4.

We then conclude, from (4.4), that

‖vδ‖Cα(B1/4) ≤ C
(
‖vδ‖L2(RN ) + ‖f̃δ‖Mβ

)
.

It follows that

‖uδ‖Cα(B1/4) ≤ C
(
‖uδ‖L2(B8) + ‖f̃δ‖Mβ

+ ‖uδ‖L1
s

)
.

Scaling and translating back, we get

‖u‖Cα(Bδ/4(x0)) ≤ C
(
‖u‖L2(B2) + ‖f‖Mβ

+ ‖u‖L1
s

)
,

where C depends only on N, s, β, α,Λ, κ, δ and ‖V ‖Mβ
. Since B1 can be covered by a finite number

of such balls Bδ/4(x0), with x0 ∈ B3/4, we get the desired estimate. �

As a consequence of Corollary 4.1, we obtain regularity estimates for nonlocal operators with

”uniformly continuous” coefficient. For K ∈ K̃ (κ), we define the functions

λ̃e,K(x, r, θ) =
1

2
{λK(x, r, θ) + λK(x, r,−θ)}

λ̃o,K(x, r, θ) =
1

2
{λK(x, r, θ)− λK(x, r,−θ)} .

(4.5)

If there is no ambiguity, we will simply write λ̃e and λ̃o in the place of λ̃e,K and λ̃o,K , respectively.

Theorem 4.2. Let s ∈ (0, 1), β ∈ [0, 2s) and α ∈ (0,min(1, 2s − β)). Let K ∈ K̃ (κ) and suppose

that λ̃e and λ̃o (defined in (4.5)) satisfy

• for every x1, x2 ∈ B2, r ∈ (0, 2), θ ∈ SN−1,
∣∣∣λ̃e(x1, r, θ)− λ̃e(x2, 0, θ)

∣∣∣ ≤ τ(|x1 − x2|+ r);

• for every x ∈ B2, r ∈ (0, 2), θ ∈ SN−1,
∣∣∣λ̃o(x, r, θ)

∣∣∣ ≤ τ(r),

for some function τ ∈ L∞(R+) and τ(t) → 0 as t→ 0. Let f, V ∈ Mβ and u ∈ Hs
loc

(B2) ∩ L1
s satisfy

LKu+ V u = f in B2.

Then there exists C > 0, only depending on N, s, β, α, κ, τ and ‖V ‖Mβ
, such that

‖u‖Cα(B1) ≤ C
(
‖u‖L2(B2) + ‖u‖L1

s
+ ‖f‖Mβ

)
.
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Proof. Pick x0 ∈ B3/2. By assumption, for every x ∈ B2, r ∈ (0, 2) and θ ∈ SN−1,

∣∣∣λ̃o(x, r, θ)
∣∣∣+
∣∣∣λ̃e(x, r, θ) − λ̃e(x0, 0, θ)

∣∣∣ ≤ τ(r) + τ(|x − x0|+ r).

Then for every ε > 0 there exists δ = δx0,ε ∈ (0, 1/100) such that, for every x ∈ B4δ(x0) and r ∈ (0, 4δ),
we have

∣∣∣K(x, x+ rθ) − λ̃e(x0, 0, θ)r
−N−2s

∣∣∣ ≤ εr−N−2s.

Therefore, for every x ∈ B4δ(x0) and 0 < |z| < 4δ,
∣∣∣K(x, x+ z)− λ̃e(x0, 0, z/|z|)|z|

−N−2s
∣∣∣ ≤ ε|z|−N−2s

and thus, for every x, y ∈ B2δ(x0), with x 6= y,

|K(x, y)− µa(x, y)| ≤ εµ1(x, y),

where a(θ) := λ̃e(x0, 0, θ). It is clear that a is even on SN−1. By changing variables, we find that for
every x, y ∈ B2, with x 6= y,

∣∣δN+2sK(δx+ x0, δy + x0)− µa(x, y)
∣∣ ≤ εµ1(x, y), (4.6)

In addition,

κ ≤ a(θ) ≤ κ−1 for every θ ∈ SN−1.

We define
{
λ(x, y) = ε, for x, y ∈ B2,

λ(x, y) = κ−1 elsewhere.

We now let Kδ(x, y) = δN+2sK(δx+ x0, δy + x0), which, by (4.6), clearly satisfies Kδ ∈ K (λ, a, κ).
For x ∈ B2, we define uδ(x) = u(δx+x0), fδ(x) = δ2sf(δx+x0) and Vδ(x) = δ2sV (δx+x0). Since

δ ∈ (0, 1/16), by direct computations, we get

LKδ
uδ + Vδuδ = fδ in B8. (4.7)

Recall that ‖Vδ‖Mβ
≤ Cδ2s−β‖V ‖Mβ

and thus, decreasing δ if necessary, we get ‖Vδ‖Mβ
≤ 1. Since

‖λ‖L∞(B2×B2) = ε, then provided ε > 0 small, by Corollary 4.1 and a change of variable, we get

‖u‖Cα(Bδx0,ε (x0)) ≤ C(x0)
(
‖u‖L2(B2) + ‖f‖Mβ

+ ‖u‖L1
s

)
,

where C(x0) is a constant, only depending on N, s, c0, δ, κ, τ, x0 and ‖V ‖Mβ
. Next, we cover B1 by

a finite number of balls B 1
2 δxi,ε

(xi), for i = 1, . . . , n, with xi ∈ B1. Put C := max1≤i≤n C(xi) and

̺ = 1
2 min1≤i≤n δxi,ε. Then on any ball B̺(x), with x ∈ B1, we have the estimate

‖u‖Cα(B̺(x)) ≤ C
(
‖u‖L2(B2) + ‖f‖Mβ

+ ‖u‖L1
s

)
,

where ̺ and C depend only on N, s, c0, κ, τ and ‖V ‖Mβ
. Since B1 can be covered by a finite number

of balls B̺(x), with x ∈ B1, we get the result. �

Remark 4.3. We note that the conclusion of Theorem 4.2 remains unchanged if we considered, say,
a ”better” modulus of continuity τ . More precisely, in Theorem 4.2, we could choose τρ(r) = τ(ρr) for
some ρ ∈ (0, 1) and τ as in the theorem. In this case, the constant C in the theorem will not depend
on ρ.
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4.2. Hölder regularity estimates up to the boundary. Hölder regularity up to the boundary for
the linear second order partial differential equations with coefficients in Morrey space was obtained
in [14]. Coupling the interior regularity in Corollary 4.1 and the uniform L2 growth estimates up to
the boundary given by Proposition 3.3 together with some scaling arguments, we get the following
result.

Theorem 4.4. Let Ω be an open set such that ∂Ω ∩ B2 is a C1 hypersurface. Suppose that 0 ∈ ∂Ω
and that ∂Ω separates B2 into two domains. Let s ∈ (0, 1), β ∈ [0, 2s), α ∈ (0,min(s, 2s− β)) and a
satisfy (1.2). Let K ∈ K (λ, a, κ). Let V, f ∈ Mβ and u ∈ Hs(B2) ∩ L1

s satisfy

LKu+ V u = f in B2 ∩ Ω and u = 0 in B2 ∩ Ωc.

Then there exists C, ε0, r0 > 0 such that if ‖λ‖L∞(B2×B2) < ε0, we have

‖u‖Cα(Br0 )
≤ C(‖u‖L2(B2) + ‖u‖L1

s
+ ‖f‖Mβ

),

with C, ε0, r0 depending only on N, s, β, α,Ω, ‖V ‖Mβ
, κ and Λ.

Proof. By similar scaling and cut-off argument as in the proof of Corollary 4.1 and using Proposition
3.3, we get

sup
z∈B1∩∂Ω

‖u‖2L2(Br(z))
≤ CrN+2α

(
‖u‖L2(B2) + ‖u‖L1

s
+ ‖f‖Mβ

)
for every r > 0 (4.8)

with C a constant depending only on N, s, β, κ,Λ, α,Ω, ‖V ‖Mβ
. We assume in the following that

‖u‖L2(B2) + ‖u‖L1
s
+ ‖f‖Mβ

≤ 1, up to dividing the equation by this quantity. Moreover by Corollary
4.1, u is continuous in Ω, provided ‖λ‖L∞(B2×B2) is small.
Let r0 > 0, only depending on Ω, be such that every point x0 ∈ Ω∩Br0 , with d(x0) ≤ r0, has a unique
projection z on ∂Ω∩B1. For such x0 ∈ Ω∩Br0 , we let z ∈ ∂Ω∩B1 be such that |x0−z| = d(x0). Put

ρ = d(x0)
2 , so that Bρ(x0) ⊂ B3ρ(z) ∩Ω. Next, we define vρ(x) := u(ρx+ x0), Vρ(x) := ρ2sV (ρx+ x0)

and fρ(x) := ρ2sf(ρx+ x0). It is plain that v ∈ Hs
loc(B2) ∩ L1

s and

LKρ,x0
vρ + Vρvρ = fρ in B1, (4.9)

with

Kρ,x0(x, y) = ρN+2sK(ρx+ x0, ρy + x0).

Recall from (3.1) that ‖fρ‖Mβ
≤ ρ2s−β‖f‖Mβ

and ‖Vρ‖Mβ
≤ ρ2s−β‖V ‖Mβ

. Hence decreasing r0 if
necessary, we may assume that ‖Vρ‖Mβ

≤ 1. We note that Kρ,x0 ∈ K (λρ,x0 , a, κ), where λρ,x0(x, y) =
λ(ρx + x0, ρy + y0). In particular, decreasing r0 if necessary,

‖λρ,x0‖L∞(B2×B2) ≤ ‖λ‖L∞(B2×B2).

Therefore, by Theorem 4.2, we can find ε0 > 0 small, independent on ρ, such that, if ‖λ‖L∞(B2×B2) <
ε0, we have

‖vρ‖L∞(B1/2) ≤ C
(
‖vρ‖L2(B1) + ‖vρ‖L1

s
+ ‖fρ‖Mβ

)
. (4.10)

By (4.8) and Hölder’s inequality, we have

‖vρ‖L2(B1) ≤ ρ−N/2‖u‖L2(B3ρ(z)) ≤ Cρα and ‖u‖L1(Br(z)) ≤ CrN+α for all r > 0. (4.11)
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Using the second estimate in (4.11), we get

∫

|x|≥1

|x|−N−2s|vρ(x)| dx = ρ2s
∫

|y−x0|≥ρ

|y − x0|
−N−2s|u(y)| dy

≤ ρ2s
∞∑

k=0

∫

ρ2k+1≥|y−x0|≥ρ2k
|y − x0|

−N−2s|u(y)| dy

≤ ρ2s
∞∑

k=0

(2kρ)−N−2s

∫

ρ2k+1≥|y−x0|

|u(y)| dy

≤ ρ2s
∞∑

k=0

(2kρ)−N−2s‖u‖L1(B
ρ2k+3 (z))

≤ Cρ2s
∞∑

k=0

(2kρ)−N−2s(ρ2k)N+α ≤ Cρα
∞∑

k=0

2−k(2s−α) ≤ Cρα.

We then conclude that ‖vρ‖L1
s
≤ Cρα. It follows from (4.9), (4.11) and (4.10), that

‖vρ‖L∞(B1/2) ≤ C(‖vρ‖L2(B1) + ‖vρ‖L1
s
+ ‖fρ‖Mβ

) ≤ C(ρα + ρ2s−β).

Scaling back, we get

‖u‖L∞(Bρ/2(x0)) ≤ C(ρα + ρ2s−β),

which, in particular, yields

|u(x0)| ≤ Cρα ≤ Cd(x0)
α for every x0 ∈ Br0 ∩Ω.

Now by a classical scaling argument as above and using the interior regularity estimates in Theorem
4.2, we get u ∈ Cα(Br0 ∩ Ω), with ‖u‖Cα(Br0/2) ≤ C.

�

As a consequence, we have

Theorem 4.5. Let s ∈ (0, 1), β ∈ [0, 2s) and α ∈ (0,min(s, 2s − β)). Let K ∈ K̃ (κ) and suppose

that λ̃e and λ̃o (defined in (4.5)) satisfy

• for every x1, x2 ∈ B2, r ∈ (0, 2), θ ∈ SN−1,

∣∣∣λ̃e(x1, r, θ)− λ̃e(x2, 0, θ)
∣∣∣ ≤ τ(|x1 − x2|+ r)

• for every x ∈ B2, r ∈ (0, 2), θ ∈ SN−1,

∣∣∣λ̃o(x, r, θ)
∣∣∣ ≤ τ(r),

for some function τ ∈ L∞(R+) and τ(t) → 0 as t→ 0. Let f, V ∈ Mβ and u ∈ Hs
loc

(B2) ∩ L1
s satisfy

LKu+ V u = f in B2 ∩ Ω and u = 0 in B2 ∩ Ωc.

Then there exist C, r0 > 0, only depending only on N, s, β, α,Λ, κ, τ,Ω and ‖V ‖Mβ
, such that

‖u‖Cα(Br0 )
≤ C

(
‖u‖L2(B1) + ‖u‖L1

s
+ ‖f‖Mβ

)
.

Proof. Adapting the scaling arguments as in the Theorem 4.2, together with Theorem 4.4, we get the
result. �
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5. Higher regularity estimates up to the boundary

In this section, we let Ω be an open set such that ∂Ω∩B2 is a C1,γ hypersurface, with 0 ∈ ∂Ω and
γ > 0. We will assume that ∂Ω separates B2 into two domains. We note that there exists r0 ∈ (0, 1/2)
small only depending on Ω such that, for all r ∈ (0, 2r0), z ∈ ∂Ω ∩B3/2 and δ > 0,

CrN+δ ≤

∫

Br(z)

dδ(y) dy, (5.1)

for some constant C = C(N, s, δ,Ω) > 0. On the other hand since d(y) ≤ |y − z| for all z ∈ ∂Ω, for
every r > 0, we have ∫

Br(z)

dδ(y) dy ≤ CrN+δ , (5.2)

with C = C(N, s, δ).
We consider the cut-off of the distance function d denoted by ds2 := ϕ2d

s. For u ∈ L2(RN ), z ∈ ∂Ω∩B1

and r > 0, we let Pr,z(u) be the L
2
loc(Br(z))-projection of u on 〈ds2〉 = Rds2, the one-dimensional space

spanned by ds2. Therefore

∫

Br(z)

(u(y)− Pr,z(u)(y))d
s
2(y) dy = 0 and Pr,z(u)(x) = ds2(x)

∫
Br(z)

u(y)ds2(y) dy∫
Br(z)

d2s2 (y) dy
. (5.3)

For z ∈ B1 ∩ ∂Ω and r > 0, we define

Qu,z(r) :=

∫
Br(z)

u(y)ds2(y) dy∫
Br(z)

d2s2 (y) dy
. (5.4)

Before going on, we explain the arguments in the next two main results of this section. Observe that
by Hölder’s inequality, for every r ∈ (0, r0] and z ∈ B1 ∩ ∂Ω,

|Qu,z(r)| ≤ ‖ds2‖
−1
L2(Br(z))

‖u‖L2(Br(z)) = ‖ds‖−1
L2(Br(z))

‖u‖L2(Br(z)).

Hence by Proposition 3.3 and (5.1), for every δ0 ∈ (0,min(s, 2s− β)), there exist constants C, ε0 > 0
such that for every λ ∈ L∞(B2×B2) satisfying ‖λ‖L∞(B2×B2) < ε0, for every f ∈ Mβ and u ∈ SK,0,f ;Ω
(recall the notation (3.26)), r ∈ (0, r0] and z ∈ B1 ∩ ∂Ω, we have

|Qu,z(r)| ≤ Crδ0−s
(
‖u‖L2(RN ) + ‖f‖Mβ

)
. (5.5)

Our objective is to get u/ds ∈ Cs−β(Br0 ∩ Ω), whenever β ∈ (0, s) and Ω regular enough. This
requires, at least, we already know that |u| ≤ ds, or equivalently |Qu,z(r)| ≤ C. For this purpose, we
will use a bootstrap argument in two steps to obtain (5.5) with δ0 = s, as long as β < s and under
more regularity assumption on K and ∂Ω. This will be the content of the next two results.

In order to get the sharp boundary regularity, it will be crucial to quantify the action of the operators
LK on ds for K ∈ K (λ, a, κ). To this end, we first note that by Lemma 9.3, up to decreasing r0 if
necessary, we may assume that ds2 ∈ Hs(B2r0) ∩ L1

s. Next, we introduce K (λ, a, κ,Ω), the class of
kernels K ∈ K (λ, a, κ) such that: there exist β′ = β′(Ω,K) ∈ [0, s) and a function gΩ,K ∈ Mβ′ such
that

LKd
s
2 = LK(ϕ2d

s) = gΩ,K in the weak sense, in B2r0 ∩Ω. (5.6)

We note that the class of kernels K (λ, a, κ,Ω) is not empty. This is the case for K = µa, with a
satisfying (1.2), see Section 7 below. We have the following result.

Lemma 5.1. Let Ω ⊂ R
N be a C1,γ domain as above for some γ > 0. Let β ∈ (0, 2s), ̺ ∈ [0, s) and

c0,Λ, κ > 0. Then there exist C > 0 and ε1 > 0 with the properties that if

• a satisfies (1.2),
• λ : RN × R

N → [0, k−1] satisfies ‖λ‖L∞(B2×B2) < ε1,
• K ∈ K (λ, a, κ,Ω) with ‖gΩ,K‖Mβ′

≤ 1, for some β′ ∈ [0, s),
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• f ∈ Mβ and u ∈ SK,0,f ;Ω satisfies

sup
z∈B1∩∂Ω

|Qu,z(r)| ≤ c0r
−̺(‖u‖L2(RN ) + ‖f‖Mβ

) for every r ∈ (0, r0], (5.7)

then, we have

sup
z∈B1∩∂Ω

‖u− Pr,z(u)‖
2
L2(Br(z))

≤ CrN+2(2s−max(β,β′)−̺)(‖u‖L2(RN ) + ‖f‖Mβ
)2 for every r > 0.

(5.8)

Proof. As in the proof of Proposition 3.2, if (5.8) does not hold, then we can find a sequence rn → 0,
points zn ∈ B1 ∩ ∂Ω and sequences of functions, an satisfying (1.2), λn with ‖λn‖L∞(B2×B2) <

1
n ,

Kan ∈ K (λn, an, κ,Ω) with β
′
n ∈ [0, s) and ‖gΩ,Kan

‖Mβ′
n
≤ 1, fn ∈ Mβ and un ∈ SKan ,0,fn;Ω, with

‖un‖L2(RN ) + ‖fn‖Mβ
≤ 1 satisfying

|Qun,zn(rn)| ≤ c0r
−̺
n , (5.9)

while, letting αn := 2s−max(β, β′
n) ∈ (s, 2s), we have that

r−N−2(αn−̺)
n ‖un − Prn,zn(un)‖

2
L2(Brn (zn))

≥
1

16
Θn(rn) ≥

n

32
, (5.10)

for all n ≥ 2. Here also Θn is a nonincreasing function on (0,∞) satisfying

Θn(r) ≥ r−N−2(αn−̺) sup
z∈B1∩∂Ω

‖un − Pr,z(un)‖
2
L2(Br(z))

for every r > 0 and n ≥ 2. (5.11)

We define

vn(x) = Θn(rn)
−1/2r−(αn−̺)

n {un(rnx+ zn)− Prn,zn(un)(rnx+ zn)} .

Since for rn ≤ 1/2, we have ds2 = ds on Brn(zn), making a change of variable in (5.10) and in (5.3),
we get

‖vn‖
2
L2(B1)

≥
1

16
and

∫

B1

vn(x)dist(x,Ω
c
n)
s dx = 0, (5.12)

where

Ωn :=
1

rn
(Ω− zn).

We further define Kn(x, y) := rN+2s
n Kan(rnx+ zn, rny + zn) for every x, y ∈ R

N ,

f̂n(x) := r2sn fn(rnx+ zn) and gn(x) := r2sn gΩ,Kn(rnx+ zn). (5.13)

Since un ∈ SKan ,0,f ;Ω, by (5.6), it is plain that
{
LKnvn(x) = r

−(αn−̺)
n Θn(rn)

−1/2
(
f̂n(x)−Qun,zn(rn)gn(x)

)
in B2r0/rn(−zn) ∩ Ωn

vn = 0 in B2r0/rn(−zn) ∩ Ωcn.
(5.14)

Claim: There exists C = C(s,N, β, ̺, r0, c0) > 0 such that

‖vn‖
2
L2(BR) ≤ CRN+2αn for every R ≥ 1. (5.15)

Let us put α′ = αn − ̺ > 0, and we note that 0 < s− ̺ < α′ < 2s− β, for every n ≥ 2. By a change
of variable, we have

‖vn‖
2
L2(BR) = Θn(rn)

−1r−N−2α′

n ‖u− Prn,zn(un)‖
2
L2(BrnR(zn))

≤ 2Θn(rn)
−1r−N−2α′

n ‖u− PrnR,zn(un)‖
2
L2(BrnR(zn))

+ 2Θn(rn)
−1r−N−2α′

n ‖PrnR,zn(un)− Prn,zn(un)‖
2
L2(BrnR(zn))

.

Hence by (5.11) and the monotonicity of Θn, we get

‖vn‖
2
L2(BR) ≤ 2R2α′

+ 2Θn(rn)
−1r−N−2α′

n ‖PrnR,zn(un)− Prn,zn(un)‖
2
L2(BrnR(zn))

. (5.16)



REGULARITY ESTIMATES FOR NONLOCAL SCHRÖDINGER EQUATIONS 27

Now by (5.1), for all r ∈ (0, r0] and z ∈ B1 ∩ ∂Ω, we have

C|Qun,z(2r)−Qun,z(r)||Br(z)|
1
2 rs ≤ ‖P2r,z(un)− Pr,z(un)‖L2(Br(z))

≤ ‖P2r,z(u)− u‖L2(B2r(z)) + ‖Pr,z(un)− un‖L2(Br(z))

≤ (2r)α
′

Θn(2r)
1/2(2r)N/2 + rα

′

Θn(r)
1/2rN/2.

Now using the monotonicity of Θn, we then deduce that there exists a constant C > 0 such that for
every n ≥ 2, r ∈ (0, r0] and z ∈ B1 ∩ ∂Ω,

|Qun,z(2r)−Qun,z(r)| ≤ Crα
′−sΘn(r)

1/2.

Hence, for m ≥ 0, with 2m ≤ r0
r , using (5.2) and the monotonicity of Θn, we get

‖P2mr(un)− Pr(un)‖L2(B2mr(z)) ≤

m∑

i=0

‖P2ir(un)− P2i−1r(un)‖L2(B2ir(z))

≤ C

m∑

i=0

|Qun,z(2
ir) −Qun,z(2

i−1r)||B2ir|
1
2 (2ir)s

≤ CrN/2+α
′

Θn(r)
1/2

m∑

i=0

2i(N/2+α
′).

As a consequence, we find that

‖P2mr,z(un)− Pr,z(un)‖L2(B2mr(z)) ≤ CrN/2+α
′

Θn(r)
1/22m(N/2+α′).

Now using this in (5.16), we then get, for 2m ≤ r0
rn
,

‖vn‖
2
L2(B2m ) ≤ 22m(N+2α′) + 2Θn(rn)

−1r−N−2α′

n ‖P2mr,zn(un)− Pr,zn(un)‖L2(B2mr(z))

≤ 22m(N+2α′) + C2mNΘn(rn)
−1r−2α′

n (rn2
m)2αΘn(2

mrn)

≤ 22m(N+2α′) + C2m(N+2α′)Θn(rn)
−1Θn(2

mrn)

≤ C2m(N+2α′),

with C is a positive constant depending neither on n nor on m. We then conclude that

‖vn‖
2
L2(BR) ≤ CRN+2α′

for every R ≥ 1, with Rrn ≤ r0. (5.17)

We now consider the case R ≥ 1 and Rrn ≥ r0. Using the fact that Θn(rn)
−1 ≤ 1 and α′ = αn−̺ > 0

together with (5.3) and (5.2), we obtain

‖vn‖
2
L2(BR) = Θn(rn)

−1r−N−2α′

n ‖un − Prn,zn(un)‖
2
L2(BrnR(zn))

≤ r−N−2α′

n ‖un‖
2
L2(RN ) ≤ (Rr−1

0 )N+2α′

.

This with (5.17) give (5.15), since α′ = αn − ̺. This finishes the proof of the claim.

Now by (5.15) and Hölder’s inequality, we get

‖vn‖L1(BR) ≤ CRN+αn for all R ≥ 1 and n ≥ 2. (5.18)

Since gΩ,Kan
∈ Mβ′

n
(recall (5.13) and (3.1)), we have ηgn(1) ≤ Cr

2s−β′

n
n ‖gΩ,Kan

‖Mβ′
n
. Therefore by

(5.9), we deduce that

r−(αn−̺)
n |Qun,zn(rn)|ηgn(1) ≤ c0Cr

−(αn−̺)+2s−β′

n
n ‖gΩ,Kan

‖Mβ′
n
≤ C‖gΩ,Kan

‖Mβ′
n
≤ C, (5.19)

with C > 0 independent on n. From now on, we let n large, so that Br0/(2rn) ⊂ B2r0/rn(−zn). Since
vn satisfy (5.14), then letting vn,M = ϕMvn, we can apply Lemma 9.2, for 1 < M < r0

2rn
, to get

{
LKnvn,M = Θn(rn)

−1/2r
−(αn−̺)
n

(
f̂n −Qun,zn(rn)ĝn(x)

)
+ Fn in BM/2 ∩ Ωn

vn,M = 0 in BM/2 ∩ Ωcn,
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where ‖Fn‖L∞(RN ) ≤ C0‖vn‖L1
s
. Using (5.15) and Hölder’s inequality, we get ‖Fn‖L∞(RN ) ≤ C. It

then follows that

ηFvn
(1) ≤ C for every n ≥ 2. (5.20)

In addition (recalling (5.13)) by (3.1),

ηf̂n(1) ≤ Crαn
n . (5.21)

Now by (5.15), Lemma 2.4, (5.19), (5.20) and (5.21), we obtain
{
κ− εC

(
1 + Θn(rn)

−1/2r̺n +Θn(rn)
−1/2 + ηFvn

(1)
)}

[vn,M ]2Hs(BM/4)
≤ C(M).

Since Θn(rn)
−1/2 → 0 as n→ ∞, by (5.15), we then deduce that vn is bounded in Hs

loc(R
N ). Hence

by Sobolev embedding, vn → v in L2
loc(R

N ), for some v ∈ Hs
loc(R

N ). In addition, by (5.18) and since
αn = 2s −max(β, β′

n) < 2s, we deduce that vn → v in L1
s. We also have that 1Ωn∩B1/(2rn)

→ 1H in

L1
loc as n → ∞, where H is a half-space, with 0 ∈ ∂H . Moreover, passing to the limit in (5.12), we

get

‖v‖2L2(B1)
≥

1

16
and

∫

B1

v(x)dist(x,Rn \H)s dx = 0. (5.22)

Now, given ψ ∈ C∞
c (H ∩ BM ), since Ω is of class C1, for n large enough, we obtain ψ ∈ C∞

c (Ωn).
Since vn satisfy (5.14), then by Lemma 2.5, (5.21) and (5.19), we obtain

∣∣
∫

R2N

(vn(x) − vn(y))(ψ(x) − ψ(y))Kn(x, y) dxdy
∣∣

≤ r̺nΘn(rn)
−1/2C(M)

(
1 + ‖gΩ,Kan

‖Mβ′
n

)(
‖ψ‖2Hs(RN ) + ‖ϕM‖2Hs(RN )

)

≤ Θn(rn)
−1/2C(M).

Thanks to Lemma 2.2, letting n→ ∞, we thus get

Lbv = 0 in H and v = 0 on R
N \H .

Here b denotes the weak limit of an. Letting α := limn→∞ αn ∈ [0, 2s), by (5.15), we have that
‖v‖2L2(BR) ≤ CRN+2α for every R ≥ 1. It follows from Lemma 8.3 that v does not change sign on

R
N , which is in contradiction with (5.22). �

The next, result finalizes the two-step bootstrap argument mentioned earlier.

Lemma 5.2. Let N ≥ 1, s ∈ (0, 1), β, δ ∈ (0, s) and Ω a C1,γ domain, with 0 ∈ ∂Ω as above. Let
K ∈ K (λ, a, κ,Ω) with ‖gΩ,K‖Mβ′

≤ 1, for some β′ ∈ [0, s − δ) and ‖λ‖L∞(B2×B2) < min(ε0, ε1),
where ε1 and ε0 are given by Lemma 5.1 and Proposition 3.3, respectively. Let f ∈ Mβ, and u ∈
Hs
loc(B2) ∩ L

2(RN ) satisfy

LKu = f in B2 ∩ Ω and u = 0 in B2 ∩ Ωc, (5.23)

Then there exists C > 0, only depending on N, s, β,Λ, κ, ε1, ε0, δ and Ω, and a function ψ ∈ L∞(B1 ∩
∂Ω), with ‖ψ‖L∞(B1∩∂Ω) ≤ C, such that

sup
z∈B1∩∂Ω

‖u− ψ(z)ds‖2L2(Br(z))
≤ CrN+2(2s−max(β,β′))(‖u‖L2(RN ) + ‖f‖Mβ

)2 for all r ∈ (0, r0/4).

Proof. For simplicity, we assume that ‖u‖L2(RN )+‖f‖Mβ
≤ 1, up to dividing (5.29) with this quantity.

Letting α := 2s − max(β, β′) ∈ (s, 2s), by Proposition 3.3, for every ̺ ∈ (0, α − s), there exists
c0 > 0, only depending on N, s, β, ̺,Ω, κ and Λ, such that

|Qu,z(r)| ≤ c0r
−̺ for all z ∈ B1 ∩ ∂Ω and r ∈ (0, 2r0). (5.24)

We can apply Lemma 5.1 to get

sup
r>0

sup
z∈B1∩∂Ω

r−N−2(α−̺)‖u− Pr,z(u)d
s‖2L2(Br(z))

≤ C, (5.25)
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with the letter C denoting, here an in the following, a positive constant which may vary from line to
line but will depend only on N, s, β, ̺,Ω, κ and Λ.

Claim: There exits ψ0 ∈ L∞(∂Ω ∩B1), satisfying ‖ψ0‖L∞(∂Ω∩B1) ≤ C, such that

‖u− ψ0(z)d
s‖L2(Br(z)) ≤ CrN/2+α−̺ for all z ∈ B1 ∩ ∂Ω and r ∈ (0, r0/2). (5.26)

Indeed, for r ∈ (0, 2r0) and z ∈ B1 ∩ ∂Ω, we define

Qz(r) := Qu,z(r) =

∫
Br(z)

u(y)ds(y) dy
∫
Br(z)

d2s(y) dy
,

and recalling (5.3), we have that Pr,z(u)(x) = Qz(r)d
s(x) because ds2 = ds on Br(z).

Let 0 < ρ2 ≤ ρ1/4 ≤ r/4. Pick k ∈ N and σ ∈ [1/4, 1/2] such that ρ2 = σkρ1. Then provided
r ∈ (0, 2r0), by (5.1) and (5.25), we get

|Qz(ρ1)−Qz(ρ2)| ≤

k−1∑

i=0

|Qz(σ
i+1ρ1)−Qz(σ

iρ1)|

≤ C

k−1∑

i=0

(σi+1ρ1)
−N

2 −s

(
‖u− Pσiρ1,z(u)‖L2

(
Bσiρ1

(z)
) + ‖u− Pσi+1ρ1,z(u)‖L2

(
Bσi+1ρ1

(z)
)
)

≤ C

k−1∑

i=0

(σi+1ρ1)
−N

2 −s
(
(σiρ1)

N
2 +α−̺ + (σi+1ρ1)

N
2 +α−̺

)

≤ Cρα−s−̺1 σ−N
2 −s

k−1∑

i=0

σi(α−s−̺) ≤ Cρα−s−̺1 ,

where we used the fact that β′ ∈ (0, s− δ), so that C does not depend on δ but only on the quantities
mentioned above. Therefore, there exists C > 0 such that for 0 < ρ2 ≤ ρ1/4 ≤ r/4, with r ∈ (0, 2r0),
and z ∈ B1 ∩ ∂Ω, we have

|Qz(ρ1)−Qz(ρ2)| ≤ Cρα−s−̺1 ≤ Crα−s−̺. (5.27)

By (5.1) and (5.25), for r ∈ (0, 2r0), we get

‖Pr0/4,z(u)‖L2(Br0/4(z)) ≤ ‖u− Pr0/4,z(u)‖L2(Br0/4(z)) + ‖u‖L2(Br0/4(z)) ≤ C + 1.

Hence there exists C > 0, such that for all z ∈ B1 ∩ ∂Ω,

|Qz(r0/4)| ≤ C, (5.28)

From (5.27), we deduce that, for every fixed z ∈ ∂B1 ∩ ∂Ω and any sequence (rn)n∈N ⊂ (0, r0/4]
tending to zero, (Qz(rn))n∈N is a Cauchy sequence, which is bounded by (5.28). We can thus define
ψ0(z) := limr→0Qz(r). Now by (5.1) and (5.27) (letting ρ2 → 0), for r ∈ (0, r0/2), we get

Cr−N/2−s‖Pr,z(u)− ψ0(z)d
s‖L2(Br(z)) ≤ |Qz(r)− ψ0(z)| ≤ Crα−s−̺.

This in particular yields |ψ0(z)|r
s
0 ≤ Crα−s−̺0 +Qz(r0/4) ≤ C, by (5.28). Consequently ‖ψ0‖L∞(∂B1∩∂Ω) ≤

C. Finally using (5.25) and the above inequality, we can estimate

‖u− ψ0(z)d
s‖L2(Br(z)) ≤ ‖u− Pr,z(u)‖L2(Br(z)) + ‖Pr,z(u)− ψ0(z)d

s‖L2(Br(z))

≤ CrN/2+α−̺.

This proves (5.26), as claimed.

Now (5.26), implies in particular that ‖u‖L2(Br(z)) ≤ CrN/2+s. Hence by Hölder’s inequality and
since α− ̺ > s, there exists c1 = c1(N, s, β,Ω,Λ, ̺, κ, δ) > 0 such that

|Qu,z(r)| ≤ c1 for every r ∈ (0, r0/2) and z ∈ B1 ∩ ∂Ω.
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We can therefore apply Lemma 5.1 with ̺ = 0 and thus use the same argument above starting from
(5.25). We then conclude that there exists ψ ∈ L∞(B1 ∩ ∂Ω), with ‖ψ‖L∞(B1∩∂Ω) ≤ C and such that

‖u− ψ(z)ds‖L2(Br(z)) ≤ CrN/2+α for all z ∈ B1 ∩ ∂Ω and r ∈ (0, r0/4).

�

Combining Lemma 5.2 and the interior estimates in Theorem 4.2, we get the following result.

Corollary 5.3. Let N ≥ 1, s ∈ (0, 1), β, δ ∈ (0, s) and Ω a C1,γ domain, with 0 ∈ ∂Ω as above. Let a
satisfy 1.2 and K ∈ K (λ, a, κ). Suppose that ‖gΩ,K‖Mβ′

≤ c0, as defined in (5.6), with β′ ∈ [0, s−δ).

Let f ∈ Mβ, and u ∈ Hs(B2) ∩ L1
s satisfy

LKu = f in B2 ∩ Ω and u = 0 in B2 ∩ Ωc, (5.29)

Then there exist C, ε2 > 0 and r1 > 0, only depending on N, s, β,Λ, κ, c0, δ and Ω, such that if
‖λ‖L∞(B2×B2) < ε2, we have

‖u/ds‖Cs−max(β,β′)(Br1∩Ω) ≤ C
(
‖u‖L2(B2) + ‖u‖L1

s
+ ‖f‖Mβ

)
.

Proof. We assume that ‖u‖L2(RN ) + ‖f‖Mβ
≤ 1. Consider ψ ∈ L∞(B1 ∩ ∂Ω) given by Lemma 5.2.

Let x0 ∈ Ω∩Br0/4 and z0 ∈ ∂Ω∩B1 be such that |x0 − z0| = d(x0) ≤ r0/4. Put ρ = d(x0)/2, so that

Bρ(x0) ⊂ B3ρ(z0) and Bρ(x0) ⊂⊂ Ω.We define v(x) = u(x)−ψ(z0)d
s
2(x) and wρ(x) := ρ−sv(ρx+x0).

Then, letting fρ(x) := ρsf(ρx+ x0) and gρ(x) = ρsgΩ,K(ρx+ x0), we then have

LKρ,x0
wρ = fρ − ψ(z0)gρ in B1, (5.30)

with Kρ,x0(x, y) = ρN+2sK(ρx+x0, ρy+x0).We note thatKρ,x0 ∈ K (λρ,x0 , a, κ), where λρ,x0(x, y) =
λ(ρx + x0, ρy + y0). In particular, decreasing r0 if necessary,

‖λρ,x0‖L∞(B1×B1) ≤ ‖λ‖L∞(B2×B2).

Therefore, by Lemma 5.2, we can find ε2 > 0 small, independent on ρ such that, if ‖λ‖L∞(B2×B2) < ε2,
we have

‖wρ‖L2(B1) = ρ−N/2‖v‖L2(Bρ(x0)) ≤ ρ−N/2ρ−s‖u− ψ(z0)d
s‖L2(B3ρ(z0)) ≤ Cρs−max(β,β′). (5.31)

By Hölder’s inequality, we also have ‖v‖L1(Br(z0)) ≤ CrN+2s−max(β,β′), for every r > 0. We can thus

proceed as in the proof of Theorem 4.4, to get ‖wρ‖L1
s
≤ Cρs−max(β,β′), with C independent on β′.

We note that by (3.1), ‖fρ‖Mβ
≤ ρs−β and ‖gρ‖Mβ′

≤ ρs−β
′

‖gΩ,K‖Mβ′
≤ c0. It then follows from

(5.30), Corollary 4.1 and (5.31), that

‖wρ‖Cs(B1/2) ≤ C
(
‖wρ‖L2(B1) + ‖wρ‖L1

s
+ ‖fρ − ψ(z0)gρ‖Ms

)

≤ C
(
‖wρ‖L2(B1) + ‖wρ‖L1

s
+ ‖fρ − ψ(z0)gρ‖Mmax(β,β′)

)

≤ Cρs−max(β,β′).

Hence,

‖wρ‖Cs−max(β,β′)(B1/2)
≤ Cρs−max(β,β′).

Scaling back, and since ds2 = ds on Bρ/2(x0), we get

‖u− ψ(z0)d
s‖L∞(Bρ/2(x0)) ≤ Cρ2s−max(β,β′) and [u− ψ(z0)d

s]Cs−max(β,β′)(Bρ/2(x0))
≤ Cρs.

Since ‖ψ‖L∞(B1∩∂Ω) ≤ C, the two inequalities above imply that

[u/ds]Cs−max(β,β′)(Bρ/2(x0))
≤ C,

which yields (see the proof of Proposition 1.1 in [49])

[u/ds]Cs−max(β,β′)(Br1∩Ω) ≤ C,
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for some r1 ≤ r0/4 and C > 0, only depending on Ω, N, s, β,Λ, κ and γ. By Lemma 5.2, ‖u‖L2(Br) ≤

CrN/2+s. Then using similar arguments as in the proof of Theorem 4.4, we find that

‖u/ds‖L∞(Br1∩Ω) ≤ C.

Finally in the general case u ∈ Hs(B2) ∩ L1
s, we can use similar cut-off arguments as in the proof of

Corollary 4.1 to get the estimate involving only ‖u‖L2(B2) + ‖u‖L1
s
in the place of ‖u‖L2(RN ). The

proof of the corollary is thus finished. �

6. Higher order interior regularity

For K a kernel satisfying (2.2), we define the functions

Je,K(x; y) =
1

2
(K(x, x+ y) +K(x, x− y)) and Jo,K(x; y) =

1

2
(K(x, x+ y)−K(x, x− y)).

We suppose in the following in this section that, for 2s > 1, the function x 7→ PV
∫
RN yJo,K(x; y) dy

belongs to L1
loc(B2;R

N). We then consider the map jo,K : B2 → R
N defined as

jo,K(x) := (2s− 1)+PV

∫

RN

yJo,K(x; y) dy = (2s− 1)+

N∑

i=1

eiPV

∫

RN

yiJo,K(x; y) dy, (6.1)

where ℓ+ := max(ℓ, 0) for all ℓ ∈ R.
We note that if u ∈ C2s+ε(Ω) ∩ L1

s, for some ε > 0 and an open set Ω, then for every ψ ∈ C∞
c (Ω),

we have

1

2

∫

R2N

(u(x)− u(y))(ψ(x) − ψ(y))K(x, y) dxdy

=

∫

RN

ψ(x)

[
PV

∫

RN

(u(x)− u(x+ y))Je,K(x; y) dy

]
dx

+

∫

RN

ψ(x)

[
PV

∫

RN

(u(x)− u(x+ y))Jo,K(x; y) dy

]
dx. (6.2)

Moreover for every x ∈ Ω, we have

PV

∫

RN

(u(x)− u(x+ y))Je,K(x; y) dy =
1

2

∫

RN

(2u(x)− u(x+ y)− u(x− y))Je,K(x; y) dy. (6.3)

We consider the family of affine functions

qt,T (x) = t+ (2s− 1)+T · x t ∈ R and T ∈ R
N .

For z ∈ R
N , we define the following finite dimensional subspace of L2(Br(z)), given by

Hz := {qt,T (· − z) : t ∈ R, T ∈ R
N}.

For u ∈ L2
loc(R

N ), r > 0 and z ∈ R
N , we let Pr,z(u) ∈ Hz its L2(Br(z))-projection on Hz. Then∫

Br(z)

(u(x)−Pr,z(u)(x))p(x) dx = 0 for every p ∈ Hz. (6.4)

Lemma 6.1. Let s ∈ (1/2, 1), β ∈ (0, 2s− 1), Λ, κ > 0 and δ ∈ (0, 2s− 1). Then there exist C > 0
and ε0 > 0 such that for every

• a satisfying (1.2),
• λ : RN × R

N → [0, k−1] satisfying ‖λ‖L∞(B2×B2) < ε0,
• K ∈ K (λ, a, κ) satisfying ‖ϕ2jo,K‖Mβ′

≤ 1 (see (6.1)), for some β′ ∈ [0, 2s− 1− δ),

• f ∈ Mβ and u ∈ SK,0,f satisfying ‖u‖L∞(RN ) + ‖f‖Mβ
≤ 1,

we have

sup
r>0

r−(2s−max(β,β′)) sup
z∈B1

‖u−Pr,z(u)‖L∞(Br(z)) ≤ C, (6.5)

provided 2s− β > 1 if 2s > 1.
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Proof. Then as in the proof of Proposition 3.2, if (6.5) does not hold, then we can find a sequence
rn → 0, points zn ∈ B1 and sequences of functions, an satisfying (1.2), λn with ‖λn‖L∞(B2×B2) <

1
n ,

Kan ∈ K (λn, an, κ) with ‖ϕ2jo,Kan
‖Mβ′

n
≤ 1 and β′

n ∈ (0, 2s− 1− δ), fn ∈ Mβ and un ∈ SKan ,0,fn ,

with ‖un‖L∞(RN ) + ‖fn‖Mβ
≤ 1, such that

r
−(2s−max(β,β′

n))
n ‖un −Prn,zn(un)‖L∞(Brn (zn)) ≥

1

16
Θn(rn) ≥

n

32
. (6.6)

Here also Θn is a nonincreasing function on (0,∞) satisfying

Θn(r) ≥ r−(2s−max(β,β′

n)) sup
z∈B1

‖un −Pr,z(un)‖L∞(Br(z)) for every r > 0 and n ≥ 2. (6.7)

To alleviate the notations, we put βn := max(β, β′
n) ≤ max(β, 2s − δ) < 2s, for every n ≥ 2. We

define

wn(x) = Θn(rn)r
−(2s−βn)
n [un(rnx+ zn)−Prn,zn(un)(rnx+ zn)],

so that

‖wn‖
2
L∞(B1)

≥
1

16
(6.8)

and, thanks to (6.4), by a change of variable,
∫

B1

wn(x)p(x) dx = 0 for every p ∈ H0. (6.9)

Claim: There exists C = C(s, β,N, δ) > 0 such that

‖wn‖L∞(BR) ≤ CR2s−βn for every R ≥ 1. (6.10)

To prove this claim, we note that by a change of variable, we have

‖wn‖L∞(BR) = Θn(rn)
−1r−Nn r−(2s−βn)

n ‖u−Prn,zn(un)‖L∞(BrnR(zn))

≤ Θn(rn)
−1r−(2s−βn)

n ‖u−PrnR,zn(un)‖L∞(BrnR(zn))

+ Θn(rn)
−1r−(2s−βn)

n ‖PrnR,zn(un)−Prn,zn(un)‖L∞(BrnR(zn)).

We write Pr,z(un)(x) = t(r) + T (r) · (x− z), for r > 0 and z ∈ B1. Then, we have
(
|t(2r) − tz(r)|

2 + |T (2r)− T (r)|2r2
)
|Br|

2 = ‖P2r,z(un)−Pr,z(un)‖
2
L2(Br(z))

≤ 2‖P2r,z(un)− un‖
2
L2(B2r(z))

+ 2‖Pr,z(un)− un‖
2
L2(Br(z))

≤ 2(2r)2(2s−βn)Θn(2r)
2(2r)N + 2r2(2s−βn)Θn(r)

2rN

≤ CrNΘn(r)
2r2(2s−βn),

where we have used the monotonicity of Θn. We then have, for every r > 0,

|t(2r)− t(r)| + |T (2r)− T (r)|r ≤ CΘn(r)r
2s−βn .

Hence, since 2s− βn ≥ 1 if 2s > 1, for every integer m ≥ 1, we get

|T (2mr) − T (r)| =

m∑

i=1

|T (2ir) − T (2i−1r)|

≤ CΘn(2
i−1r)r2s−βn−1

m∑

i=1

2(i−1)(2s−βn−1) ≤ CΘn(r)(2
mr)2s−βn−1,

with C > 0 a constant independent on m and on n ≥ 2, since 2s− βn − 1 ≥ min(2s− 1 − β, d) > 0.
Similarly, we also have that |t(2mr) − t(r)| ≤ CΘn(r)(2

mr)2s−βn .



REGULARITY ESTIMATES FOR NONLOCAL SCHRÖDINGER EQUATIONS 33

Now for R ≥ 1, letting m be the smallest integer such that 2m−1 ≤ R ≤ 2m, we then get

‖wn‖
2
L∞(BR) = Θn(rn)

−1r−(2s−βn)
n ‖u−Prn,zn(un)‖L∞(BrnR(zn))

≤ Θn(rn)
−1r−(2s−βn)

n ‖u−PrnR,zn(un)‖L∞(BrnR(zn))

+Θn(rn)
−1r−(2s−βn)

n ‖PrnR,zn(un)−Prn,zn(un)‖L∞(BrnR(zn))

≤ CΘn(rn)
−1r−(2s−βn)

n (rnR)
(2s−βn)Θn(Rrn)

+ Θn(rn)
−1r−(2s−βn)

n (|t(Rrn)− t(rn)|+ |T (Rrn)− T (rn)|rnR)

≤ CΘn(rn)
−1r−(2s−βn)

n (rnR)
2s−βnΘn(Rrn).

By the monotonicity of Θn, we get the claim.
It follows from (6.10) that

‖wn‖L1
s
≤ C for every n ≥ 2. (6.11)

We define Kn(x, y) := rN+2s
n Kan(rnx+ zn, rny + zn), and we note that

Jo,Kn(x; y) = rN+2s
n Jo,Kan

(rnx+ zn; rny).

We put Pn(x) := Prn,zn(un)(rnx+ zn) and let ψ ∈ C∞
c (RN ). We use (6.3), to get

1

2

∫

R2N

(Pn(x)−Pn(y))(ψ(x) − ψ(y))Kn(x, y) dxdy

= 0 +

∫

RN

ψ(x)

[
PV

∫

RN

(Pn(x)−Pn(x+ y))Jo,Kn(x; y) dy

]
dx.

Therefore writing Prn,zn(un)(x) = tn + (2s− 1)+Tn · (x − zn), we see that

PV

∫

RN

(Pn(x) −Pn(x+ y))Jo,Kn(x; y) dy = (2s− 1)+(rnTn) ·
(
r2sn jo,Kan

(rnx+ zn)
)
.

We then conclude that

LKnwn = r−(2s−βn)
n Θn(rn)

−1
(
fn + (2s− 1)+hn

)
in B1/2rn , (6.12)

where, noting that ϕ2 ≡ 1 on B2 and recalling (6.1),

fn(x) := r2sn fn(rnx+ zn) and hn(x) = (rnTn) ·
(
r2sn jo,Kan

(rnx+ zn)
)
ϕ2(rnx+ zn).

Since ‖un‖L∞(RN ) ≤ 1, then |Tn| ≤ r−1
n . Therefore, since by assumption, ‖ϕ2jo,Kan

‖Mβ′
n
≤ 1, we

deduce that

‖fn‖Mβ
+ ‖hn‖Mβ′

n
≤ 2r2s−βn

n ≤ 2. (6.13)

Next, we note that Kn ∈ K (λ̃n, an, κ), with λ̃n(x, y) = λn(rnx + zn, rny + zn). By assumption,

‖λ̃n‖L∞(B1/(2rn)×B1/(2rn)) ≤
1
n . Now by Corollary 4.1, (6.11) and (6.13), we deduce that wn is bounded

in Cδloc(R
N ), for some δ > 0. In addition thanks to (6.10), up to a subsequence, it converges in

L1
s ∩ C

δ/2
loc (R

N ) to some w ∈ Cδloc(R
N ) ∩ L1

s. Moreover, by (6.8) and (6.9), we deduce that

‖w‖L∞(B1) ≥
1

16
(6.14)

and ∫

B1

w(x)p(x) dx = 0 for every p ∈ H0. (6.15)

We apply Lemma 2.4 (after a cut-off argument as in the proof of Proposition 3.2), use (6.10) and
(6.13) to get

{
κ− εC

}
[ϕMwn]

2
Hs(BM/2)

≤ C(M) whenever 1 < M <
1

2rn
,
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where we used the fact that Θn(rn)
−1 ≤ 1, for every n ≥ 2. Therefore, provided ε is small enough,

we find that wn is bounded in Hs
loc(R

N ) and thus w ∈ Hs
loc(R

N ). Now by Lemma 2.5 and (6.13), we
have ∣∣∣∣

∫

R2N

(vn(x) − vn(y))(ψ(x) − ψ(y))Kn(x, y) dxdy

∣∣∣∣ ≤ Θn(rn)
−1C(M).

Letting n → ∞ in the above inequality and using Lemma 2.2, we find that Lbw = 0 in R
N , with b

the limit of an in the weak-star topology of L∞(SN−1). By (6.10) and Lemma 8.3, w ∈ H0, which
contradicts (6.15) and (6.14).

�

We now have the following C2s−β regularity estimates for 2s − β > 1 — understanding that
C2s−β = C1,2s−β−1 if 2s− β > 1 by an abuse of notation.

Corollary 6.2. Let s ∈ (1/2, 1), β, δ ∈ (0, 2s−1) and κ,Λ > 0. Let a satisfy (1.2) and K ∈ K (λ, a, κ)
satisfy ‖ϕ2jo,K‖Mβ′

≤ c0, for some c0 ≥ 0 and β′ ∈ [0, 2s− 1− δ). Let f ∈ Mβ and u ∈ Hs(B2)∩L1
s

satisfy

LKu = f in B2.

Then there exists ε0 > 0, only depending on N, s, β, κ, c0, δ and Λ, such that if ‖λ‖L∞(B2×B2) < ε0,

then u ∈ C2s−max(β,β′)(B1/2). Moreover, there exists C = C(N, s, β,Λ, κ, c0, δ) such that

‖u‖C2s−max(β,β′)(B1/2)
≤ C(‖u‖L2(B2) + ‖u‖L1

s
+ ‖f‖Mβ

).

Proof. We first assume that ‖u‖L∞(RN ) + ‖f‖Mβ
≤ 1 and ‖jo,K‖Mβ′

≤ 1. By a well known iteration

argument (see e.g [52] or the proof of Lemma 5.2), we find that

|u(x)− u(z)− (2s− 1)T (z) · (x − z)| ≤ C|x− z|2s−max(β,β′) for every x, z ∈ B1,

with ‖T ‖L∞(B1) ≤ C, provided ‖λ‖L∞(B2×B2) < ε0, with ε0 given by Lemma 6.1. In particular, since
2s−max(β, β′) > 1 then ∇u(z) = (2s− 1)T (z). Note that since β′ ∈ [0, 2s− 1 − δ), the constant C
does not depend on β′ but on δ (see the proof of Lemma 5.2). By a classical extension theorem (see

e.g. [54][Page 177], we deduce that u ∈ C2s−max(β,β′)(B1/2). Moreover

‖u‖C2s−max(β,β′)(B1/2)
≤ C.

Now for the general case u ∈ Hs(B2), f ∈ Mβ and ‖ϕ2jo,K‖Mβ
≤ c0, we use cut-off and scaling

arguments as in the proof of Corollary 4.1 to get

‖u‖C2s−max(β,β′)(B1/4)
≤ C

(
‖u‖L∞(B1/2) + ‖u‖L1

s
+ ‖f‖Mβ

)
.

Now, decreasing ε0 if necessary, by Corollary 4.1 we have

‖u‖L∞(B1/2) ≤ C
(
‖u‖L2(B1) + ‖u‖L1

s
+ ‖f‖Mβ

)
.

The proof of the corollary is thus finished.
�

7. Proof of the main results

Proof of Theorem 1.1. Suppose that Ω is domain of class C1,γ , with 0 ∈ ∂Ω. We consider Ω′ a bounded
domain of class C1,γ which coincides with ∂Ω in a neighborhood of 0. We let r > 0 small so that the
distance function d = dist(·,RN \Ω) is of class C1,γ in Ω ∩B4r and dΩ′(x) := dist(x,RN \Ω′) = d(x)
for every x ∈ Ω ∩B4r. Now, for x ∈ Ω ∩Br, we have

(−∆)sa(ϕ2rd
s) = (−∆)sa(ϕ2r(d

s − dsΩ′)) + (−∆)sa(ϕ2rd
s
Ω′).

By [45, Proposition 2.3 and 2.6] and Lemma 9.2, for γ 6= s, there exists a constant C = C(Ω, N, s,Λ) >
0, such that

|(−∆)sa(ϕ2rd
s
Ω′)(x)| ≤ Cd

(s−γ)+
Ω′ (x) for every x ∈ Ω′.
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Since ds − dsΩ′ = 0 on Ω ∩B4r, we get |(−∆)sa(ϕ2r(d
s − dsΩ′ ))| ≤ C on Ω ∩Br. We define gΩ,µa(x) =

(−∆)sa(ϕ2rd
s)(x) for x ∈ Ω∩Br and gΩ,µa(x) = 0 for x ∈ R

N \ (Ω∩Br). Then, there exists a constant
C = C(Ω, N, s,Λ) > 0 such that

|gΩ,µa(x)| ≤ Cmax(dγ−s(x), 1) for every x ∈ R
N .

Letting β′ = (s− γ)+, for γ 6= s, we then deduce that ‖gΩ,µa‖Mβ′
≤ C1(s,N,Ω, γ,Λ). When γ = s,

we can let β′ = ε with ε < β. Moreover, up to scaling Ω to 1
δΩ, for some small δ > 0 depending only

on C1, we may assume that ‖gΩ,µa‖Mβ′
≤ 1 and that ∂Ω seperates B2 into two domains.

By Theorem 4.4, there exists C > 0, only depending on N, s,Ω, β,Λ, γ and ‖V ‖Mβ
, such that

‖u‖L∞(Br/2) ≤ C(‖u‖L2(Br) + ‖u‖L1
s
+ ‖f‖Mβ

).

Then applying Corollary 5.3, we get the Theorem 1.1(ii). Now Theorem 1.1(i) follows immediately
from Corollary 4.1 and Corollary 6.2. �

Proof of Theorem 1.3. It suffices to apply Corollary 4.1 to get L∞-bound and then apply Theorem
4.2 to get the result for 2s−max(β, β′) > 1. If 2s ≤ 1, then the result follows from Corollary 4.1. �

Proof of Corollary 1.4. Using a scaling and a covering argument as in the proof of Theorem 4.2 to-
gether with Theorem 1.3, we get the result. �

Proof of Theorem 1.6. It suffices to apply Theorem 4.4 to get L∞-bound and then apply Corollary
5.3. �

Proof of Corollary 1.7. Using a scaling and a covering argument as in the proof of Theorem 4.2 and
applying Theorem 1.6, we get the result. �

Proof of Theorem 1.5. By assumption, for every x0 ∈ B1 and ε > 0, there exists rε = r(ε, x0) ∈
(0, 1/100) such that

|λK(x, r, θ) − λK(x0, 0, θ)| < ε for all x ∈ B16rε(x0) and all r ∈ (0, 16rε).

This implies that

|K(x, y)− µa(x, y)| < εµ1(x, y) for x 6= y ∈ B8rε(x0), (7.1)

where a(θ) = λK(x0, 0, θ), which is even, since λo,K(x0, 0, θ) = 0. Letting Kε(x, y) = rN+2s
ε K(rεx +

x0, rεy + x0), vε(x) = v(rεx+ x0) and fε(x) = r2sε f(rεx+ x0), we then have

LKεvε = fε B8. (7.2)

We note that

λ̃Kε(x, r, θ) = λ̃K(rεx+ x0, rεr, θ)

and thus, by assumption,

λ̃o,Kε(x, r, θ) = λ̃o,K(rεx+ x0, rεr, θ) ≤ Crα+(2s−1)+ .

Clearly, by (7.1),

|Kε(x, y)− µa(x, y)| < εµ1(x, y) for x 6= y ∈ B8. (7.3)

By Corollary 4.1, provided ε is small, for every ̺ ∈ (0, s/2), we have

‖vε‖C2s−̺(B7) ≤ C
(
‖vε‖L∞(RN ) + ‖fε‖L∞(B8)

)
, (7.4)

provided 2s− ̺ 6= 1. We let v1,ε := ϕ1vε ∈ Hs(RN ) ∩ C2s−̺
c (B2). Then, we have

LKεv1,ε = f1,ε in B2, (7.5)

with

f1,ε(x) = fε(x) +Gvε(x),
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where

Gvε(x) =

∫

RN

vε(y)(ϕ1(x) − ϕ1(y))Kε(x, y) dy

=

∫

RN

(vε(y)− vε(x))(ϕ1(x) − ϕ1(y))Kε(x, y) dy + vε(x)

∫

RN

(ϕ1(x)− ϕ1(y))Kε(x, y) dy

= G̃ε(x) +
vε(x)

2

∫

SN−1

∫ ∞

0

(2ϕ1(x) − ϕ1(x + rθ)− ϕ1(x− rθ))r−1−2sλ̃e,Kε(x, r, θ) drdθ

+
vε(x)

2

∫

SN−1

∫ ∞

0

(ϕ1(x + rθ)− ϕ1(x− rθ))r−1−2sλ̃o,Kε(x, r, θ) drdθ,

where

G̃ε(x) :=

∫

SN−1

∫ ∞

0

(vε(x+ rθ) − vε(x))(ϕ1(x) − ϕ1(x+ rθ))r−1−2sλ̃Kε(x, r, θ) drdθ.

Since vε ∈ C2s−̺(B7)∩C
α(RN ), and ϕ1 ∈ C1(RN ), while the map x 7→ λ̃Kε(x, r, θ) ∈ Cα(RN ), direct

computations show that

‖G̃vε‖Cβ(B3) ≤ C(‖vε‖C2s−̺(B4) + ‖vε‖Cβ(RN )),

for every β ∈ (0,min(α, 2s− ̺)). Now since ϕ1 ∈ C2(RN ) and

|λ̃o,Kε(x1, r, θ)− λ̃o,Kε(x2, r, θ)| ≤ Cmin(r, |x1 − x2|)
α+(2s−1)+ , (7.6)

then we can find an α0 > 0, only depending on α, s and ̺, such that for all β ∈ (0, α0),

‖Gvε‖Cβ(B3) ≤ C(‖vε‖C2s−̺(B4) + ‖vε‖Cβ(RN )).

By this, we deduce that

‖f1,ε‖Cβ(B3) ≤ C(‖fε‖Cβ(B3) + ‖vε‖C2s−̺(B4) + ‖vε‖Cβ(RN ))

≤ C(‖fε‖Cβ(B8) + ‖vε‖Cβ(RN )), (7.7)

where, we used (7.4) for the last inequality, provided α0 < 2s− ̺.
We consider a nonegative function η ∈ C∞

c (R) satisfying η(t) = 1 for |t| ≤ 1 and η(t) = 0 for
|t| ≥ 2. We put ηδ(t) = η(t/δ). We now define

Kε,δ(x, y) = ηδ(|x− y|)µa(x, y) + (1− ηδ(|x− y|))Kε(x, y),

and we note that, by (7.3),

|Kε,δ(x, y)− µa(x, y)| < ε(1 + ‖η‖L∞(R)) for x 6= y ∈ B8. (7.8)

In addition,

λ̃Kε,δ
(x, r, θ) = ηδ(r)a(θ) + (1 − ηδ(r))λ̃Kε (x, r, θ). (7.9)

Now for ε, δ > 0, we consider wε,δ ∈ Hs(RN ), the (unique) weak solution to
{
LKε,δ

wε,δ = f1,ε in B2

wε,δ = v1,ε = 0 in R
N \B2.

(7.10)

Multiplying (7.10) by wε,δ, integrating, using the symmetry of Kε,δ and Hölder’s inequality, we deduce
that

[wε,δ]
2
Hs(RN ) ≤ ‖f1,ε‖L2(B2)‖wε,δ‖L2(B2).

Hence by the Poincaré inequality, we find that

‖wε,δ‖Hs(RN ) ≤ C‖f1,ε‖L2(B2), (7.11)

where here and in the following, the letter C denotes a constant, which may vary from line to line but
independent on δ, f and v. Thanks to (7.8), we can apply Theorem 4.4 together with (7.11), to get

‖wε,δ‖Cs−̺(RN ) ≤ C(‖wε,δ‖L2(RN ) + ‖f1,ε‖L∞(B2)) ≤ C‖f1,ε‖L∞(B2), (7.12)
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provided ε small, independent on δ. Furthermore by Corollary 4.1, provided ε small and independent
on δ, using (7.11), we have that

‖wε,δ‖C2s−̺(B1) ≤ C(‖wε,δ‖L2(RN ) + ‖f1,ε‖L∞(B2)) ≤ C‖f1,ε‖L∞(B2). (7.13)

On the other hand, multiplying (7.10) by wε,δ − v1,ε, we see that

[wε,δ − v1,ε]Hs(RN ) ≤

∫

RN×RN

(v1,ε(x) − v1,ε(y))
2|Kε,δ(x, y)−Kε(x, y)| dxdy. (7.14)

Hence, by the Poincaré inequality, the dominated convergence and (7.12), as δ → 0, we may assume
that wε,δ → v1,ε in Cs−2̺(RN ) ∩C2s−2̺(B1/2). Now for δ > 0, we have

Lµawε,δ = f1,ε +Hε,δ in B2,

where Hε ∈ Cmin(α,s−̺)(RN ) is given by

Hε,δ(x) :=

∫

SN−1

∫ ∞

0

(wε,δ(x) − wε,δ(x+ rθ))(1 − ηδ(r))r
−1−2s(λ̃µa (x, r, θ) − λ̃Kε(x, r, θ)) drdθ.

It follows from [47, Theorem 1.1] and (7.7) that wε,δ ∈ C2s+α1

loc (B2), for some α1 > 0, only depending
on α, s and ̺. Now by (6.2),

LKε,δ
(x,wε,δ) = Fε,δ in B2, (7.15)

where the x-dependent operator LKε,δ
(x, ·) is given by

LKε,δ
(x, u) =

1

2

∫

RN

(2u(x)− u(x+ y)− u(x− y))Je,Kε,δ
(x; y) dy (7.16)

and

Fε,δ(x) := f1,ε(x) +
1

2

∫

SN−1

∫ ∞

0

(wε,δ(x+ rθ) − wε,δ(x− rθ))r−1−2sλ̃o,Kε,δ
(x, r, θ) drdθ.

We observe that λ̃o,Kε,δ
(x, r, θ) = (1 − ηδ(r))λ̃o,Kε (x, r, θ). Hence by (7.6) and the fact that wε,δ ∈

C2s−̺(B1) ∩C
s−̺(RN ), then provided ̺ < α, there exists α2 > 0, depending only on s, α and ̺ such

that

‖Fε,δ‖Cβ(B1/2) ≤ C(‖f1,ε‖Cβ(B2) + ‖wε,δ‖C2s−̺(B1) + ‖wε,δ‖Cs−̺(RN )),

for all β ∈ (0, α2). Hence by (7.12) and (7.13),

‖Fε,δ‖Cβ(B1/2) ≤ C‖f1,ε‖Cβ(B2). (7.17)

It is easy to see, from (7.9) and our assumption that, for very x1, x2 ∈ R
N ,

∫

B2ρ\Bρ

|Je,Kε,δ
(x1; y)− Je,Kε,δ

(x2; y)| dy =

∫

SN−1

∫ 2ρ

ρ

|λ̃e,Kε,δ
(x1, r, θ)− λ̃e,Kε,δ

(x2, r, θ)|r
−1−2s drdθ ≤ C|x1 − x2|

αρ−2s.

We now apply [51, Theorem 1.1] to the equation (7.15) and use (7.17) together with (7.12), to deduce
that, there exists α ∈ (0,min(α0, α1, α2)), independent on δ, v and f , such that

‖wε,δ‖C2s+β(B1/4) ≤ C(‖Fε,δ‖Cβ(B1) + ‖wε,δ‖Cβ(RN )) ≤ C‖f1,ε‖Cβ(B2),

whenever β ∈ (0, α), with 2s+ β 6∈ N. In view of (7.7) and recalling that wε,δ → vε in Cs−2̺(RN ) ∩

C2s−2̺(B1/2), then decreasing α if necessary, we can send δ → 0 and get

‖vε‖C2s+β(B1/4) ≤ C(‖fε‖Cβ(B8) + ‖vε‖Cβ(RN )),

provided 2s+ β < 2 —noting that if 2s > 1 then choosing ̺ small, we have ∇wε,δ → ∇vε pointwise

on B1/4. Scaling and translating back, we have thus proved that for every x0 ∈ B1, there exists
δx0 ∈ (0, 1) such that

‖v‖C2s+β(Bδx0
(x0)) ≤ C(x0)(‖f‖Cβ(B2) + ‖v‖Cβ(RN )),
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with C(x0) is a constant depending only on x0, N, s, α, β and κ. Now by a covering argument as in
the proof of Theorem 4.2, we get the desired estimate.

�

7.1. Proof of Theorem 1.8. We start with the following result which provides a global diffeomor-
phism that locally flattens the boundary of ∂Ω near the origin.

Lemma 7.1. Let Ω be an open set with boundary of class Ck,γ , for some k ≥ 1 and γ ∈ [0, 1].
Suppose that 0 ∈ ∂Ω and that the interior unit normal of ∂Ω at 0 coincides with eN . Then there exists
ρ0 > 0 such that for every ρ ∈ (0, ρ0), there exists a (global) diffeomorphism Φρ : RN → R

N with the
following properties

• DΦρ − id ∈ Ck,γc (B2ρ;R
N),

• Φρ(0) = 0 and DΥρ(0) = id,
• ‖DΥρ − id‖L∞(RN ) → 0, as ρ→ 0,
• Φρ(B

′
r, xN ) ⊂ Ω if and only if xN ∈ (0, ρ),

• Φρ(B
′
ρ, 0) ⊂ ∂Ω,

• the distance function to Ωc, satisfies d(Φρ(x)) = xN , for all x ∈ B+
ρ ,

• Φρ is volume preserving in R
N , i.e. DetDΦρ(x) = 1 for every x ∈ R

N .

Here B′
ρ denotes the ball in R

N−1 centered at 0, with radius ρ > 0.

Proof. We consider ρ1 > 0 and a Ck,γ-function φ : B′
ρ1 → R, φ(0) = 0 such that its graph x′ 7→

(x′, φ(x)) ∈ ∂Ω is a parameterization of a neighborhood of 0 in ∂Ω. Since the normal of ∂Ω at 0
coincides with eN and Ω is of class C1, we get

‖∇φ‖L∞(Bρ) → 0 as ρ→ 0. (7.18)

Moreover decreasing ρ1, if necessary, we have

(x′, xN + φ(x′)) ∈ Ω for all xN ∈ (0, ρ1).

Let η ∈ C∞
c (B′

1), with η ≡ 1 on B′
1/2. For ρ ∈ (0, ρ1), we consider ηρ ∈ C∞

c (B′
ρ) given by ηρ(x) =

η(x/ρ). We now define Φρ : R
N → R

N , by

Φρ(x
′, xN ) := (x′, xN + ηρ(x

′)φ(x′)).

By (7.18), we have

‖DΦρ − id‖L∞(RN ) ≤ Cρ−1‖φ‖L∞(Bρ) + C‖∇φ‖L∞(Bρ) → 0 as ρ→ 0.

This implies that there exists ρ0 > 0 such that for every ρ ∈ (0, ρ0) and for every x ∈ R
N , the

Jacboian of Φρ at x, DetDΦρ(x) = 1. Since, lim|x|→∞ |Φρ(x)| → +∞, it follows from Hadamard’s
Global Inversion Theorem (see e.g. [26]) that Φρ is a global diffeomorphism, for every ρ ∈ (0, ρ0).
Clearly Φρ satisfies all properties stated in the lemma. �

Proof of Theorem 1.8 (completed). We assume that the interior unit normal of ∂Ω at 0 coincides with
eN . Consider Φρ ∈ C1,1(RN ;RN ), given by Lemma 7.1. In the following, we fix ρ > 0 small, so that

sup
x∈RN

|DΦρ(x) − id| <
1

4
. (7.19)

By Theorem 4.4, there exists C > 0, only depending on N, s,Ω, β,Λ, γ, δ and ‖V ‖Mβ
, such that

‖u‖L∞(Bρ) ≤ C(‖u‖L2(B2ρ) + ‖u‖L1
s
+ ‖f‖Mβ

). (7.20)

We then have that LKu = f − uV on Ω. Letting U(x) = u(Φρ(x)) and F (x) = f(Φρ(x)) −
U(x)V (Φρ(x)), then by a change of variable, we have

1

2

∫

R2N

(U(x) − U(y))(ψ(x) − ψ(y))K(Φρ(x),Φρ(y))dxdy =

∫

RN

F (x)ψ(x) dx,
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for every ψ ∈ C∞
c (B+

ρ/2). Therefore, U ∈ Hs(Bρ) ∩ L1
s,

LKρU = F on B+
ρ/2, and U = 0 on B−

ρ/2,

where Kρ(x, y) := K(Φρ(x),Φρ(y)), B
−
ρ := Bρ ∩ {xN < 0} and B+

ρ := Bρ ∩ {xN > 0}. In particular,
we have

LKρU = ϕρ/4F on B+
ρ/4, and U = 0 on B−

ρ/4, (7.21)

and we note that by (7.20), ϕρ/4F ∈ Mβ . We observe that

Kρ(x, x+ y) = K(Φρ(x),Φρ(x+ y))

= K (Φρ(x),Φρ(x) + [Φρ(x+ y)− Φρ(x)]) .

We define A ∈ C0,1(RN × [0,∞)× SN−1;RN ), by

A(x, r, θ) :=

∫ 1

0

DΦρ(x+ rτθ)θ dτ,

so that, for r > 0,
Kρ(x, x+ rθ) = K (Φρ(x),Φρ(x) + rA(x, r, θ)) .

Now by (7.19), we can find constants C,C′ > 0 such that, for every x1, x2 ∈ B2, r1, r2 ∈ [0, 2) and
θ ∈ SN−1,

|A(x1, r1, θ)−A(x2, r2, θ)| ≤ C(|x1 − x2|+ |r1 − r2|) (7.22)

and
1

|A(x1, r1, θ)|
≥ C′. (7.23)

Since λ̃K ∈ Cs+δ(B2 × [0, 2) × SN−1), we then have that Kρ ∈ K̃ (κ′) and satisfies (2.2), for some
κ′ > 0, only depending on Ω, N, s and κ, with

λ̃Kρ(x, r, θ) = |A(x, r, θ)|−N−2sλ̃K

(
Φρ(x), r|A(x, r, θ)|,

A(x, r, θ)

|A(x, r, θ)|

)
.

By (7.22) and (7.23), it is clear that

|λ̃Kρ(x1, r1, θ)− λ̃Kρ(x2, r2, θ)| ≤ C(|x1 − x2|
s+δ + |r1 − r2|

s+δ). (7.24)

We note that by assumption,∣∣∣∣λ̃K
(
Φρ(x), r|A(x, r, θ)|,

A(x, r, θ)

|A(x, r, θ)|

)
−λ̃K

(
Φρ(x), r|A(x, r, θ)|,−

A(x, r, θ)

|A(x, r, θ)|

)∣∣∣∣

≤ c0r
s+δ |A(x, r, θ)| ≤ Crs+δ .

Next, we put

G(x, r, θ) := λ̃K

(
Φρ(x), r|A(x, r, θ)|,

A(x, r, θ)

|A(x, r, θ)|

)
.

Then, using the above estimate, (7.22) and (7.23), we get

|G(x, r, θ) −G(x, r,−θ)|

≤

∣∣∣∣λ̃K
(
Φρ(x), r|A(x, r, θ)|,

A(x, r, θ)

|A(x, r, θ)|

)
− λ̃K

(
Φρ(x), r|A(x, r, θ)|,−

A(x, r, θ)

|A(x, r, θ)|

)∣∣∣∣

+

∣∣∣∣λ̃K
(
Φρ(x), r|A(x, r, θ)|,−

A(x, r, θ)

|A(x, r, θ)|

)
− λ̃K

(
Φρ(x), r|A(x, r,−θ)|,−

A(x, r, θ)

|A(x, r,−θ)|

)∣∣∣∣

+

∣∣∣∣λ̃K
(
Φρ(x), r|A(x, r,−θ)|,−

A(x, r, θ)

|A(x, r,−θ)|

)
− λ̃K

(
Φρ(x), r|A(x, r,−θ)|,

A(x, r,−θ)

|A(x, r,−θ)|

)∣∣∣∣

≤ Crs+δ + C

∣∣∣∣
1

|A(x, r, θ)|
−

1

|A(x, r,−θ)|

∣∣∣∣
s+δ

+ C|A(x, r, θ) +A(x, r,−θ)|s+δ

≤ Crs+δ ,
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with C depends only on Ω, N, s, and δ. From this, (7.22) and (7.23), we easily deduce that

|λ̃Kρ(x, r, θ) − λ̃Kρ(x, r,−θ)| ≤ C(rs+δ + r). (7.25)

We put d+(x) = max(xN , 0). Using (6.2), for ψ ∈ C∞
c (B+

2 ), we then have

1

2

∫

R2N

(ds+(x)− ds+(y))(ψ(x) − ψ(y))Kρ(x, y) dxdy

=

∫

RN

ψ(x)

∫

SN−1

∫ ∞

0

(ds+(x)− ds+(x+ rθ))r−1−2sλ̃e,Kρ(x, 0, θ) drdθ dx

+

∫

RN

ψ(x)

∫

SN−1

∫ ∞

0

(ds+(x)− ds+(x + rθ))r−1−2s(λ̃e,Kρ (x, r, θ)− λ̃e,Kρ(x, 0, θ)) drdθ dx

+

∫

RN

ψ(x)

∫

SN−1

∫ ∞

0

(ds+(x)− ds+(x + rθ))r−1−2sλ̃o,Kρ(x, r, θ) drdθ dx.

Using the fact that (−∆)s1d
s
+ = 0 on {xN > 0}, we see that

∫

SN−1

∫ ∞

0

(ds+(x)− ds+(x+ rθ))r−1−2sλ̃e,Kρ(x, 0, θ) drdθ = 0.

It follows that

LKρd
s
+ = Fe + Fo in B+

2 , (7.26)

where

Fe(x) :=

∫

SN−1

∫ ∞

0

(ds+(x)− ds+(x+ rθ))r−1−2s(λ̃e,Kρ(x, r, θ)− λ̃e,Kρ(x, 0, θ)) drdθ

and

Fo(x) :=

∫

SN−1

∫ ∞

0

(ds+(x)− ds+(x + rθ))r−1−2sλ̃o,Kρ(x, r, θ) drdθ.

Now from (7.24) and (7.25), we obtain

|λ̃e,Kρ(x, r, θ)− λ̃e,Kρ(x, 0, θ)|+ |λ̃o,Kρ(x, r, θ)| ≤ Cmin(rs+δ + r, 1).

This with the fact that |ds+(x)− ds+(x+ rθ)| ≤ Crs imply that

‖Fe‖L∞(B1) + ‖Fo‖L∞(B1) ≤ C.

In view of Lemma 9.2 and (7.26), we find that

LKρ(ϕ1d
s
+) = gρ in B+

1/2,

with ‖gρ‖L∞(B1) ≤ C. By this, (7.21), (7.24) and (7.25), we can thus apply Corollary 1.7, to get

‖U/ds+‖Cs−β
(
B+

̺

) ≤ C
(
‖U‖L2(Bρ) + ‖U‖L1

s
+ ‖F‖Mβ

)
,

for some C > 0 and ̺ ∈ (0, ρ/4), only depending on N, s,Ω, δ, β, κ, ρ. Since d(Φρ(x)) = xN on B+
ρ ,

then by a change of variable and using (7.20), we get the desired result. �

8. Appendix 1: Liouville theorems

In this section we consider H being either R
N or the half-space R

N
+ = {x ∈ R

N : xN > 0}. We

prove a classification result for all functions u ∈ Hs
loc(R

N ) ∩ L1
s satisfying Lbu = 0 in H and u = 0 in

Hc, provided b is a weak limit of an satisying (1.2) and u satisfying some growth conditions. We note
that in the case u ∈ L∞

loc(R
N ) such classification results (for more general nonolcal operators Lb) are

proved in [47]. We will need the following result for the proof of the Liouville theorems.
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Lemma 8.1. Let Ω be an open set with 0 ∈ ∂Ω and let a satisfy (1.2). We consider u ∈ Hs
loc(R

N )∩L1
s

satisfying

(−∆)sau = 0 in B2 ∩ Ω, u = 0 in B2 ∩Ωc.

Then there exists C = C(N, s,Λ,Ω) > 0 such that

‖u‖L∞(B1∩Ω) ≤ C
(
‖u‖L1

s
+ ‖u‖L2(B2)

)
.

Proof. The interior L∞
loc(B2 ∩ Ω) estimate follows from [17], where the authors used the De Giorgi

iteration argument. We note that in [17], it is assumed that u ∈ Hs(RN ) but by carefully looking
at their arguments, we see that this can be weakened to u ∈ Hs

loc(R
N ) ∩ L1

s. For the L∞(B1 ∩ Ω)
estimate, the proof is precisely the same. �

In the following, for b satisfying (2.5) and f ∈ Hs(RN ), we put

[f ]Hs
b (R

N ) :=

(∫

R2N

(f(x)− f(y))2µb(x, y) dxdy

)1/2

.

Recall the Poincaré-type inequality related to this seminorm, see [24, 27],

C‖f‖L2(A) ≤ [f ]Hs
b (R

N ) for every f ∈ Hs(RN ), with f = 0 on Ac, (8.1)

whenever |A| < ∞. Here C is positive constant, only depending on N, s, b and A. We note that if b
satisfies (1.2), then the constant C in (8.1) can be chosen to depend only on N, s,Λ and A.

Lemma 8.2. Let Ω be an open set with 0 ∈ ∂Ω. Suppose that there exists a sequence of functions an
satisfying (1.2) and an

∗
⇀ b in L∞(SN−1). We consider u ∈ Hs

loc(R
N ) ∩ L1

s satisfying

Lbu = 0 in B2 ∩ Ω and u = 0 in B2 ∩ Ωc.

Then there exists C = C(N, s,Λ,Ω) > 0 such that

‖u‖L∞(B1∩Ω) ≤ C
(
‖u‖L1

s
+ ‖u‖L2(B2)

)
.

Proof. Let M ≥ 1989, so that ϕMu ∈ Hs(RN ). We let vn,M ∈ Hs(RN ) be the (unique) solution to

(−∆)sanvn,M = 0 in B2 ∩ Ω and vn,M = ϕMu in (B2 ∩ Ω)c. (8.2)

By Lemma 8.2,

‖vn,M‖L∞(B1∩Ω) ≤ C
(
‖vn,M‖L1

s
+ ‖vn,M‖L2(B2)

)
. (8.3)

Moreover,

(−∆)san(vn,M−ϕMu) = −(−∆)san(ϕMu) in B2 ∩Ω and vn,M−ϕMu = 0 in (B2 ∩ Ω)c.

Multiplying this with vn,M − ϕMu, integrating and using Hölder’s inequality, we deduce that

[vn,M − ϕMu]
2
Hs

an
(RN ) ≤ [vn,M − ϕMu]Hs

an
(RN )[ϕMu]Hs

an
(RN ).

It follows that [vn,M −ϕMu]Hs
an

(RN ) ≤ [ϕMu]Hs
an

(RN ) and thus by (8.1) and (1.2), we deduce that the

sequence (vn,M )n is bounded in Hs(RN ). Hence, up to a subsequence, (vn,M )n converges in L2(B2∩Ω)
and in L1

s to some function vM . Passing to the limit in (8.2) as n→ ∞ and using Lemma 2.2, we find
that

LbvM = 0 in B2 ∩Ω and vM = ϕMu in (B2 ∩Ω)c, (8.4)

Moreover passing to the limit in (8.3), we get

‖vM‖L∞(B1∩Ω) ≤ C
(
‖vM‖L1

s
+ ‖vM‖L2(B2)

)
. (8.5)

Next, letting wM := vM − ϕMu, using Lemma 9.2, we find that

LbwM = −Lb(ϕMu) = −GM in B2 ∩ Ω and wM = 0 in (B2 ∩ Ω)c, (8.6)
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with ‖GM‖L∞(B2) ≤ C
∫
|y|≥M

|u(y)||y|−N−2s dy. Here, C is a positive constant only depending on

N, s and Λ. Multiplying the first equation in (8.6) by wM , integrating and using (8.1), we obtain

[wM ]2Hs
b (R

N ) ≤ ‖GM‖L∞(B2)

∫

B2∩Ω

|wM (x)| dx

≤ C

∫

|y|≥M

|u(y)||y|−N−2s dy[wM ]Hs
b (R

N ),

where C = C(s,N,Λ,Ω, b). This then implies that

[wM ]Hs
b (R

N ) ≤ C

∫

|y|≥M

|u(y)||y|−N−2s dy.

We then deduce that wM → 0 in L2(RN ) as M → ∞, by (8.1). In addition, we have

‖vM − u‖L1
s
≤ ‖vM − ϕMu‖L1

s
+ ‖(1− ϕM )u‖L1

s
=

∫

B2∩Ω

|wM (y)|

1 + |y|N+2s
dy + ‖(1− ϕM )u‖L1

s
.

We conclude that vM → u in L1
s as M → ∞. Letting M → ∞ in (8.5), we get

‖u‖L∞(B1∩Ω) ≤ C
(
‖u‖L1

s
+ ‖u‖L2(B2)

)
.

�

Lemma 8.3. Suppose that there exists a sequence of functions an satisfying (1.2) and an
∗
⇀ b in

L∞(SN−1). We consider u ∈ Hs
loc(R

N ) satisfying



Lbu = 0 in H, u = 0 in R

N \ H,

‖u‖2L2(BR) ≤ RN+2γ for some γ < 2s and for every R ≥ 1.
(8.7)

Then u is an affine function if H = R
N , while u is proportional to max(xN , 0)

s if H = R
N
+ .

Proof. We put vR(z) = u(Rz), for R ≥ 1 and z ∈ R
N . Since LbvR = 0 in H and vR = 0 on Hc, by

Lemma 8.2,

‖vR‖L∞(B1) ≤ C
(
‖vR‖L1

s
+ ‖vR‖L2(B2)

)
.

Scaling back, we get

‖u‖L∞(BR) ≤ C

(
R2s

∫

RN

|u(x)|

RN+2s + |x|N+2s
dx+ 2γRγ

)
.

Now, using Hölder’s inequality and (8.7), we get ‖u‖L1(BR) ≤ CRN+γ . We then have
∫

RN

|u(x)|

RN+2s + |x|N+2s
dx ≤ R−N−2s

∫

BR

|u(x)| dx+

∫

|x|≥R

|u(x)||x|−N−2s dx

≤ CR−N−2s

∫

BR

|u(x)| dx+

∞∑

i=0

∫

2iR≤|x|≤2i+1R

|u(x)||x|−N−2s dx

≤ CR−2s+γ + CR−2s+γ
∞∑

i=0

2−(N+2s)i2(i+1)(N+γ)

≤ C(1 +

∞∑

i=0

2−i(2s−γ))R−2s+γ ≤ CR−2s+γ .

We deduce that

‖u‖L∞(BR) ≤ CRγ for all R ≥ 1.

It follows from the Liouville theorems in [45], that u is an affine function if H = R
N , while u is

proportional to max(xN , 0)
s when H = R

N
+ . �
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9. Appendix 2: Some technical results

The following result is a Caccioppoli type inequality, see e.g. [17,25,41] for other versions. Note in
the following lemma that K could be any nonegative and nontrivial symmetric function on R

N ×R
N .

Lemma 9.1. Let R > 0 and K satisfy (2.2). Let v ∈ Hs
loc(B2R) ∩ L1

s and f ∈ L1
loc(R

N ) satisfy

LKv = f in B2R ∩Ω, and v = 0 in B2R ∩ Ωc. (9.1)

Then for every ε > 0 and for every ϕ ∈ C∞
c (B2R), we have

(1− ε)

∫

R2N

(v(x) − v(y))2ϕ2(y)K(x, y) dydx ≤

∫

RN

|f(x)||v(x)|ϕ2(x) dx

+ ε−1

∫

R2N

v2(x)(ϕ(x) − ϕ(y))2K(x, y) dydx.

Proof. Direct computations give

(v(x) − v(y))[v(x)ϕ2(x)− v(y)ϕ2(y)] = (v(x) − v(y))2ϕ2(y) + v(x)(v(x) − v(y))[ϕ2(x) − ϕ2(y)]

= (v(x) − v(y))2ϕ2(y) + ϕ(x)v(x)(v(x) − v(y))(ϕ(x) − ϕ(y))

+ ϕ(y)v(x)(v(x) − v(y))(ϕ(x) − ϕ(y)).

Testing the equation (9.1) with vϕ2, and use the identity above together with the symmetry of K, to
get

1

2

∫

R2N

(v(x) − v(y))2ϕ2(y)K(x, y) dydx = −
1

2

∫

R2N

ϕ(x)v(x)(v(x) − v(y))(ϕ(x) − ϕ(y))K(x, y) dydx

−
1

2

∫

R2N

ϕ(y)v(x)(v(x) − v(y))(ϕ(x) − ϕ(y))K(x, y) dxdy

+

∫

RN

f(x)v(x)ϕ2(x) dx. (9.2)

By Hölder and Young’s inequalities, we get
∣∣∣∣
∫

R2N

ϕ(y)v(x)(v(x) − v(y))(ϕ(x) − ϕ(y))K(x, y)dydx

∣∣∣∣

≤

∫

RN

|v(x)|

(∫

RN

ϕ2(y)(v(x) − v(y))2K(x, y) dy

)1/2(∫

RN

(ϕ(x) − ϕ(y))2K(x, y) dy

)1/2

dx

≤

(∫

R2N

ϕ2(y)(v(x) − v(y))2K(x, y) dydx

)1/2(∫

R2N

v2(x)(ϕ(x) − ϕ(y))2K(x, y) dydx

)1/2

≤ ε

∫

R2N

ϕ2(y)(v(x) − v(y))2K(x, y) dydx+ ε−1

∫

R2N

v2(x)(ϕ(x) − ϕ(y))2K(x, y) dydx.

By similar arguments, we also have
∣∣∣∣
∫

R2N

ϕ(x)v(x)(v(x) − v(y))(ϕ(x) − ϕ(y))K(x, y)dydx

∣∣∣∣

≤ ε

∫

R2N

ϕ2(x)(v(x) − v(y))2K(x, y) dydx+ ε−1

∫

R2N

v2(x)(ϕ(x) − ϕ(y))2K(x, y) dydx.

Using the above two estimates above in (9.2), we get the result. �

The following result provides a localization of solutions for nonlocal equations.

Lemma 9.2. Let K satisfy (2.2) or K = µb, for some b ∈ L∞(SN−1) with b > 0. Let v ∈ Hs
loc(B2R)∩

L1
s and f ∈ L1

loc(R
N ) satisfy

LKv = f in B2R ∩ Ω and v = 0 in B2R ∩ Ωc, (9.3)
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for R > 0. We let vR := ϕRv. Then

LKvR = f +Gv,R in BR/2 ∩ Ω,

where Gv,R(x) = ϕR/2(x)
∫
RN v(y)(ϕR(x)− ϕR(y))K(x, y) dy.

Proof. For simplicity, we assume that K = µb for some even function b ∈ L∞(SN−1). Recall the
identity, which follows from the symmetry of K,

LK(vϕR) = vLKϕR + ϕRLKv − I(v, ϕR),

with I(v, ϕ)(x) =
∫
RN (v(x) − v(y))(ϕR(x)− ϕR(y))K(x, y) dy. Since ϕR ≡ 1 on BR, we have

I(v, ϕ)(x) =

∫

|y|≥R

(v(x)− v(y))(1 − ϕR(y))K(x, y) dy

= v(x)

∫

|y|≥R

(1− ϕR(y))K(x, y) dy −

∫

|y|≥R

v(y)(1 − ϕR(y))K(x, y) dy.

We note that

−ϕR/2(x)LKϕR(x) + ϕR/2(x)

∫

|y|≥R

(1− ϕR(y))K(x, y) dy = 0.

Therefore letting

Gv,R(x) := ϕR/2(x)

∫

|y|≥R

v(y)(1 − ϕR(y))K(x, y) dy,

it follows that

LK(ϕRv) = f +Gv,R in BR/2 ∩Ω.

The proof is thus finished. �

We close this section with the following result.

Lemma 9.3. Let Ω be C1 open set with 0 ∈ ∂Ω and such that the interior normal of ∂Ω at 0 coincides
with eN . Then ds ∈ Hs(Br), for some r > 0.

Proof. Let d+(x) := max(xN , 0). Then since (−∆)s1d
s
+(x) = 0 for every x ∈ R

N
+ , by Lemma 9.2, we

have

(−∆)s1v
+
R(x) = GR(x) for every x ∈ B+

R ,

with v+R = ϕ2Rd
s
+ and GR ∈ L∞(RN ). Now multiplying the above equation by v+Rϕ

2
R/2 (supported in

B+
R ), integrating on B+

R and using the symmetry of µ1, we see that

1

2

∫

R2N

(v+R(x)− v+R(x))(v
+
Rϕ

2
R/2(x)− v+Rϕ

2
R/2(y))µ1(x, y) dxdy =

∫

RN

v+R(x)ϕ
2
R/2(x)GR(x) dx.

We may now apply Lemma 9.1 (or eventually following its proof), to deduce that
∫

R2N

(v+R(x) − v+R(y))
2ϕ2

R/2(y)µ1(x, y) dydx <∞.

This implies that ds+ ∈ Hs
loc(R

N ). To conclude, we use the parameterization Φρ given by Lemma 7.1
and make changes of variables, to get

∫

Φρ(Bρ)

∫

Φρ(Bρ)

(ds(x) − ds(y))2

|x− y|N+2s
dxdy =

∫

Bρ

∫

Bρ

(ds+(x)− ds+(y))
2

|Φρ(x) − Φρ(y)|N+2s
dxdy

≤ C

∫

Bρ

∫

Bρ

(ds+(x) − ds+(y))
2

|x− y|N+2s
dxdy <∞,

provided ρ is small enough. The proof is thus finished. �
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