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Semilinear elliptic equations for the fractional Laplacian

with Hardy potential
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Abstract. In this paper we study existence and nonexistence of nonnegative distributional solutions

for a class of semilinear fractional elliptic equations involving the Hardy potential.
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Introduction

Let B be a ball of RN, N > 2s, centered at 0. Let s € (0,1), p > 1 and v > 0. In this

paper, we study existence and nonexistence of nonnegative functions u € £LINLY (B)

satisfying
(0.1) (—A)*u — |z u=wP in B,

where

1_ ), . pN . |ul

Equality (0.1) is understood in the sense of distributions. The distribution (—A)*u

is defined as

(~AFug) = [ u(=A) e Ve CF(B)
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Here the fractional Laplacian (—A)? is defined via the Fourier transform as

02 (Aypla) = — [ PaQecac,

where
1

o(¢) = = e T p(x)dx
§O =700 = o [ ot

is the Fourier transform of . The nonlocal structure of the fractional Laplacian
(—A)?® can be seen in its representation in the real space:

(0.3) (“AYp(r) = Con PV, /R ) %d%

for some positive constant Cs . For the equivalence between (0.3) and (0.2), we
refer the reader to [33].

Problem (0.1) is related to the relativistic Hardy inequality which were proved by
Herbst in [29] (see also [47]):

(0.4) ’yo/ ]w\_2su2dx§/ |C|*u%d¢  Yu € C°(RY),
RN RN
where
P2 (N+2s)
(05) Yo = 228 NE S
2 (5%)

92
The constant g is optimal and converges to the classical Hardy constant %

when s — 1. Here I' is the usual gamma function. We should mention that (0.4) is

a particular case of the Stein and Weiss inequality, see [43].

A great deal of work is currently been devoted to the study of the fractional
Laplacian as it appears in many fields such as probability theory, physics and math-
ematical finance. We refer the reader to papers [11], [41], [42], [25], [5] (and the
references there in) for a nice expository. A good reference for the potential theory
of (—A)?® can be found in the book of Landkof [33]. The operator (—A)® — vg|z| =2
appears in the problem of stability of relativistic matter in magnetic fields. One
can see [40] where a lower bound and a Gagliardo-Nirenberg-type inequality were

proved.



The problem of existence and nonexistence of (0.1), for s = 1, was studied by

Brezis-Dupaigne-Tesei in [7] where the authors showed that for g € [0, %], 1<

p < %fg:gg, the problem

—Au — <M — 52> 2|2 =wuP in D'(B)

has a positive solution v € LP(B) and does not have any nonnegative and nontrivial
supersolution v € L? (B\ {0}) when § € [O, %) and p > %fg:gg Some related

loc

results and problems are in [6], [7], [16], [18], [19], [24], [45], [22], [23], [21], [8], [9].

Our results in this paper extends the one of Brezis-Dupaigne-Tesei in [7] to the case

s € (0,1). Before stating them, we fix the following notation: for « € [O, N525)7 we

put
T (N+2j+2a) T (N+2j—2a)
T (N—2j—2a) T (N—2Z+2a)

Yo = 228

The mapping o — 7, is monotone decreasing and 7, — 0 when o — % We
should mention that this constant appears in the perturbation of the ’ground-state’

‘$’255N for the operator (—A)* —~olz|7>*. Indeed, letting ¥ = m@ﬂ) we have
(_A)sﬁa - ’Ya’x‘_zsﬁoc =0 inRY \ {0}7

see Lemma 3.1 in Section 3.

Our existence result is the following

Theorem 0.1 Let o € [0, Ngzs] and 1 < p < % There exits a function
u € LN LP(B) satisfying u > 0 in B and

(—=A)u —yolz| 2 u=uP inD'(B).
As what concerns nonexistence, we have obtained:

Theorem 0.2 Let o € [0,552%) and u € L1 N LY (B\{0}) such that u >0 and

loc
(—=A)u — yolz| 5 u>uP  in D'(B\ {0}).

prz%, then u =0 in B.



We observe that if « =0 we have p+ 1 = N2i\; -: the critical Hardy-Littlewood-
Sobolev exponent and that % — 400 as a — %
The proof of Theorem 0.2 relies on weak comparison principles recently used by
the author in [24]. However substantial difficulties have to be overcome due to
the nonlocal structure of the fractional Laplacian. Nonexistence result of nonlinear
elliptic problems using comparison principles have been obtained in [1], [2] [39], [36],
[32], [37], [31] and the references therein.

For the existence result, in the supercritical case NE25=2a ~ 4, > NA42s

N—-2s5—2«a N—-2s

explicit solution constructed via 9,. In the subcritical case, p + 1 < N2i\; -, we used

, we have an

standard variational arguments thanks to the following improved fractional Hardy
inequality:

2

Theorem 0.3 Let 2 > ¢ > max <1, 25

that for all uw € CX(B),

>. Then there exists a constant C' > 0 such

(06) CHUH%/V(;’Q(B) < ’YO/ ’x‘_25u2dx _/ ‘C‘Qs/dec-,
B RN

_ 1425 1
where T = =5 .

This result, which might be of self interest, is proved in Appendix 5.

The proof of all the results presented above are manly based on a Dirichlet-to Neu-
mann operator By for which Bsu = (—A)*u in D'(FE) for any Lipschitz bounded
open set F of RV and @ is the null extension outside F of a function u belonging
to some Sobolev space. To be more precise let us first recall the result of Caffarelli
and Silvestre. We recall that

HYRY)={u: RN - R : (1+[¢|*)ue L*(R)}.
Put
Rf“ ={(t,x) : t >0,z € RV},

Given w € H® (RN ), minimization procedure yields the existence of a unique function
H(w) € Hl(RfH;tl_%) being the harmonic extension of w over the half space
RV+L.

A

div(t'=»VH(w)) =0 in RYT

0.7
07 H(w) =w on RV,



In [13], Caffarelli and Silvestre proved that (—A)®w is given by the Dirichlet-to-

Neumann operator lim;_,ot'~2 aﬂa—(t“’);

— lim tl_%M = ks(—A)’w  in RY,
t—0 ot

for some constant ks > 0. In addition

(0.8) / 72| VH (w) [Pdedt = ks / |2 wdC.
RNJrl ]RN

+

We want to provide similar arguments in bounded open sets. We define the
Hilbert space 2%%(R") which is the completion of C°(RY) with respect to the

norm:

v / C[2* 2.
]RN

Let E be a bounded open set in RY with Lipschitz boundary. We introduce the
Hilbert space
HE(E) :={u e H*(E) : 1 € 2%*R")},

where
u inkE

0 imRV\E.
The space J¢;°(E) is endowed with the natural norm
0.9 2 e(E) = 2 (u)2d :/ 25| F(a)|2dC.
(09 e = [ IPofadc = [ ioPIF@Pag
Note that, since E is bounded, by (0.4) there exists a constant C'(E) > 0 such that
010) OBl e, < lullog o) < lillasen) Yo € 75(E).
From this we deduce that
(0.11) HPE(E) ={uc HE) : uc H RV}

Hence, see for instance [[28], Theorem 1.4.2.2 |, the space C°(E) is dense in 5 (E).

By (0.11) for any u € J°(E), we can consider its harmonic extension H(u) as in



(0.7). We define the Dirichlet-to-Neumann operator B : 5 (E) — 4 °(E) given
by

t1—2s a%(ﬂ)
ot
where s 7°(FE) is the dual of J°(E). This operator turns out to be linear and it

is an isometry,

Bou = —k_ ! lim
5 S 150

1Bsull sy = llull e gy Vu € A5 (E)
by (0.8). Moreover
Bsu = (—A)*u in D'(E) Yue€ HF(E).
In particular a solution u € J¢’(E) to the problem
Bsu=f ink
yields a solution v € 2%2(RY) to the problem

(=A¥v=f inFE,
v=0 nRV\FE

and conversely. We refer to the next section for more details.

In order to get, say, qualitative informations on the solution to the problem
Bsu = (—A)°u=f,
it is, in general, more convenient to work with the (mixed) problem

div(t'=2VH(a) =0 in RYT

OH(T)
t

(0.12)
— limy_q tl_zsa— =ksf in F.

New difficulties arise here because of the (possible) degeneracy of the equation (0.12).

1725 falls into the Muckenhoupt class of weights thus regular-

However the weight
ity results, Harnack inequalities are available (see [20]) and this is enough for our
purpose in this paper.

An interesting characterization of J#} (E), see [28], is that #°(E) is the interpola-

tion space (HZ(E), L*(E))s.2:

H*(E) sec(0,1/2),
(0.13) HHE) =1 Hy(B) s=1/2,
H§(E) se(1/2,1),

6



where

HE\(E) = {u € HE(E) : /Ei((;)) dr < oo},

endowed with the natural norm, with d(x) = dist(z, 9F).

Remark 0.4 Let E be a smooth bounded domain of RY. Recently a pseudo differ-
ential operator As of order 2s was introduced by Cabré and Tan [12] for s = 1/2
(see [15] for every s # 1/2) in the following way: for any u € J(E)

[e.e]
Agu =Y prurer,
k=1

where g, is the zero Dirichlet eigenvalues of —/A with corresponding orthonormal

eigenfunctions ¢ and up = fE uprdz is the component of u in the L*(E) basis

{ert-
Using (0.13), it was shown in [12] and [15] that

(0.14) HE(E) = {u e L*(E) : > pplwl® < oo}.
k=1

The operator A corresponds to the Dirichlet-to- Neumann operator given by the har-
monic extension over the cylinder E x (0,00). Indeed, let HiS(E x (0,00)) be
the set of measurable functions w : E x (0,00) — R with w € H*(E x (r1,79)),
0<r <ry<oo and w=0 on OFE x (0,00) such that the following norm
2 1-2 2
1wl (mx 0,000 = /EX(O Oo)t *|Vw|*dadt < co.

In [12] and [15], the authors showed that for any g € 7~ °(E) there exists a unique
solution u € J (E) to

Asu=g inFE,
u=0 onOFE.

(0.15)

In addition u is the trace of w € His(E x (0,00)) which is the unique solution to

div(t'=2*Vw) =0 in E x (0, 00),
(0.16) w=0 ondE x(0,00),

—2s0
—t! 258_1: = KN,s g on I,



where Ky (Kns = 1 for s = 1/2) is a constant depending only on N and s.
Moreover, it holds that, with the norm in (0.14),

(0.17) lul> = KN#HwH?{i’S(EX(O,oo))'

We can compare the operator As with the operator Bs. For simplicity, we con-
sider the case s = 1/2. Assume that g € C°(E) is nonegative and nontrivial and
u is a solution to (0.15), which is positive on E. Take w its extension over the
cylinder. Consider H(u) which is the harmonic extension of u in Rf“ given by
(0.12). Clearly

H@) > @ i RYT
It follows from Hopf lemma that

ow O

B in E.
a - o ™

Hence

Al/QU > Bl/gu in B.

In particular the operator As yields (up to a multiplicative constant) subsolution
to the fractional Laplacian (—A)®. This is the reason why the use of Bs is more

convenient in this paper.

We give here the plan of the paper:
e Section 1: Notations and Preliminaries.
e Subsection 1.1: Dirichlet-to-Neumann operator.
e Section 2: Comparison and maximum principles.
e Section 3: Nonexistence of positive supersolutions.
e Section 4: Existence of positive solutions.

e Appendix 5, Subsection 5.1: Remainder term for the fractional Hardy inequal-

ity.



1 Notations and Preliminaries

Let u € L2(R"), we will consider its Fourier transform

u(¢) = Flu = L e~y (z)d.
©=F(Q) = o [ e ato

For s > 0, the Sobolev space H*(RY) is defined as
HRY) = {u € L2®RY) : |['a € LARY)}

with norm
[wll s oy = 1@l 2y + N1CI1°8] L2 vy
We also have by Parseval identity

2 _ 2 |u(z) — u(y)”
”uHHs(RN) = HUHL2(RN)+C&N/RN /RN |z — y|N+2s dady.

Let E be a bounded domain in RY with Lipschitz boundary. For ¢ > 1, we introduce
the space W*4(FE) defined as the space of measurable functions u such that the

following norm is finite

q . q u(@) — u(y)|
HuHWs,q(E) = ||UHLq(E) +/E 5 |z — y[Nres dxdy.

We define W*!(E) to be the closure of C2°(E) with respect to the norm || - ||y s.a(g).-
As a notation convention, we put H*(E) = W12(E) and H§(E) = W(]1’2(E) which
are Hilbert spaces.

It is well known that if v € H'(FE) then w, its null extension outside E, is in
HY(RYN) and ||ull 1) = [l 1 mvy. This is not in general true for functions in
H*(E) (s = 1/2 for instance). We shall define a space of functions in which we

recover this defect by imposing integrability of null extensions.

The Hardy inequality (0.4) suggests the definition of the Hilbert space 2%2(R")
which is the completion of C>°(RY) with respect to the norm:

(L1) v [ PR



As it will be apparently clear in the remaining of the paper, we introduce the Hilbert

space
(12) A3 () = {ue H(E) : e 7°2@)},
where we put here (and hereafter)

u inkKE

0 inRV\E.

The space J¢°(E) is endowed with the norm

(19 ol = [P aRac = [ 1cPIF@PAC
Note that, since E' is bounded, by (0.4) there exists a constant C'(E) > 0 such that
(1.4) CE)ull gy < llull gy < lullgseyy  Vu € A5 (E).
Therefore
HFE(E) ={uc HE) : uc H RV}
See for instance [[28], Theorem 1.4.2.2 |, the space CS°(E) is dense in JZ°(E).

Notations : For G an open set of RY, we use the standard notations for weighted
Lebesgue spaces: LP(G;a(z)) = {u: G = R : [,uPa(z)dr < oo} . BN(0,r) is a
ball in RY centered at 0 with radius 7 > 0 and SV~! = 9BN(0,1). Rf“ ={(t,x) :
t >0,z € RN} BYTH0,7) = RYT 0 BNF1(0,7) and S¥ =Ry N SV, If there
is no confusion, we will put BY = BN(0,1) and Bf“ = BiVH(O, 1). The space
Wol”g(BfH(O,r); a(z)) = {u € WH(BYT(0,7);a(x)) : w=0on SY}.

1.1  Dirichlet-to-Neumann operator

It is well known that the space of Schwartz functions S contains C°(RY) and that
F is a bijection from S into itself. In particular (—A)%¢ € C*(RY) N L>®°(RY) for
every o € C°(RY). In fact we have for any ¢ € C?(RY), see [41],

lellcz

N

[(=4)p(z)| <C

This motivates the following;:

10



Definition 1.1 Let G be an open subset of RN. Given u € L}, the distribution
(—A)Su € D'(Q) is defined as
(-AFup) = [ ul-aypds Voe CF(G)
RN
Some recent results conserning s-superhamonic functions in the sense of distributions

as above are in [41].
Consider the Poisson kernel of RY ™ := {(t,2) : t >0, 2 € RV}

1
(‘LEP + Z52)(N—i-2s)/2 ’

(1.5) P(t,x) :pN,St%

where py s is a normalization constant, see [11] for an explicit value. Let u € L},

we can define

’L_L(t,JE) = P(t, ) U = pN’st2s/ U(y) Ni2s dy \V/(t,ﬂf) c Ri\_]—l—l.
RY (ly —z2+t2) 7

It turns out that
div(t'™*Va) =0 RYTL

Therefore u is smooth in Rﬂ\: +1 Moreover if u is regular in a neighborhood of some
point xg then

lim @(t, zg) — u(xg)-

lim a(t, o) — u(xo)

By an argument of [13], we have that

. 1-2501
(1.6) —%gr(l] th 255(75,%) = ks(—A)°u(xp),
where the constant k; is explicitly computed in [11]:
I'l—s)

(1.7) kg = )

For any w € H*(RY), we denote by H(w) its unique harmonic extension over ]Rf +
Namely (see for instance [13], [11]) H(w) € H'(RY 1 #172%) and

div(t' "2 VH(w)) =0 in RYT,
(1.8) H(w) =w on RN,

_t1—2s 67'3(;”) — KS(—A)Sw on RN.

11



In particular if w € C2(RY) then H(w) = P(t,-) *w. In addition one can check (see
[13] ), using integration by parts and the Parseval identity, that

(1.9) / 72|\ VH (w) [P dedt = /45/ IC|*5wd¢ = HS/ |(=A)*2w|?d.
RYT! RN RN
Therefore from the definition of the space 7 (E), we have

(1.10) @Wm%ﬂm::4MlH4ﬂVHam%mﬁ Vv € AP (E),

+

where as usual v is the null extension of v outside E.

We now introduce a Dirichlet-to-Neumann operator By defined on J# (E).

Proposition 1.2 Let E be a bounded open set with Lipschitz boundary. Denote by
H3(E) the dual of H#P(E). Then the mapping Bs : #(E) — S~ °(E) given by

ol OH() - )
(Bsv,0) s (B3 (B) = —Fs l/R lim ¢'~2 %Sﬁdm Vv, ¢ € A5 (E)

N t—0

is a linear isometry. In addition for any v € J(E) we have
(1.11) By = (—=A)*s  in D'(E).

Proof. By definition for any v € J#°(E), v € H*(RY) thus the operator By is well
defined and linear. Consider H(v) which satisfies (1.8). Then integration by parts
yields for every ¢ € S (E)

OH(v) -

1-2s ~ . ~ — : 1-2s
/Rf“ t' " VH©®) - VH(p)dxdt /]RN P—I}ét 5 pdx.

This, (1.10) and Holder inequality imply that

(Bsv, ) gp-s () 5 ) < 101 () 1011
while

<BSU,'U>%—3(E)7%S(E) = HUHifOS(E)
Hence

1Bsvll -y = IVl ()

12



On the other hand, for any ¢ € C°(E), we have by integration by parts

_ _ 1 OH(D)
1-2s _ 1-2s
/Rf“ t T VH©) - VH(@)dxdt = /]R lim ¢ ~5r pdx

N t—0
= / lim ¢172¢ OH(p) vdx
RN t—0 ot

= lﬁ:s/ v(—A)’pdz.
RN

This means that

O

We turn to the characterization of the space J°(E). As suggested with the fact
that H(v) € Hl(Rﬂ\:H; t1725) for every v € J°(E), we have the converse:

Proposition 1.3 Let E be a bounded open set with Lipschitz boundary. Define
H&’T(E; tl_zs) = {w € Hl(RfH;tl_%) : w‘RN =0 on RY \ E}
and
Hyp(B) = {ueD**(RY) : u=0inRV\ E}.

We have the following equalities:
(112) %S(E) = {’LL‘E LU e HS,T(E)} = {w‘E CwE H&’T(E;t1_2s)} )

In particular
(—AYu=Bsu inD'(F), VYuc H&T(E),

where U = u‘ .
E

Proof. The first equality in (1.12) is immediate by definition. The second equality
is a consequence of the trace embedding theorem. Indeed, take w € H017T(E; t1=29),

Then the null extension of w‘E outside E is nothing but w which belongs to H*(R™)
and in addition |[wl|gs(my < [ gs @y O

13



Summarizing, we state the following

Proposition 1.4 Pick g € 77 °(E). Let v € J;(E) (given by the Laz-Miligram

theorem) be the unique solution to
Bsv=g inFE.

Let w € Hl(RfH; t172%) solve the mized problem
div(t'=2Vw) =0  in RYT
w=0 onRV\E,
_t1—238_w

or = ksg on E.

Then v =w in E; for any ¢ € A (E)
(Bsv,0) sp-s(B), () = /RN I F(@)F(9)

- / (= A)/25(~ )2 Fda
]RN
959) e=2(B),0(B)

{9,
_ -1 1-2s7, | . ~
= K, /Rf“ t " Vw - VH(p)dxdt

_ -1 1-2s ~ . ~
= K, /Rf“t VH(v) - VH(p)dzdt

and thus
2 1-2 2
ksl|vllSes 2y = /RNHt *IVw|*dzdt.

+

We can extend the above in unbounded domains:

Remark 1.5 Here we consider E any open subset of RN with Lipschitz boundary.
Define

(1.13) A(E) = {ue HE) : uec H'(RY)},

where as usual w stands for the null extension of u outside E. We have that C°(E)
is dense in H°(E), see [28].

By similar arguments, we have that the operator

By(v) = —ns—ltl—zs—agiv) +v

14



is a linear isometry form H°(E) — (A°(E)), where (#*(E)) is the dual of
H5(E).

2 Comparison and maximum principles

Unless otherwise stated, E is a bounded Lipschitz open set of RY. We have the

following technical result which will be useful in the sequel.

Lemma 2.1 Let E,, be a sequence of Lipschitz open sets such that B, CC E,+1 and
UL E, = E. Let g, € L*(E) such that g, — g in L*(E). Consider v, € #}(E,)
solution to

Bsvp, =g, in By
If v e AP (E) is the unique solution to
Bsv=g inFE
then v, — v in L*(E).

Proof. Observe that H(v,) € H&T(E; t172%) thus by Proposition 1.3 v,, € 75 (E).
In addition we have by Hardy and Hdélder inequality

[onll s () = llonll ) < CE)gnllL2 k-

Therefore vy, is bounded. By assumption it converges weakly to v in J7°(F) and
strongly in L?(E) because C2°(E) is dense in 4 (E). O

The following maximum principle can be found in [[15] Lemma 2.4] or in [20].

Lemma 2.2 Let E be a bounded Lipschitz domain of RY. Let v € 5 (E), v >0
such that
Bsv>0 inkE.

If v #£ 0 then for any compact set K C E

essinfv > 0.
K

15



Lemma 2.3 Let g € L*(E), g > 0 and let w € L}OC(RfH), such that

/N+1 1728 Vw|?dedt < oo
R

+
and

(2.1) / 1725V w - Vodrdt + ¢ /
RY*!

wedzrdt > HS/ godx
E E

for every nonegative ¢ € H&T(E;tl_%), where ¢ € Ry. Assume that w > 0 on
RN\ E. Then w >0 in RY L.

Proof. Test (2.1) with max(—w,0) € H&,T(ES $1-25), 0

Lemma 2.4 Let c€ R, and let u € L., u >0 and g € L*(E) such that
(2.2) (-AYu+cu>g inD'(E).

Let v € J(E) solves

(2.3) Bsv+cv=g inkE.

Then
u>v k.

Proof. Recall that (2.2) is equivalent to
(2.4) / u(—A) pdx > / gpdx — c/ wpdr Vo € CX(E), ¢ > 0.
RN E E

Denote by p,, the standard mollifier (which is symmetric: p,(—z) = p,(z)) and put
Up = P * U.
Claim: for any ¢ € C®(RY)

(2:5) [ earue= [ a-ayi.e

It is easy to check using Fubini’s theorem and the symmetry of p,, that
(2.6) / (—A)’uppdr = / Un(—A)pdr = / upn * (—A)°pdr.
RN RN RN

16



Now we notice that, in RV,

pnx (=A)%p = F(F(pn * (=A)°p)) = F(CI* (F(on) F () = (—A)*(pn * ).

Using this in (2.6), we get (2.5) as claimed.
Let E, := {x € E : dist(z,0F) > 1/n}. We deduce from (2.4) and (2.5) that for
all p € C*(E,) and ¢ >0

/RN(_A)Sungpd:E = / w(—A)(pn * @)dz > /EQ(Pn * p)dw — C/Eu(pn * )dx

RN
= / (pn * g)pdx — c/ (pn * u)pdz.
E E
We conclude that
(2.7) (—A)’up () + cup(x) > pp x g(x) =: go(x) for every z € E,.

We let wy,(t,x) = P(t,-) * up(x) be the harmonic extension of u, via the Poisson

kernel so that

2.8 div(t'=%Vuw,) =0 Ry,
' wy, = u, RN.

It turns out that

0
(2.9) —tl_zs% + cw, = ks(—A)’up + cuy > Ksgn,  on By,

and in addition ¢'~%*|Vw,|? € L} (Rf“). Let vy, € ¢ (Ey) be the solution to

loc
Bsv, + cv, = gn  in By,

We take alarge R > 0 so that BY (0, R) contains E and we let v, g € Wol”g(BiVH(O, R);t1729)
be the unique solution (obtained by minimization) to the problem

div(t'=2Vv, g) =0 BY1H0,R),
(2.10) _tl_zsa%—;ﬁ +con R = Ksgn  En,

vpr=0 BN(0,R)\ E,.
By extending v, r to be zero outside BiVH(O, R), it is standard to show that v, p —
v, as R — oo in Hl(RfH;tl_%). Since wy, > v, r by Lemma 2.3, it follows that,

sending R — o0, w, > v, in RY. In particular u, > v, in E,. By Lemma 2.1,

Up, — v in L?(E) and the proof is complete. O
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We recall the definition of the s-capacity of a compact set A C E:

(2.11) Cs(A) = . énf(E){HQSHi%S(E) : ¢ > 1 in a neighborhood of A}.
€Cee

Note that if C5(A) = 0 then |A| = 0 by Poincaré inequality (see (1.4)). We have the

following comparison result modulo small sets.

Lemma 2.5 Let A be a compact subset of E with Cs(A) = 0. Letu € L!, c € Ry
and g € L*(E) such that

(—AYu+cu>g inD(E\A).

Let v € J§(E) solve
Bsv+cv=g inkFE.
Then u>wv in E.

Proof. Let A. be a smooth open e-neighborhood of A compactly contained in F.
Define D, = {x € D : dist(x,d(D \ A:)) > e}. It is clear that

(—AYu+cu>g inD(D.).
Consider v, € J°(D,) solving
Bsv. +cv. =g in D..

By Lemma 2.4 we have u > v, in D.. The same argument as in the proof of Lemma
2.1 yields v, € J°(E) for every s € (0,1) and it is bounded. Hence it converges
weakly to some function w in °(E) and strongly in L?(E). In particular u > w.
Moreover for any ¢ € C(E \ A), we can choose ¢ > 0 so small that suppyp is
contained in D, thus taking the limit as ¢ — 0, we get

<w,<p>%s(E)—|—c/Ew<p:/Eg<pd:E Vo e C(E\ A).

From this equality, to conclude the proof (that is v = w), it suffices to show that
CX(E\ A) is dense in C°(FE) with the J;°(E)-norm because w € ) (E).

Since Cs(A) = 0, there exists a sequence 1, € C°(F) such that ¢, > 1 in a
neighborhood of A and in addition

(2.12) el iy < Il = O,
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where x, = min(¢,,1). Now take any ¢ € C°(E) and note that (1 — x,)¢ €
C*(E \ A) and moreover (1 — xp)¢ — ¢ in JZ°(E) by (2.12). This concludes the
proof. U

We shall define a new space which is more convenient when dealing with the
Hardy potential. Namely, we assume that there exists b € Llloc(E) and a constant
C > 0 such that

(213) el = [ Malde = C [ Pao voeczm).

Definition 2.6 Let b€ L} (E) so that (2.13) holds . The Hilbert space Hyp(E) is

loc

the completion of C°(E) with respect to the scalar product

(0, 8) s (5) — /Eb(x)cpgbda: Vo, € CO(E).

Note that the Lax-Miligram theorem implies that for any f € L?(E), there exits a
unique solution to the problem

Bsv —b(x)v=f inE,

CAS %fb(E)7

(2.14)

in the sense that for all ¢ € 5, (E)

<v,¢>%s(E)—/Eb(x)vqbd:z::/Efgbd:E.

Remark 2.7 Let € > 0. Put d:(z) = b(z)(1 —¢). Then JG(E) = Ay, (E) by
Propositon 1.3. This holds true because if v € Hy,; (E) then by (2.13) we have
v € H*(RN). By similar argument 3 (E) = Hop(E) if b e L®(E).

Lemma 2.8 Let A be a compact subset of E with Cs(A) =0. Let b € L}, (E) such
that (2.13) holds. Suppose that u € L with u,b >0 and f € L*(E), f > 0 such that

(2.15) (=AY’u—b(x)u>f inD(E\A).
Let v € A5 (E) be the unique solution to

Bsv —b(x)v=f in E.
Then

u>v ink.
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Proof. Step 1: We first prove the result if b € L*°(E).
We let vy € S5 (E) solving
BS’UQ = f in F.

Then 0 < vg < u in E by Lemma 2.5 and because f > 0. We define inductively the
sequence v, € J°(E) by

Bsvy = b(z)vg + f in E, Bsv, = b(z)vp—1 + f  in E.

Since b > 0, we have (—A)*u > b(z)vg + f in D'(E \ A). Thus using once again

Lemma 2.5, we obtain vy < v; < v in E. By induction, we have
w<vyy<---<v,<u inFE VneN.

Since v,_1 < v, in F, we have

lenlie) — [ B@lon < [ f@pade.
E E

By Holder inequality and (2.13) (see Remark 2.7) v, is bounded in J7(E). We

conclude that v, — v in J(EF) as n — oo which is the unique solution to
Bsv =b(z)v+ f in E.
Since v, — v in L*(E), we get v < u in E.

Step 2: Conclusion of the proof.
We put by(r) = min(b(x), k) for every k € N. We consider v* € J*(E) be the

unique solution to

(2.16) (vk,cp>%s(E)—/Emin{b(a:),k}vkgpz/Efcp Vo € C(E).

Thanks to Step 1, we have v* < v in E.
Next, we check that such a sequence v*, satisfying (2.16), converges to v in L*(E)

when k — oco. Indeed, we have

e < 1My = [ min{b(e). £} 104 da
= [ ot do < Ot
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by Hoélder inequality and by (2.13), where the constant C' depends on f and F but
not on k. Therefore the sequence v* is bounded in jﬁfb(E). We conclude that there
exists 0 € 3% (E) such that, for a subsequence, vF —~ T in Hyp(E). Now by (2.16),

we have
4P+ [ (o) = minfb(o), k) o = [ feo

Since for every k > 1 and any ¢ € C2°(E)
(b(a) — min{b(e), k}) v*¢| < (ble) — minfb(x), k}) ulp| < 2(x)ulg| € L'(B),
the dominated convergence theorem implies that
(2.17) (v, <,0>%s,b(E) = /Efgo for any ¢ € C°(E).
We therefore have that v = v by uniqueness. By (2.17), we have

v — Uk”if(’fb(E) = ”UkHisﬂ(fb(E) - <U=Uk>%fb(E) + (v,v — Ukbfofb(E)

I = [ 50+ 000 = Fl
¥ ey — [ min{o(o), K} H o = [ k4 o0 =R

= <'U,’U _'vk>;f())é,b(E)

IN

We thus obtain
C(E) /Q v —oF)? do < (v,v — ”k>%fb(E) —0

by (2.13). Hence v* — v pointwise and thus v < u in Q. O

Remark 2.9 The same result as in Lemma 2.8 holds if we assumed the coercivity
that there exist constants C,c > 0 such that for all ¢ € C°(E)

(2.18) H(,OH?}%S(E) +c/E<,02dx—/Eb(x)cp2dx > C/Ecp2da:.

We close this section with the following useful lemma and its immediate consequence.

Its counterpart, for s = 1, is in [23].
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Lemma 2.10 Let E be a bounded Lipschitz domain of RN. Let A be a compact
subset of E with C4(A) =0. Letu € L, b€ L} (E) and u,b > 0. Assume that

loc
(2.19) (=A)’u > b(x)u in D'(E\ A).
Then

(2.20) /Rf“ 72|\ VH (o) Pdadt = /ichpHi%s(E) > /is/Eb(a;)gpzdx Vo € C(E).

Proof. Put gi(z) := min(b(x)u, k) > 0 for integers k > 1. Let v, € J°(E) be the
solution to
Bsvp =gr in FE.

By Lemma 2.2, we have i e L

o0

> (E) and by the standard maximum principle

H(vx) > 0. Moreover by Lemma 2.5, we have

(2.21) u>v, >0 inE.

Let ¢ € CX(E). Put Vi, = H(vi) and VZ =V, +¢, for e > 0. Set ¢ = H‘%p) so that
V,fl/}z € H&T(E; t1725). Simple computations show that

IVH(p)? = [VEVYI? + VVE - V(VEY?) = [VEVY? + V V- V(VER?).
Thus using integration by parts we have

1—2s 2 1—2s £ 2
/Rf“ t IVH(p)|*dzdt > /RN+1 t VVi - V(VEY?)dadt

+

2
2
= — T dzx.
/Egk (v +¢)?

Take the limit as ¢ — 0 to get
/ 1725 |\VH (@) |Pdzdt > /13/ g—kgozdzn
R E Uk
by Fatou’s lemma. By (2.21), we infer that

/ 72|\ VH () Pdadt > /{s/ g—kgpzdx.
RN+L E U
+

Again by Fatou’s lemma, inequality (2.20) follows immediately by taking k — +oo.
O
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The following result appeared in [3] in the case s = 1.

Theorem 2.11 Let E be a bounded Lipschitz domain of RY with 0 € E, N > 2s.

Then there is no nonnegative and nontrivial u € L} satisfying
(—A)u>ylz["*u  in D'(E\{0}),
with v > vg.

Proof. Note that Cs({0}) = 0 provided N > 2s (see [38, p. 397]). If such u
exits then u > 0 in E by the maximum principle thus Lemma 2.10 contradicts the

sharpness of the Hardy constant ~g. U

3 Nonexistence of positive supersolutions

We start with the following

Lemma 3.1 For every o € (—& — 5,8 — 5), put 9,(2) = |3:|255N+a. Then
(=AY = Yalz| V0 in RN\ {0},

where

T (N+2j+2a) T (N+2j—2a)

(3.1) Yo = 2%

T (N—2j—2a) T (N—2Z+2a) :

For a > 0, the function a +— v, is continuous and decreasing.
There erists a positive function Yo € CP <Rf+l \ {0}) such that

div(t'=2VYT,) =0 in RV
(3.2) Yo =3 ondRYT\ {0}
—t1_2sag—t“ = ks (—A)y = KsValz| 72 V0  on ORJJ\:H \ {0}.

Moreover if a > 0 then |VY,o| € L2(BY (0, R); 172%) for every R > 0.

Proof. Note that ¥, € £!. The Fourier transform of radial functions (see [[44]
Theorem 4.1]) yields

N—-1

J¥ (rp)ar—z dr,

(NI

Fa)(p) = o7 /0 (o)
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where Jn_2 is the Bessel function. Then we have
2

—N

FOae) = o377 [Tt o)

= Mqap 2 —s—a7
where
s+a (N+2éf+2a)

Now we notice that (7, = mam—_q)
=N - —2s
(=)0 = F(F((—A)*a)) = F(p* F(0a)(p) = maF(p2 T°7%) = 7ar > Va.

For the proof of the fact that the map o — 7, is continuous and decreasing, we refer
to [17].

We define

P(t,) x94(t,z) V(t,x) € Rf“

T.(t,x) =
&2) Vo(z) Vo€ oRYT {0},

where P is the Poisson kernel defined in Section 1.1. Clearly Y, is positive. We
have that

—tl_zs% = ks(—A)*Y,  in RV \ {0}
Hence we get (3.2).
From the regularity theory of [11], we deduce that T, € C? <W\ {0}> for some
B > 0. In addition Yo € H'(Q X (t1,t2);t172%) for every @ cC RV \ {0} and
0<t <ty <o0.
Observe that T, (\z) = )\285N+°‘Ta(z) and thus choosing A = |z|™!, we infer that
Ta(z) < Ta(z\z]_l)\z]255N+a < C\z]#“‘, for every z = (t,z) € BY(0, R) and
R > 0. From this, we deduce that t'~22|72T2 € L'(BY™ (0, R)) for @ > 0. We
also have |x|72*Y2 € L} (RY) for a > 0.

loc

We let ¢ be a cut-off function such that ¢ = 0 for |z] < e, p =1 for 2¢ < |z| < R,
¢ = 0 for |z| > 2R and |Vp| < Ce™! for ¢ < |2] < 26. We use p?T,, as a test
function in (3.2) to get

1-2s 2 _ —25mn2 2
/Rf“t VY. V(pYTy) = /{mf*l |x| =YL .
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Integrating by parts and using Young’s inequality, for some constant ¢ > 0, we have

AEAVILS [ el [ AP
+

C
/Bf THO,R\BY T (0,6) BN (0,2R)

Therefore

29T, < / 2|22 ¢ / 11729 (8, )| 2 Y2,
BN(0,2R) e<|(t,x)|<2e

Fatou’s lemma yields |VY,| € L2(BY (0, R);#17%) for a > 0. O

C
/BiV THO,R\BY T (0,6)

The comparison result obtained in Lemma 2.8 allows us to derive the following

estimate when the potential b(x) is the Hardy one.

Lemma 3.2 Let N > 2s, o € [0,(N — 2s5)/2) and p > 1. Suppose that u €
£inr? (BN(0,2)\{0}), u 2 0 such that

loc

(3.3) (=A)u — volz| Pu>uP  in D' (BN(0,2)\ {0}).
Then there exists a constant C' > 0 such that
(3.4)
el (v (0,2)) — va/ 2|25 p?da > 0/ *dr Vo e C(BN(0,2)).
BN (0,2) BN (0,2)

Moreover there exists a constant C' > 0 such that
o=y . N
(3.5) u> v > Clz|™ 2 in BV (0,1),
where v, € %fb(BN(O, 2)) (with b(x) = o |z|72%) is the solution to
Bsva — Yalz| ?*ve = min(uP, 1)  in BY(0,2).

Proof. Inequality (3.4) is trivial for @ > 0 so we consider only the case a = 0.
Since Cs({0}) = 0 provided N > 2s, by Lemma 2.5 and Lemma 2.2, we have u > 0
in BY(0,2) and
M =ess inf u>0.
BN (0,1)
Hence u € L} satisfies

(—A)*u — vo|z|"%u > MP"u in D'(BN(0,1) \ {0}).
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By Lemma 2.10 we obtain (3.4) thanks to the scale invariance of the integrals on
the left hand side.
We put b(x) = v,|2|~2%. By (3.4), for a > 0, we can let v, € %fb(BN(O, 2)) be the
solution to

Bsva — Yalr| ve = min(uP, 1)  in BY(0,2).
Then by Lemma 2.8, we have u > v, in BY(0,2). We first consider the case a > 0.
Then 7, < 7o and thus v, € (BN (0,2)). By the regularity result of [11], we
get that V,, = H(v,) is continuous in BY(0,1) \ {0} and V,, > 0 by Lemma 2.3.
Consider 9, and its harmonic extension Y, given by Lemma 3.1. The maximum
principal (see Lemma 2.2) implies that we can set

min v

(3.6) c'=— > 0.

Put w = C'Y, — V,. We have weakly
div(t'=2*Vw) = 0 in BY(0,1),
(3.7) w<0 on @,

_t1—2s%_iz] _ K;Sfya’x‘_zs’u) S O on BN(07 1)

Then wt := max(w,0) € H&S(BfH(O, 1);¢172%) and therefore by integration by

parts
/ 1725\ V™ [2dzdt — msya/ 2| =2 (wT)?dz < 0.
RY*! BN (0,1)

In particular

Hw+H2ijS(BN(O71)) — Yo /BN(OJ) \x!‘2s(w+)2dx <0.
Hence wt = 0 by Hardy’s inequality. Hence v, > C'¥, in BN (0,1) that is (3.5) for
a > 0.
For the case @ = 0, we put o, = 1/n and we notice that the sequence v,, €

3 (BN(0,2)) solution to the problem
Bsva, — Van|x|_2svan =f in BN(O, 2)
is monotone increasing to vy because the mapping a +— -, is decreasing. Therefore,

taking into account (3.6), we readily get (3.5). O
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Proof of Theorem 0.2

Lemma 3.3 Let E be a bounded Lipschitz domain of RN, N > 2s. Suppose that
0€FE and a €1[0,(N —25)/2). Letu € L:NLY (E\{0}) such that

loc

(3.8) (—=A)’u — 7a|x|_28 u>uP inD'(E\{0}),
with N+25+42 N+25-2
S (63 S—20¢
T () p (ki
T (N—2i—2a) T (N—2Z+2a)

Ifp> %i’gz:%g, thenu =0 in E.
Proof. Assume that u # 0. It follows from Lemma 3.2 that there exist r,C, > 0
such that

2s—N

(3.9) u(z) > vo(x) > Cplz| 2

o vz e BN(0,r) C E,
where v, € J3 (E) (with b(z) = Ya||72%) is the solution to

|—2s,U

Bsvo, — Yalx o = min(uf,;1) in E.

On the other hand Lemma 2.10 yields, for all ¢ € C°(E),

(310) Iy ~2a [ Lol e > [ w0
E E
We first consider the case o > 0. If 7 is small, by (3.9) we have, for 0 < o/ < a,
(—A)u = ol u > (<0 + 7 + CE71) J2| 7w in D'(BY(0,7) \ {0}).

By Lemma 2.8 and using the same arguments as in Lemma 3.2 we get, provided
o Na,

2s—N

(3.11) w(z) > Clz| 7+ va e BN(0,r/2),

for some constant C,. > 0. Using the estimate (3.11) in (3.10) we get

2 P2z > (C1p-) / | (BT )0 2 g

2
Pll s r _’Ya/
1215 (B (0.r/2)) BN (0,/2)

BN(0,7/2)
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for all ¢ € C*(BN(0,7/2)). Since p > %:gg:, we have

2s — N
—(5::(82 +a'>(p—1)+2s<0.
Hence for every p € (0,r/2)
HCPH?}WOS(BN(OW)) > (Vo + (C;)p_lp_é) /BN(O )‘x’_28¢2dx Vi € CZ(BY(0,p)).
P

This contradicts the sharpness of the Hardy constant thanks to the scale invariance
of the inequality.
Finally, for the case & = 0 we note that (3.10) implies, by density, that

||va\|2%s(E)—ya/E|$|_2svidx2/Evg+ld:E.

This also leads to a contradiction because v € 5% (E) while by (3.9)

/Ug+1d$ 2 O// |x|(255N)(p+1)d$
E BN(0,r

)
> C’/ t~Ydtdo = +oo,
SN=-1.J0

for some constant C’ > 0. O

4 Existence of positive solutions
The proof will be separated into several cases. We put
e 2 _ —25, 2 00
Ey(u) := HuH%S(B) %C/B |z|"**udx Yu € C°(B),

where B is a ball in RY centered at 0 with N > 2s.
Case 1: a € (0,(N —2s)/2]and 1 <p < (N +s)/(N —2s).
Thanks to the Hardy-Littlewood-Sobolev inequality and Hardy’s inequality we have

(11) Bt ( [ up“)?/(p“) Vu e C(B),
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Thanks to the compact embedding of J#*(B) into LPT1(B), we can minimize E,,

over the set

(4.2) {u € H3(B) /

B

(uh)PH! = 1} ‘

Let u € #°(B) be the minimizer. Put u* = max(+u,0). By Proposition 1.3, u*
belongs to 7% (B). We check rapidly that E,(u") < E,(u). Observe that

+)12 _ 1-2s 4112 1-2s 4112
Ksllu H%S(B) = /Rth |VH(u™)| dwdtﬁ/ﬂwﬂt |V (H(uw)™)|*dxdt

because H(u*t) and H(u)* have the same trace on R while H(u*) has minimal

Dirichlet energy. Now using this and Hardy’s inequality we have
ksEo(uT) = /fSHquHi%s(B) - /is’ya/ || 725 (u™)2de
B

= /£5|]u+|@{65(3)—/isfya/B]az\_25u2dx+/£8’ya/B]w\_25(u_)2dx

IN

/13||u+||_2}%5(B) — Kﬂa/B 2|~ u2dx + /{s\|u_||_2}%s(3)

/ P25 (1 () ) 2t — rgya / o2 u2da
RYH! B

IN

1-2s —\2
+/RN+1t |V (H(uw)™)|*dxdt
+
= / t1_28|V”H(u)|2dxdt—/£sya/ |z| "% u?dx
RY*! B
= ksEq(u).

Thus we may assume that u = u™ is a nonegative and nontrivial minimizer therefore

there exists a Lagrange multiplier A > 0 such that
Bsu — Yolz|™u = AP in B.
1
Hence A\»=1% is a solution of problem (0.1).

Case 2: a=0and 1 <p < (N +2s)/(N —2s).

2

Lemma 5.4 yields for every g € (2, max (1, e

Eo(w) > ulfyrags we CZ(B).
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with 7 = 1428 %. Therefore 7, (B) is compactly embedded into LPTY(B), with

|—2s

b = 7o|z|~*°. Hence we can minimize Ej over the set

(4.3) {u € A3y (B) - /B (P = 1} .

We have to check again that Eg(u™) < Ep(u). But this can be done by density and
using similar arguments as above. We skip the details. We get a positive minimizer
u=u" of Ey in the set (4.3). We conclude that AP17 is a solution to (0.1) for some
Lagrange multiplier A > 0.

Case 3: a € (0,(N—2s)/2) and (N+2s)/(N—2s) <p < (N +2s — 2a)/(N — 2s — 2a).

2s—N
-5T+B

Consider ¥g = r given by Lemma 3.1 which satisfies

(—A)*05 =yslz| > V5 in RV \ {0}.

—2s
We look for a solution of the form w = prr-1 with a constant p > 0 to be determined
s— —2s
in a minute. Assume that we can take 8 > 0 such that rZ7 8 — 71 then

(=AYw = yslz| w4+ w? —wPlw

= Yalz|w + wP + (15 = Yo — @2 w.

Since 8+ 73 is decreasing, we can choose P! = 3 — 7, > 0 provided a > 3. But
note that a > f assoon as p < (N+2s—2«)/(N—2s—2a) and p > (N+2s)/(N—2s)
implies 8 > 0. In conclusion we have, in RY \ {0},

(—A)°w — ’ya\x]_2sw = wP

and w € L1 N LP(B) is a solution to (0.1). O

5 Appendix

5.1 Remainder term for the fractional Hardy inequality

Let E be a bounded open set of RV, N > 2s, with 0 € E. The following (local)

Hardy inequality is a consequence of (0.4)
(5.1) 70/Eu2|:1:|_2sdx < Nl Vu € CE(E).
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In addition the constant 7y is optimal. Our objective, in this section, is to improve
inequality (0.4) in bounded domains of RY.

Many deal of work has been done in improving the classical Hardy inequality start-
ing from the work of Brezis-Vazquez [10]. We also quote [4], [46], [27] for related
improvements.

We shall prove a Vazquez-Zuazua-type (see [46]) improvement for the fractional
Hardy inequality (0.4). That is for 2 > ¢ > max (1 i) there exists a constant

'y 2—q )
C(FE) > 0 such that for all u € C°(E),
COB) gy < sy =0 [ Jal* e,

where a = 1—2s and 7 = 2_Ta — 2. The proof requires several preliminary lemmata.

1
q
Consider the function YTy defined in Lemma 3.1 satisfying

div(t'=2Tg) =0 in RYT
2s—N

(5.2) To=lz[7z  onRY\ {0},

_t1—2s% = KksY0|z| 72 Yo on RN \ {0}.

We have seen in the proof of Lemma 3.1 that

(5.3) 1To(2)] < C|2|®=M/2 vy = (2,t) € BYTL
By scale invariance, we have that

(5.4) To(z) = RN=2)/27(Rz) VR > 0.

This implies the estimate

5.5 Yoz ZC’z(QS_N)/2 Vz € BN
+
and also
5.6 VYo(2)| < Clz (2s=N)/2-1 vy, ¢ pN+1,
+

We now prove the following result which were proved in [17] when s = 1/2.
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Lemma 5.1 For every q € (1,2) there exists a constant C > 0 such that for all
p € C(BN)

2/q
(5.7) C </ t%]ch]qdz> < / |\ Vp|dz — K}S"}/Q/ 2|2 p? de,
BN+1 BN+1 BN
+ +

where a =1 — 2s.

Proof. Let ¢ € C°(BN*1\ {0}) and put ¢ = T%' Simple computations yield
Vepl* = ToVel* + VYo - V(Toy?).

Integration by parts and using (5.2) leads to

a 2 _ a—1, 2 > a~n2 2 )
/BNHt IVol|*dz — ksyo /BN |x|* p dx > BN+1t Y5 V|“dz
+ +

By (5.5) and using polar coordinates z = ro = |z||—§|, we get

1
(5.8) / targyw;\?dzzc// (01)%r| VY| *dodr,
Byt 0o Jsy

where o7 is the component of ¢ in the t direction. We wish to show that there exists
a constant C' > 0 such that
(5.9)

1 q/2
I:= / / (01)%r|Vep|2dodr > C/ t7 |Volidz Vo € C>(BNTY),
0o Js¥ Byt
We have
/ t%|V(’p|qu — / t%|V1/)T0 + YV Ty|%dz < C’/ e (IVYYol? + |9V T|?) dz.
Bi\fﬂ Bi\fﬂ Bi\’ﬂ

Put
I = / t% |V Yo|?dz,
BY*!

12:/ £7 |V Yo |9dz.
BN+1
+
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Using (5.3) and Holder inequality, we have

1
L < C (al)q“/2/ pN+H=N)/21gy|1drdo
sy 0

1
(5.10) = C / pN+a1=N)/2=q/2 / (1)1 2192V p|2dodr
0 ¥
1 a/2
< C/ rN2=0)/2 (/ (al)ar\wy?da) dr
0 sy
1 q/2
< C'/ (/ (al)“r\wy?da) dr
0 sy
1 Q/2
< C’(// (01)“r|V1/)|2d0’d7‘)
0 Js¥
< CI.

On the other hand we have using (5.6)

1
L< C / (Ul)qa/2/ pNC=0/2=4/2) |94 do
Sy 0

1 aw q
< C’/ (O_l)qa/2/ PN@=9)/2=a/24+a |22 | grds
Si\f 0 or
1
(5.11) < C’/ rN+q(1_N)/2_q/2/ (01)9% 2092\ U dodr
0 sy
< (I,

where in the second inequality we have used the one dimensional Hardy inequality
fol fldr < cfol r~9| f'|%dr and observing that (5.10) is just (5.11). The lemma follows
because C°(BN*1\ {0}) is dense in C2°(BN*1) with respect to the H(BN*1;%)-
norm when N > 3, see [30]. O

The Lion’s interpolation inequality, [[34] Paragraph 5], shows that for a # 0 and
—% <3< % there exits a constant C' > 0 such that
(5.12)

q < q 2 1g oo N+1
OHUHWT,Q(RN) < /RN“ t2 |Vl dxdt—I_/Rf“ t2 |v|?dzdt, Vv e CRYT),
+
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where 7 = 2_7“ — %.
We first prove a generalized weighted Poincaré trace inequality. The proof is stan-

dard. We recall that the space Wol’g(BiV +1.499/2) was defined in Section 1.

2=
Lemma 5.2 Suppose that ¢ > 1 and 7 := =5+
holds

(5.13)
/ 199/2 || dz < 0/ 199/2|Vuf0dz + 0/ ultdz Vu € WE(BNH, p00/2),
Bi“’l Bi“’l BN ’

—% > 0. Then the following inequality

Proof. Inequality (5.13) is well known for a = 0. So we restrict ourself to the case

a # 0.
Assume by contradiction that (5.13) does not hold. Then there exits a sequence
Up € Wol’g(BiVH;tq“/z) such that

(5.14) / 1992V, |dz + / lun|?dz = o(1)
Bi\f+1 BN

and

/ t9%2|y,|%dz > 0 Vn e N.
Byt

Up to normalization, we may assume that [gn+1 t9%/2|u,|9dz = 1. But then (5.14)
+

implies that u, is bounded in Wh¢(BYT;99/2) thus u, — u in Wh4(BY 1 99/2)

and u, — u in Lq(BiVH; £19/2) (see [26]) so that

(5.15) / t99/2 || dz = 1.
BY+!

It follows from (5.12) and the compact embedding of W'?(BY) into LY(BY) , that
Uup — w in LY(BYN). From (5.14) we get u‘RN = 0 and also Vu = 0. It turns out

that u = 0 in BY ™ a contradiction with (5.15). O

By an argument of partition of unity, we have the following

2
) 2—a

Lemma 5.3 Let 2 > ¢ > max (1
that for all p € C(RNF1)

). There exist some constants C,c > 0 such

2 a 2 a—1 2 2
(5.16)  Cllelliyrapyy < /Rf“ t"\V|“dz — ksy0 /]RN |z]* o da:+c/RN pdz,

where a = 1 — 2s andez_T“—%.
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Proof. We put

_ a 2 _ a—1, 2
J(v) _/RN+1t |Voul“dz — ks0 /RN |x|* v de.

+

Let x € C°(BN*1), 0 < x < 1in BN*! and such that x = 1 on BN*1(0,1/2). Let
n e Hl(BfH; t*) be the minimum of the problem

inf{/ % Vul?dz : u—xGH&(BiVH;t“)}.
BY+!
Then
div(t*Vn) =0 in BY T
n=x on BV
n=0 on @
It turns out that 0 < n < 1 in BiVH. In addition, thanks to [14], lim; t“% IS

LOO

% (BN). Given ¢ € C(RN*1), simple computations based on integration by

parts lead to
a 2 a 2 2
<
/Rf“t IV (pn)|“dz < /Rf“t Vol dz—i—c/BN o dx,

where ¢ > 0 depends only on 7. On the other hand we have

[ el ks = [ et [ lel?

/ |x|“_1<,02d:13—|—c/ o’ dz.
RN RN

J(en) < J(p) +C/RN p’da.

IN

Therefore we obtain

Applying Lemma 5.1, we infer that

2/q
</N tq;|V(17<p)|qdz> < J(p) + c/ 902dx.
R +1 RN

+

By Lemma 5.2 and Hélder inequality (1 < ¢ < 2)
Cllme gy oy < T e [
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Using Lions’ interpolation inequality (5.12) with a # 0, we obtain

Clnellfyra@ny < J(@) + C/RN pda.

If a = 0, it is well know that W¢(RY*!) embeds continuously into W'=1/44(RN),
Recalling that n = x = 1 on BV (0,1/2), the lemma follows by scaling. ]

Taking advantages to the singular nature of the Hardy potential and the scale

invariance, we prove the main result in this section:

Lemma 5.4 Let 2 > g > max (1, %) Then there exists a constant Cy > 0 such
that for all u € C°(BY),

(5.17) Collllygagsmy < gy =0 [ laf* ol

2—a 1
where a =1 — 2s andT:T—g.
Proof. Let u € C2°(BY) and we define U = H(u) = H(u). Then U € H'(RY+%;19)
thus by Lemma 5.3 and a density argument we get

2 a 2 a—1772 2
NIy, < /RNHt VU Rdz — ka0 /RN ey d:z:+c/RNU da.
+

Since u = U on BV, it follows that

2 2 a-1,2 2
Cllulyagomy < by =0 [ lal e s [ alde
Let r € (0,1) we derive from the above that for every u € C2°(BN(0,r))
(5.18)

CHUH%/VT%I(BN(OJ‘)) < ||U||3%S(BN(0,,«)) —70/

2|2t dx + c/ u?dz,
BN(0,r)

BN(0,r)

with ¢,C' > 0 independent on r. This holds because [[ull s~ (0.r)) = llull s (85 (0,1))
as long as u € C°(BY(0,7)) and r < 1.

It is clear from (5.18) that wee need only to show that there exists a constant
Cy > 0 such that for every u € C°(BY)

2 2 a—1_ 2
(5.19) o) /BNu do < [lully ) — 0 /BN [ Lu2dz.
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Before proceeding, we recall that the mapping o — 7, (defined in Lemma 3.1) is

decreasing. We will use this fact and the estimates in Lemma 3.2 to conclude the

N — 2s
0
aG(, 5 >

(5.20) (Yo — Ya)r® L — ¢ > 0.

proof. Pick

and let » > 0 be so small that

As we did in Section 4, by (5.18), we can define the space 7% (BY(0,r)) with
b(z) = yolz|*"! — c. Letting 2 < p+ 1 < 125, we can choose ¢ (close to 2) so that
W (BN (0,7)) is compactly embedded into LPT*(BN(0,7)). Then minimization

procedure implies that there exits a nonnegative and nontrivial u, € jﬁfb(BN (0,7))

solution to
Bsu, 4 cuy — 0|z tu, = Cuf in BY(0,7).
By density
(5.21) (—A)*dy + ety — olz* '@ = C@,? in D'(BN(0,7)).
We have, by (5.20),

(=A@ = Yalz|" iy > (0 = 7)r* " = &)ir + C@F > Ca,? - in D'(BY(0,7)).
Therefore by Lemma 3.2, there exists a constant C, > 0 such that
(5.22) wp > Cylz|~ "2 in BN(0,r/2).

For every k € N, take v* € (BN (0,r)) as the solution to

Bsvg + cvp — (y0 — 1/k)|x|* Loy, = Cmin(uP, k) in BY(0,7).
Since u, satisfies (5.21), it follows (see Remark 2.9) that
(5.23) u. > v, >0 in BN(0,r)

by Lemma 2.3 and Lemma 2.2.
Put Vi, = H(vx) we have that for any ¥ € H&’T(BN(O,T);t“)
(5.24)
rg ! / t'VVi - VUdz = (y0— 1//<;)/ 2| Lo Uda — c/ v Udx
RY+1 BN(0,r) BN (0,r)

+

+C min(u?, k)Vdz.
BN (0,r)
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Thanks to (5.22), we can choose 1’ € (0,7/2) (small) such that
(5.25) —c+CuP~t>1 in BN(0,r).

For such a fixed 7/, take ¢ € C°(BN(0,7")). For e > 0, set Vi = Vi, + ¢ and put
= %}?. We have

IVH()|* = |VEVY|* + VV - V(VE?)

and also VEy? € H017T(BN(0, r);t*). This together with (5.24) yields

~1 a 2 a-1_Y 2
t*|\VH dxdt > —1/k ——p°d
7 [ R = ok [
—c/ Uk ordx
BN(0,) Vk T €
+C min(ur, k) 2 da.
BN (0,r") Vg + €
Thus
/1;1/ t\VH () Pdadt > (’yo—l/k)/ ]az\“_lv—kcp2da:—c/ O’ dx
RYH! BN (0,r") vt € BN (0,r")

min(u?, k)

+C pdr.

BN(0y) VkTE

By Fatou’s lemma, when € — 0, we have

Ryt / Y VH()Pdzdt > (y9 — 1/k‘)/ 2|t pPda — c/ O’ dx
RYT! BN (0,r") BN (0,r")
min(u?, k)

+C pdx.

BN (0,r") Uk

By (5.23) we obtain

/18_1/ t\VH (@) Pdedt > (70 — 1/l<:)/ 2| 2 da —c/ ©?dx
RYT! BN (0,r") BN (0,r")

min(uy, k)

+C oida.

BN (0,7) Up
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It follows again from Fatou’s lemma that

-1 a 2
Ky /Rf“t IVH(p)|*dzdt > 70/

lz|* L p?dx + / (—c+ Cul™ Y dx.
BN (0,r)

BN (0,r)

From the choice of 7/ in (5.25), we get immediately, for any » € C°(BN(0,1")),

-1 a 2 _
it o PV Pt 0 /

By scaling we have (5.19) which was our objective.

|zt p2da > / O’ d.

N(0,r") BN (0,r")

O
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