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UNIQUE CONTINUATION PROPERTIES FOR RELATIVISTIC
SCHRODINGER OPERATORS WITH A SINGULAR POTENTIAL

MOUHAMED MOUSTAPHA FALL AND VERONICA FELLI

ABSTRACT. Asymptotics of solutions to relativistic fractional elliptic equations with Hardy type
potentials is established in this paper. As a consequence, unique continuation properties are
obtained.

1. INTRODUCTION

Let N > 2s with s € (0,1) and © be an open subset of RV. The purpose of the present paper
is to establish unique continuation properties for the operator

a(7z7)

1.1 H:=(-A+m?)*® - -

(11) (~a+m?) = THE —ha),

where m > 0, a € C*(SV~1), and

(1.2) he CHQ\{0}), |h(@)|+ |z Vh(z)] < Chlz| 25X as |z| — 0,

for some Cj, > 0 and x € (0,1). Answers to the problem of unique continuation will be derived
from a precise description of the asymptotic behavior of solutions to Hu = 0 near 0.

From the mathematical point of view, a reason of interest in potentials of the type a(x/|x|)|z|~2*
relies in their criticality with respect to the differential operator (—A + m?)*; indeed, they have
the same homogeneity as the s-laplacian (—A)®, hence they cannot be regarded as a lower order
perturbation term. The physical interest in the study of properties of the Hamiltonian in (1.1) is
manifest in the case s = 1/2; indeed, if s = 1/2 and a = Ze? is constant, then the Hamiltonian
(1.1) describes a spin zero relativistic particle of charge e and mass m in the Coulomb field of an
infinitely heavy nucleus of charge Z, see e.g. [16,18].

Before going further, let us fix our notion of solutions to Hu = 0 in an open set ). For every
© € C*(RY) and s € (0,1), the relativistic Schrédinger operator with mass m > 0 is defined as

(13) A+ m?)pla) = exn PV, [ Mz{_ (mlas — yl) dy + m*o(z),
RN |1 — Yy 2

for every x € RY, where P.V. indicates that the integral is meant in the principal value sense and

— 9= (N+2s)/2+41 —F 92s s(1—s)
* re-s)’
see Remark 7.3. Here K, denotes the modified Bessel function of the second kind with order v, see
appendices B and C in sections 6 and 7. The Dirichlet form associated to (—A+m?2)* on C2°(RY)
is given by

CN

e ey
ot [ ) =o)0) —te)

(1.4) (u, ) gs ®Ny :

K xyzs (m]z —y|) dx dy

2 o — "%

+m? u(z)v(x)de,
RN
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where % denotes the unitary Fourier transform of u. We define HZ,(RY) as the completion of
C>(RY) with respect to the norm induced by the scalar product (1.4). If m > 0, H3 (RY) is
nothing but the standard H*(R¥); then, we will write H*(R") without the subscript “m”.

By a weak solution to Hu = 0 in €2, we mean a function u € HZ, (R™) such that

(1.5) (u, ) s (my) = /Q (Mu(x) + h(z)u(x)) p(x) dz, for all p € C°(Q).

|$|2s

We notice that the right hand side of (1.5) is well defined in view of the following Hardy type
inequality due to Herbst in [16] (see also [28]):

2
(1.6) AMS/ 4 (fs) da g/ €12 [(€) 2 dé < ull?, gy, for all u € Hy,(RY),
RN |Z] RN m

where
2 ( NZQS)

P25

A first aim of this paper is to give a precise description of the behavior near 0 of solutions to the
equation Hu = 0, from which several unique continuation properties can be derived. The rate and
the shape of v can be described in terms of the eigenvalues and the eigenfunctions of the following
eigenvalue problem

AN,s = 225

W —divgn (0172 Vgn1p) = p 021, in SY,
. —limg, Lo+ 07 **Vsntp - €1 = rga(0 )1, on os¥,
where
(l-s)

1. = iud=s)

(1.8) K 92s-1T(s)
and

SN = {(61,02,...,0n41) €SN 101 >0} = {ﬁ 2 eRNTL 2. e >o},

with e; = (1,0,...,0); we refer to section 2 for a variational formulation of (1.7). From classical

spectral theory (see section 2 for the details), if
Jor 0172 |V(0)[2dS — ks fon—1 a(60))12(0,6") dS’
(1.9)  pi(a):= inf + —
WEH(SY 01 2)\ {0} Jox 0177°92(0) dS

> —0Q,

then problem (1.7) admits a diverging sequence of real eigenvalues with finite multiplicity

pi(a) < po(a) <o < pgla) < ooy

the first one of which coincides with the infimum in (1.9), which is actually attained. Throughout
the present paper, we will always assume that

(1.10) 11 (a) > —(N_QS)Q.

2

Our first result is the following asymptotics of solutions at the singularity, which generalizes to the
case m > 0 an analogous result obtained by the authors in [9] for m = 0.

Theorem 1.1. Let u € H (RN) be a nontrivial weak solution to
a(fz7)

- EEE

(—A +m?)*u(w)

u(z) — h(x)u(z) =0

in an open set Q C RN containing the origin, with s € (0,1), N > 2s, m > 0, h satisfying
assumption (1.2), and a € C*(SN=1). Then there exists an eigenvalue px,(a) of (1.7) and an
eigenfunction 1 associated to pg,(a) such that

P2V ) i @y ) o HFEHV B e @y 0, 2) as 7 0%,




RELATIVISTIC SCHRODINGER OPERATORS WITH A SINGULAR POTENTIAL 3

in CL%(B\ {0}) for some o € (0,1), where B} := {x € RN : |&| < 1}, and, in particular,

loc

PR V() g (@), (70" = 1 (0,0) in CH*(SNTY) asT — 0T,
where SN —1 = 881.

The proof of Theorem 1.1 is based on an Almgren type monotonicity formula (see [1,14]) for
a Caffarelli-Silvestre type extended problem. Indeed, for every u € H*(RY) there exists a unique
w=H(u) € HY(RYT;#172%) weakly solving
—div(t =% Vw) + m2t=2w =0, in RYT,
w = U, on 8RN+1 {0} x RV,
where RY*t = {2 = (t,z) : ¢t € (0,+00), * € RV} and HY(RYT!;#172%) is defined as the

completion of C° (Rf *1) with respect to the norm

1/2
— 1—-2s 2 2
[ (/Rf“t (IVu(t.2)P +w (t,x))dtdx) .

Furthermore,

ow
— i t1725_
A e
in a weak sense, see Theorem 7.1 in Appendix B. Therefore u € H*(R") weakly solves H(u) = 0

in  in the sense of (1.5) if and only if its extension w = H(u) satisfies

= Ko(—A +m?)*u(z), in H*RY),

—div(t' =2 Vuw(t, 7)) + m?t1 25w = 0, in RY
(1.11) w(0,z) = u(z), in RV,

—limy_,o+ t1 256”(15 x)*ns( (‘ /“ Derhw) in Q,

in a weak sense. The asymptotics provided in Theorem 1.1 follows from combining an Almgren type
monotonicity formula for problem (1.11) with a blow-up analysis; see [10-12] for the combination of
such methods to prove not only unique continuation but also the precise asymptotics of solutions.
We also refer to [4,9] for monotonicity formulas in fractional problems.

As a particular case of Theorem 1.1, if a = 0 we obtain the following result.

Corollary 1.2. Let Q be an open bounded subset of RN and u € HE (RN) be a nontrivial weak
solution to

(1.12) (=A +m?)%u(z) = h(z)u(z), inQ,

with s € (0,1) and h € CY(Q). Then, for every zo € Q, there exists an eigenvalue g, = i, (0) of
problem (1.7) with a = 0 and an eigenfunction 1 associated to py, such that

N_ [(2s=N
2

(1.13) 72 V4 hhoy (2 + 7(2 — 0))

+V/( J””“OQ/JOC”C”U) as T — 0T,

V |z—x0]

— |$—x0|7
in Ct*({z e RN : x — g € B}}).

A relevant application of the asymptotic analysis contained in Theorem 1.1 and Corollary 1.2 is
the validity of some unique continuation principles. A direct consequence of Theorem 1.1 is the
following strong unique continuation property, which extends to the case m > 0 an analogous result
obtained for m = 0 in [9].

Theorem 1.3. Suppose that all the assumptions of Theorem 1.1 hold true. Let u € HS (RN) be a
weak solution to
a(g)

|$|2s

(—A +m?)su(z) — u(z) — h(x)u(x) =0

in an open set Q@ C RN containing the origin. If u(x) = o(|z|") = o(1)|z|" as |x| — 0 for alln € N,
then u =0 in €.
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We mention that recently some strong unique continuation properties for fractional laplacian
have been proved by several authors, see [9,13,21,24,29]. Corollary 1.2 allows also to prove
the following unique continuation principle from sets of positive measures, which implies, as an
interesting application, that the nodal sets of eigenfunctions for (—A + m?)® have zero Lebesgue
measure.

Theorem 1.4. Suppose that u is as in Corollary 1.2. If u =0 on a set E C ) of positive measure,
then u =0 in Q.

A direct application of Theorem 1.4 can be found in [13], where the authors proved the case
N =1and m =0.

Remark 1.5. We point out that the results presented above still hold for the more general nonlinear
problem
a(1z7)

|z[28
which was considered in [9] for m = 0. Assuming that

feCHQXR), t F(x,t) € CHQxR),

|f(z, Ot + | fl(z, )| + |V F(z,t) - 2| < Cr|t|P for a.e. x € Q and all t € R,

(A +m?)u = (@) + h@)u(e) + f(2,u),

(1.14)

where 2 < p < 2%(s) = NQTN%, F(x,t) = fot f(x,r)dr, the asymptotics of Theorem 1.1 and the unique
continuation principles of Theorems 1.8 and 1.4 still hold. Since the presence of the nonlinear
term introduces essentially the same difficulties already treated in [9], we present here the details
of proofs only for the linear problem focusing on the differences from [9] due to the introduction of

the relativistic correction.

Beside the above unique continuation properties (UCPs), several results of independent interest
will be proved in this paper. Indeed, to prove the UCPs, we transform, in the spirit of [9], problems
of the type

(1.15) (—A +m?)%u(z) = G(z,u), inQ,

into the problem

—div(t'=2*Vw) + m?t1 725w = 0, in Rf“,
(1.16) w = u, on RV,
—limy tlfQS%—lf = ks(—A +m?)*u = k;G(z,w), in Q.

Such extension is a generalization of the Caffarelli-Silvestre extension [4] and it is a particular
case of more general extension theorems proved in Section 6. We actually derive asymptotics of
solutions and unique continuation for problems of type (1.15) as a consequence of asymptotics and
unique continuation for the corresponding extended problem (1.16).

In sections 2, 3 and 4 we present some preliminary results including some Hardy type inequalities,
Schauder estimates for boundary value problems related to (1.16) and a Pohozaev type identity.
These latter preparatory results will be used in the study of the monotonicity properties of the
Almgren type frequency function associated to the extended problem (1.11); in section 5 a blow-
up analysis of the extended problem will be also performed thus leading to the proof of Theorem
1.1 and, as consequences of Theorem 1.1, of Corollary 1.2 and Theorems 1.3 and 1.4. Finally, in
Section 7 we describe some properties of the relativistic Schrodinger operator (—A + m?2)s.

2. HARDY TYPE INEQUALITIES
Let us denote, for every R > 0,
Bh={z=(t,x) eRY* : || <R}, Bj:={zeR":|z| <R},
St ={z=(t,x) e RYT" : |z| = R}.

For every R > 0, we define the space Hl(Bng; t172%) as the completion of C'> (B_IJg) with respect to
the norm

1/2
|wmmyﬁza</ H?%Ww@mﬁ+waw0ﬁw>.
R B;
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We also define H'(SY;6;7%%) as the completion of C"O(g) with respect to the norm

1/2
190 sy 0120y = < /S O (IVenp(0) + ¢2(9))d8>

+
and
L2(SY;012) = {1/; :SY -5 R measurable such that [ 0127%%(0) dS < +oo}.
+

We recall the Sobolev trace inequality: there exists Sy s > 0such that, for allw € DLQ(RfH; t1=29)

(N—25)/N
( / [0(0, 2) 2N/ (N =22) d:z:) do < S s / 125V (t, ) [2dt e,
RN RYH
where DV2(RY*1;#172%) is defined as the completion of C°(RY*!) with respect to the norm
(Jav+r 72| Vw(t, z)|2dt d:v)l/2 (see e.g. [9] for details). Using a change of variables and writing
+
w(z) = f(z])v(z/|z]), with f € C2(0,00), we can easily prove that there exists a well defined
continuous trace operator
Hl(Sf;ei—Qs) N L2N/(N—25)(a§f) — L2N/(N_2s)(SN_1),

so that, for some Cy ¢ > 0,

(21) 1900, )7 ensv-2egv-1y < Cn,s </N 617> |Vy(6)” dS + /SN 017> (0) dS)
5¥ +
for all v € HY(SY;617%%).
In order to construct an orthonormal basis of L?(SY;6;7%%) for expanding solutions to Hu = 0
in Fourier series, we are naturally lead to consider the eigenvalue problem (1.7), which admits the

following variational formulation: we say that p € R is an eigenvalue of problem (1.7) if there
exists ¢ € HY(SY;0,7°%) \ {0} (called eigenfunction) such that

Q. 9) = M/SN 612 9(0)9(0) dS, for all # € H'(SY;012%),
y

where

Q: HY(SY;60172%) x HY(SY;0172%%) - R,
+Y1 +Y1

Q(, V) = / 0172V(0) - VI(0) dS — ns/ a(0)v(0,0)9(0,6") dS’.
sy SN-1

If a € LNV/(29)(SN¥=1) and (1.9) holds, then we can prove that the bilinear form @ is continuous

and weakly coercive on H'(SY; 61 72%). Moreover, since the weight 172 belongs to the second

Muckenhoupt class, the embedding

HY(SY, 012) s L2(SY;0172)
is compact. From classical spectral theory, problem (1.7) admits a diverging sequence of real

eigenvalues with finite multiplicity p1(a) < pa(a) < -+ < pug(a) < --- the first of which coincides
with the infimum in (1.9) and then admits the variational characterization

22) @)= min TS
veH Y8} N0} Jon 01 "9 (0) dS

We assume that (1.10) holds. To each k > 1, we associate an L2(SY; 0] ~>*)-normalized eigenfunc-
tion ¥y € Hl(Sf; 0172%), 41, # 0 corresponding to the k-th eigenvalue yy(a), i.e. satisfying

(2.3) Q( Yy, V) = uk(a)/ 017> (0)9(0) dS, for all ¥ € H'(SY;0172%).
5y
In the enumeration py(a) < pa(a) < -+ < pg(a) < ---, we repeat each eigenvalue as many times

as its multiplicity; thus exactly one eigenfunction ¢, corresponds to each index k € N, k > 1. We
can choose the functions ¥ in such a way that they form an orthonormal basis of LQ(Sf ; 9%_28).
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The following results will be useful to prove Hard-type inequalities for the potential a(z/|z|)|z|~2*

with a belonging to some LP space; indeed, the Hardy inequality for this potential involves only
u1(a) whose corresponding eigenfunction is simple.

Lemma 2.1. Ifa € LN/?(SN=1) and a satisfies (1.9), then ui(a) is attained by a positive mini-
mizer. Moreover, the mapping a — p1(a) is continuous in LY(SN~1) for every ¢ > N/(2s).

Proof. The first assertion is classical thanks to the Sobolev-trace inequality on SY (2.1), so we
skip the details. Now let ¢ > N/(2s) and a,, € LY(SN~!) such that a, — a in LY(SN™') (and an,a
satisfy (1.9)). For every ¢ € C° (Sf), 1 # 0, using Holder inequality, we can see that

s (an) < fsg Gi—2s|vw(9)|2 dS — kg fSNfl an (0)02(0,8) dS'
o o 20105
- fsf 01725V ()% dS — s Jun 1 al6)02(0,6') dS”
) T 0 as
llan, — a||LN/<2s>(SN*1)||¢(O, -)H%ZNANQS)(SN,I)
Jo 017 02(0) dS :

So, choosing v to be a minimizer for u;(a), we get

+ Ks

p1(an) < pa(a) +o(1), asn — oo.

Define C5 = {0 € SY : dist(0,0SY) < 6} for all 6 > 0. Let x5 € C>(SV) be such that ys =1
on Cs and xs = 0 on SV \ Cas. Next, let 1, be a positive minimizer for y;(a,) normalized so that
Jon 0772°92(0) dS = 1. Then

N

— divgn (01 7% Venthy) = pir(an) 01>,  in SY,
—limg, Lo+ 012 Vnthy, - €1 = Ksan(0)n, on osy.

Multiply the above equation by 1, X% and integrate by parts to get

/ 0172 X3 | VUul* (0) dS + 2 / 0172 Vb - X5 Vx5 (6) dS
s ¥

+ 5¥
< (@) +o(1) + . |
SN

Hence by Hélder’s inequality

L o9t as - [ o1 waslui) s
T

S¥

anX312(0,0') dS’.

< 411(a) + 0(1) + A [anl| /20 ap) [ Xt (0, ) [Zans w20 gy
and thus

[ o v w0 ds

S
< C(a, N, S, (5) (1 + ||an||Lq(SN71)|ng|(2sq_N)/28qHXMPn(O, ')”%ZN/(N—ZS)(SN—I))

for some positive constant C(a, N, s, ) depending only on a, N, s,d. Therefore, provided § is small,
by the Sobolev inequality we infer

/ 01725 |V, |?(0) dS = / 01725V (x51n)|?(0) dS < 2C(a,N,s,8) for all n € N.
C5 CJ

Similar arguments can be performed on geodesic balls of Sf with radius 6. By covering Sj\_f \Cs/2
with such finite small balls and with a classical argument of partition of unity, we conclude that

/ 01725V |?(0) dS < const, |1 (an)| < const.
N

5%
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It turns out that, up to subsequences, 1, converges weakly in H 1(Sf ;9%725) and strongly in
L*(S¥ ;017%%) to some nontrivial function t, which can be easily proved to be the positive (or
negative) normalized eigenfunction associated to uq(a); it then follows easily that the convergence
holds for all the sequence (not only up to subsequences) and that p;(a,) — p1(a) asn — oo. [

Lemma 2.2. Ifa € LY(SN™1Y), with ¢ > N/(2s), then

N -2
(2.4) / t1725|Vw|2dtd:c—iis/ MMde+7s/ t25w? dS
B PP i 2r Jsf
N —2sY 1o W2
> 2y
_<,u1(a)+( 5 )>/Bi BE 2

Proof. By scaling, it is enough to prove the inequality for r = 1. Let w € C'* (B_f) We have that

X N -2 X
(2.5) / 1725 | Vw|? dt de — ks / Mw2 do + —=2 / t1=25? dS
BY B lof* 2 st

for all v >0 and w € HY(B;F;t172%).

’
1 1

2
N -2
:/ o2 Vw(z)~i de + [ —=2 / t25w%dS
Bf 2| 2 s

1 pN+1725
+/ 7(/ 91—28|VSNw(p9)|2dS—ns/ a(9’)w2(p9’))dp-
0 Sif SN*I

2

From [9, Lemma 2.4] we have that

2 2

N —2s N —2s w?
9. RESE 2\ / A=2s,276 > / RESE d
(2.6) /B1+ (Vw(z) |z|> z+ ( 5 ) 53 wdS > 5 - BE 2,

whereas, from (2.2) it follows that

1 pN+1—25
en T( [ o5 o) ds - . | a<9’>w2<p9'>>dp
0 sv SN-1

+
L pN+1-2s Ly w2
> ,ul(a)/ — </ 0;~ st(pﬁ)dS> dp = ,ul(a)/ t1725—2 dz.
0 P sy Bf 2|

The conclusion follows from (2.5), (2.6), and (2.7) and density of C’OO(B_fr) in HY(B ;%) O

Corollary 2.3. Ifa € LY(SN1), with ¢ > N/(2s), satisfies (1.10), then there exists Cy n.s > 0
such that

/ t1725|Vw|2dtdzfn/ 7a(z/|z|)w2d:€+7]\7725/ t1=25w? dsS
Bf “Jp |zl 2r Jst

N -2
> C’a,N,s</ 172 | Vw|? dt da + S/ (=252 dS>
Bt 2r S,T

for allr >0 and w € HY(B;F;t172%).

’
” ™

Proof. By scaling, it is enough to prove the inequality for r = 1. We argue by contradiction and
assume that, for every ¢ > 0 there exists w. € H*(B;;#172%) such that

N -2
/ t172s|vw8|2 dtdr — Hs/ ng dx + 78 / t172sw? ds
Bf By | 2 st

N -2
<€</ 1724 | Vo, 2 dt da + S/ #1282 dS>
Bf 2 s

1

i.e.

N -2 1—¢)t
/ 725 | Ve |* dt do + i / 7 2502? dS — Ky / (1=¢) a(z/|z|)w§ dx < 0.
Bf 2 Jsf B ||
1 1 1
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From Lemma 2.2 it follows that

a N — 25\2
tl 2s sd
(“1(1_5)+( 2 ))/B+ e <0
a N — 25\2
(=) + (55—) <o

On the other hand, from Lemma 2.1, letting ¢ — 0, we obtain pq(a) < 7(%)2, thus contra-

dicting assumption (1.10). U

and hence

The following corollary follows from Proposition 6.2 and Corollary 2.3.

Corollary 2.4. If a € LI(SN™1), with ¢ > N/(2s), satisfies (1.10) and Coqn,s > 0 is as in
Corollary 2.3, then

2. [ e [ B ez ey [ e

for all w € H§(RY).

Remark 2.5. We notice that, if ¢ > N/(2s), then the best constant in inequality (2.8) depends
continuously on a € LY(SN1). Indeed, if Cy ns is the best constant in (2.8), arguing as in [26,
Lemma 1.1] and exploiting the compactness of the map Hl(Sf; 0;7%) = R, ¢ fSN71 ay? (which
easily follows from (2.1)), we obtain that

Jprve1 12 Vw dt de — ks [on 2] a(z/|z|)w? do
Ca,N,s = inf + 1—2 3
DLaRY -2\ {0) Jpyer 1720Vl de da

Sy Pl e/l ds

D1’2(Rf+1;t1*25)\{0} fRil+1t S|V’LU| dt dz

s fanr al0)12(0,0") dS’

=1- max 5

VeI Y00} fox 077V (0)PdS + (8522)” fon 017 7792(0) dS

From the above characterization of Cy n.s it is then easy to prove that, if a, — a in LI(SN~1),
then Cq, n,s = Cq,N,s S 1 — +00.

Combining Corollary 2.3 with [9, Lemma 2.5] we obtain the following estimate.

Corollary 2.6. If a € LY(SN™"), with ¢ > N/(2s), satisfies (1.10), there exists C}, . > 0 such
that

N -2 , §
/ 1725V ? dt i — fﬁs/ Muﬂ dr + 75/ £-25052 48 > ! NS/ w2 i
B B |z|* 2r Jsyf 0 e |@*

for allr >0 and w € HY(B;F;t172%).

3. SCHAUDER ESTIMATES FOR DEGENERATE ELLIPTIC EQUATIONS
As stated in Section 1, for u € H*(R"), the nonlocal equation
(A +m?)*u = G(z,u), inQ,

can be reformulated as a local problem by considering its extension in Rf“. Indeed, letting
w e HY(RYT!;#172%) be the unique weak solution to the problem

—div(t'=2*Vw) + m?*!72*w =0, in RYT
w = u, on RY,

we have that

— lim #1728 8_11)

. o 2\s :
lim at—fis( A+ m*)%u, in
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in a weak sense. This will be proved in the appendix A. This naturally leads to the study of
regularity properties of solutions to

{div(tlQSVw) +m?t1 25w = F(z,w), in Qx (0,7T),

—lim;_,q tlfQS%—lf = G(z,w), in €,

which is the content of this section.
Before going on, let us state the following weighted Sobolev inequality whose proof is essentially
contained in the book of Opic and Kufner, [20].

Lemma 3.1. Let N > 2s. Then there exists a constant Sy s > 0 such that for every v € CL(RN*1)

we have
Ng—2

Ns
(3.1) (/ t1—2s|U|N2‘SN%2 dtdm) < SN,S/ t1_28|V1}|2 dt du,
RN+1 ]RN+1
+ +

where Ng = N + 2 — 2s.

Proof. We have, see [20, Section 19], that

Ng—2

Ns
</ £ | W3 dt dm) <Cy.s </ 72| Vol dt d +/ 20 dt dw) :
RN+1 RVt RYH!
+ + *

Using simple scaling argument, we obtain (3.1). ]

We will also need the following result.

Lemma 3.2. Let a,b € LP(BY), for some p > 2—]\2 and c,d € LB} ;t'72%), for some q > %
Let w € HY (B ;#'72%) be such that

- tli%l+ 7250w = a(x)w + b(x), on Bj.

{—div(tl_QSVw) + 17 2c(2)w = t172%d(2), in B,

Then there exits a constant C > 0 depending only on N, s, ||a||L»(B:), HCHLQ(BT‘tl—Zs) such that

Hw“Hl(Bfr;tl*ZS) S C (Hw”LQ(BT;tl*ZS) + ”b”Lp(Bi) + ||dHLq(Bl+;t1*23)) .

Proof. The proof is not difficult taking into account the weighted Sobolev inequality (3.1) together
with the Sobolev-trace inequality: for every v € CH(RN+1)

CN,s/ [0(0,2)| V% da < / 1725V (t, 2) |2 dt da.
RN RY+1
We skip the details. ]

Proposition 3.3. Let a,b € LP(B}), for some p > N/(2s) and c¢,d € LI(Bj;t172%), for some
q> 222 Letw € HY(B);t17%%) be a weak solution of

—div(t! =% Vw) + 172 c(2)w < t172%d(2), in By,
(3:2) — lim " *0,w < a(z)w + b(x), on Bj.
t—0+t
Then

sup wt < C(||w+||L2(Bl+;tlfzs) + 167 Loy + Hd+||Lfl(Bl+;t1*23))’
Bl/2

where wt = max{0,w}, and C > 0 depends only on N, s, [|a™[|Le(py), le™ || po(pr 20y

Proof. Let k = max(|\d+|\Lq(Bl+_t1,25), 07l »(B7)) or an arbitrary positive small number if
max(”d*||L(,(Bl+;t1,23)7 16|z (B7)) = 0. For every L >0, set W = w" + k and

_ w, ifw< L,
wr, =
k+L, if w> L.
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Put
B
W=wiw, =0 (ww—k"")eH (B;t'%),

for some 3 > 0 and some nonnegative function 7 € C}(B;” U B}). Following [17,25], testing (3.2)
with ¢, integration by parts, we have

(3.3) / 1BV < (14 B)iC / P22 (Va2 + 1)
Bf Bf

1
-+

+2(1+8) / R (c* T %) (nW)2,

B

for some positive constants d, 0 depending only on N, s and C' depending only on N, s, HaJrHLp(Bl).
By using Holder inequality, we get

d+
1-2s( — 2 - 2
(3.4) /B (e ) 0 < e g + DI oy oy
1
. 2
= CUllW Pl 7
Since 1 < q% < NJEESQS, by interpolation and Young’s inequalities, we have

201(1+ B) | (W2 I sgzze .+ (L B CIW)] 1

< -
LTT(Bf) ~ 28y, (BF)

By the weighted Sobolev inequality (3.1), we have

[P sz < S /B TP,

1
Using the two inequalities above in (3.4), we get
d+

1 s
1-2s( — | O 2 o 2 1-2s 2 $ 2
2048) [ 07 )W < g [TV (DI

Putting this in (3.3), we obtain

/ 12w < C(1+ B)b /
Bt

20 + V)W
Bf

At this point, the argument in [25, Proposition 3.1] yields the result. U
The next result is a weak Harnack inequality.

Proposition 3.4. Let a,b € LP(B}) for some p > N/(2s) and ¢,d € Li(B{;t'=2%) for some
q>ME2=2 Let w € HY(B];t17%%) be a nonnegative weak solution of

55) {div(tlQSVw) +c(2)t1 725w > t172%d(2), in By,

- 151_1}1%1+ 1250w > a(x)w + b(z), on Bj.

Then for some pg > 0 and any 0 < r <1’ <1 we have that

illfw + 107 ey + ||d7HLq(Bl+;tlf2s) 2 C”wHLPO(tl*%,B,ﬁ)’

r

where C > 0 depends only on N,s,r, 7", |la”||Ls(B1), HC*HLq(BT;tl,QS).

Proof. Set w = w + k > 0, for some positive k to be determined and v = w—!. Let ® be any
nonnegative function in H'(B; ;¢!~2) with compact support in B; U Bj. Multiplying both sides
of the first inequality in (3.5) by W~ 2® and integrating by parts, we obtain

/ tl_QSVUVd)—i—/ t1_255(z)v<19—/ avd < 0,
Bf B B

7
1
where
. aw4+b" _ ctw+d
a=——", C=——.
w w
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If max((|b~[|zs (1), ||d_HLq(Bl+;t1,23) # 0 then we choose k = max(||b™||Lr(5), ||d_||Lq(Bl+;t1,23).
Otherwise, choose an arbitrary & > 0 which will be sent to zero. Therefore Proposition 3.3 (see
also [17]) implies that for any +' € (r,1) and any p > 0

supv < CHU”LP(B*/;H*ZS)'
B "

Following exactly the same arguments as in [25], we get the result. Ol
We now prove local Schauder estimates.

Proposition 3.5. Let a,b € LP(Bj}), for some p > % and c¢,d € LB ;t'7%), for some q >

7N+§725. Let w € Hl(Bf';tl’QS) be a weak solution of

(36) {—div(tl_Qst) + 1725 ¢c(2)w = t172%d(2), in B,

- tl_i}r(% 1250w = a(x)w + b(z), on Bj.

Then w € CO’O‘(BTN) and in addition

Il go.n 5y < € (Iellzagngy + llrcsy + Il o))
with C,a > 0 depending only on N, s, [|al|Ls(B;) Hc|\Lq(Bl+;t1,25).

Proof. The proof is a consequence of Propositions 3.3 and 3.4 with a standard scaling argument
for which we refer to [15].

Remark 3.6. Let w € H' (B} ;t'72%) be a weak solution of

(3.7) {div(t”m(zww HHEe(z)w = £1-2d(z),  in BY,

a tli%l+ 70w = a(z)w + b(x), on By,

with a,b, c,d as in Proposition 3.5 and the matriz A satisfying
C1l€? < A(2)€- € < Col¢]* forallz € Bf, € e€RY,

with C1,Cy > 0. Then the same conclusion as in Proposition 3.5 holds taking into account the
constants Cy, Cs.

Proposition 3.7. Let a,b € C*(B}) and Vic,Vid € L=(B), for some k> 1 and i =0,...,k.
Let w € HY (B ;4172%) be a weak solution of

—div(t! 72 Vw) + t172%¢c(2)w = t1725d(2), in B,
(3.8) — lim t'"#0,w = a(x)w + b(x), on Bj.
t—0+

Then fori=1,...,k we have that w € C**(B;}), for some r € (0,1) depending only on k, and in
addition

k k
> 195l 57y < € Wollgag sy + lallnapy + bllorcar + 3 1756, Vilamiag ).
=1

i=1

with C,a > 0 depending only on N, s, k,r, H‘IHL“(Bi/Z)a ||c||Loo(B+/ )
1/2

Proof. Let h € RY such that |h| < 1. Then we have

—div(t1 =2 Vwh) + #1725 ¢(2)wh = 1725 (2)w + t172d"(2), in BT/Q
— lim t7729,w" = a(z)w" + a"(z)w + b"(x), on B,
t—0+ 1/2
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f@tzth)—f(
h

where we denote f/(t,z) = t’m), for t > 0. Applying Lemma 3.2, Proposition 3.3 and

Proposition 3.5 we get

h h R
o™ 2 s, yer=2e) 1l o 37

<C (Hwh”LQ(B:r/Z;tlf%) + ||ah’w + bh”LOO(Bi/Z) + Hchw + thLOO(BiF/Z;tlfzs))

S C (va||L2(Bl+/2;tl25) + ||wH + HVma,vmb”Loo(Bi/2) + ||VzC, vmd|L°°(Bl+/2;t125))

CO(B,)

1 1
e (nwuzwwzs) 3 Vi, Vibl sy + 3 Ve, v;dan(B;ﬂ))
i=0 =0

for some positive constant C' depending only on N, s, ||la||r=(5’ ), ||C||L°°(B+/ )- Therefore using
1/2

1/2
Fatou’s Lemma, we obtain Wy := V,w € Hl(Bf/Q;tl_Qs) N CO(BDQ),

1 1
(3.9) Vol (57, §C’<||w||L2(Bl+/2;tlzs)+Z IVea, Vibll (s, )+ I Vie, v;dlle<Bl+/2>>,

i=0 i=0
and
—div(t1725VWy) + t1725c(2) Wy = 17254 (2), in B;F/Q
- tli%1+ tH7250,W, = a(x)Wy + by (z), on By,

where di(z) = —Vzc(2)w+ Vgd(2) and by (z) = Vza(z)w + Vyb(x). Hence by Proposition 3.5 and
(3.9), we have

|\W1||Co,a(?+/4) <C (||W1|\Lao(31+/2) +101(@) [ Lo (sy,,) + N1 ()l oo+ ))

1/2

1 1
2 (IS »{L T TS LT
1=0 1=0

with C' > 0 depending only on N, s, ||a||Loo(Bi/2), ||c||Lw(?+/2).

the desired estimate for W; = Viw. 0

Iterating this procedure we get the

4. A POHOZAEV TYPE IDENTITY

In order to differentiate the Almgren frequency function associated to the extended problem (see
section 5), we need to derive a Pohozaev type identity, which first requires the following regularity
result.

Lemma 4.1. Let v € H'(B];t'72%) satisfy

(41) { div(t!=2Vv) + m?t!=20 =0, in B,

: 1-2 — /
- 1Hnt~>0Jr t Svt =9, on Bla

where g € C%Y(BL), v € [0,2 — 2s) (meaning that C%Y = L> if y = 0). Then for every ty > 0
sufficiently small there exist positive constants C' and o > 0 (with a > 0 if v > 0), depending only
on N, s,tg, m,~y such that

(4.2) [t vell o 0,0 x B ) < C (||U||L2(Bl+;t1—2s) + llgllcr s )) :

1/8 1/2
Proof. If m = 0, this was proved in [3]. We will assume in the following that m > 0. Next pick

n € C(B}) with n = 1 on Bj,, and 1= 0 on RN \ Bj . Then we have that 7g € L?(RY). By

minimization arguments, there exists W € H 1(Rf +1, t172%) satisfying

—div(£7BVW) + m# 72 W =0, in RYH
— limt_>0+ tl_QSWt =ng, on RN
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We define w = —t1~25TV; and we observe that w € L2(RY;¢71+2%) and

{— div(t~ 125 Vw) + m* 125w =0, in R

w = 1ng, on RV,

From Remark 7.3 and Proposition 7.4, it follows that w = P(t,-) * (ng), where P is the Bessel
kernel for the conjugate problem given by

N+2—-2s _N+2-2s
2

|| 2 Knaeo2s (m2]),
2

P(z) = Cgvﬁs t27%m
see (7.2); we refer to Section 6.1 for asymptotics of the Bessel function K.
Claim: w € C%7(RY ™) for every R > 0 and
(4.3) ||w||co,7(B—g) < ON,s,m,glINgllcoo @n)-
Indeed, by a change of variables, we have that

Ns

Ng
wlta) = Choa | (I ((emL+ 1)) © Ko ((m1+1)72) (a9) (o = )
where N, = N +2 — 2s. Let us set f(t,[y|) = (tm(1 + |y/>)V/2)N/2Kn. ((tm(1 + |y*)¥/?) and
u(xz) = n(x)g(z). Letting x1,22 € By and 0 <ty < t; < 1, we have
N
(4.4) w(ty, 1) — w(te, x2) = /RN(l + [yP?) " T (s ly]) — f (b2 ly)]u(z: — tiy)dy

Ns

+ / (14 2 fuler — try) — u(ws — tay))f (2, y])dy.
RN

Using the fact that Ky, = —Y= Ky, — K. , we infer that
e 2

Ns
2

:‘77" Ky, ;| <Cnsm for N > 2s.

It follows that
£t lyl) = f(t2, YD) < Cnvsmlts = t2](1+ [y]*) /2.
We recall that suppu C Bj , and observe that [y| < %(3/2 +2R) < +—2-(3/2 + 2R) provided

t1—t2

|z — t1y| < % Therefore

ws) [ ) E

Ftaslyl) = f(t2, lyDllu(@y — try)|dy

Ng—1

< Covenlts = tallull e | 1+ )5 dy

(Iyl< 2, (3/242R)}

|272s.

< On,sm Ul Lo m)lts — t2

Next we have, for v € [0,2 — 2s),

/]RN(l +[y1?)™F Juler — tay) = ulws — toy)||f (22, [y])ldy

NS 7&
< oo ol ey (1 = [ 1+ 0P) ¥ oyt oy =l [ (1412 % ay).
R R

Hence, for every v € [0,2 — 2s),
_Ns
[0 W% e — 1)~ u(ea — a1 Dy
R
< COnsmllullcor @™yl fll oo mr xr+) ([t — 2] + |21 — 22|7).
This, together with (4.5) in (4.4), proves the claim.
We have that U := v — W satisfies
{— div(£=2VU) + m?t1=25U =0, in By,

#1237, = 0, on By,
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and U := v — W € HY(Bf;t'72%). We deduce that, for some positive constants C, 3 depending
only on N,s,m,

HV§U|‘CO’B(B1+/4) S CSvamHUHLZ(BT;tI*QS) S C (”’UHLZ(BT;tl—Zs) + Hg||Loo(Bi/2))
by Proposition 3.7. We also observe that
—tIBALU — (U +mPt U =0, in B

Then, by integration, we obtain that, for every z € 31/4 and 0 < to,t <1/4,
to to
(4.6) ULt 2) =ty 2 Us(to, ) — / 2 AU (7, x)dr + m2/ 25U (1, x)dr.
t t

Therefore t1=2U; € CO’”‘(BI"/S) and thus t172v, = t172U, —w € CO’”‘(BI"/S) from which we

deduce that ||t172svt|‘cﬂ,ﬂ(?+/s) < CS7N7m (HUHLQ(BT;IEI*%) + ||gHCW(Bi/2)) by (43) ]

Let V satisfy
(4.7 Ve CHRN\{0}), |V(2)|+ |z VV(z)| < Clz|~?* as |z| — 0 for some C > 0.
Let w € H(B};t172%) solve

(4.8) { div(t'=25Vw) + m?t1 25w = 0, in B,

—lim, o+ t' 7222 (¢, 2) = k,V(2)w, on Bj,

in a weak sense, i.e., for all ¢ € C2°(B}; U Bj),
(4.9) / 1= Vw - Vo dt do + m2/ ' wpdt de = Kk, / V(x)wp dz.
RN+1 RN+1 B’
+ + R
The following Pohozaev-type identity holds.

Theorem 4.2. Let w be a solution to (4.8) in sense of (4.9), with V satisfying (4.7). Then, for
a.e. v € (0, R),

N -2 I(N+2-2
(4.10) - i / 1725 | Vw2 dz — w/ 25 widz
2 Bt 2 B

er

+ — t1*25w2ds+f/ 25| Vw|?dS
s 2 /st

2
:r/ =2 dS—E/
S 2 Jp

ow|?
(4.11) / 1725 Vw|?dz + mQ/ 25 w?dz = / tlfQSa—ww ds + KS/ V(z)w?(z) dx.
B B St 0 B

5 (NV(z) + VV(2) - 2)w? dz + T / V(x)w? dS’

OB,

!
8
and

14

/
s ™

Proof. We have, on B;g, the formula

1 N -2
(4.12) div (§t1_28|Vw|2,z 12 Vw)Vw) = Tst1_25|Vw|2 — (2 V) div(£ 2 Vaw).

Let p < r < R. Integrating by parts (4.12) over the set

0. := (B \ Bf) n{(t,x), t > ¢},
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with € > 0, we have

N_2 N+2-2
S/ t1725|Vw(z)|2dz+m2¥/ 1725020y — m2L t1=25w2dS
2 . 2 R 2 SEn{t>e}
2—2s
+m2E / w? (e, x)dx + m22 t1=2w?ds
2 B’\/ﬁ\B' — Stn{t>e}
ré—e pe—e
1 X
= ——52_25/ |Vwl|? (e, z)dx
2 B’ \B/
VAR
vere | fwn[ (e, )
B = \B
a 2

+ f/ t1*25|Vw|2dS—r/ t1-2 22 ds

2 Jsta{i>ey SEn{t>e} v

, dw |*

- B/ t1_2‘5|Vw|2dS+p/ t1-2¢| 22 ds

2 Jstngesey sfn{te} v
+ / (z - Vaw(e, x)) et 5wy (e, ) d.

B ye=\B s

We now claim that there exists a sequence €,, — 0 such that

lim 272 / |Vw|2(€n,x)dx+/

w2(5n,x)dx] = 0.
If no such sequence exists, we would have

liminf e2~2¢ / |Vw|2(5,x)dx—|—/ w? (e, x)dx| > C >0
B! B

e—0

’
T

and thus there exists £g > 0 such that

al

It follows that, for all € € (0, &),

1
_51725 /
2 B

and so integrating the above inequality on (0,£0) we contradict the fact that w € H(Bh;t172%).
Next, from the Dominated Convergence Theorem, Lemma 4.1, and Proposition 3.7, we have
that

for all € € (0,¢ep).

|Vw|2(5,x)dx+/ %

wQ(E,x)dac] >
B

’ ’
T T

|Vwl|? (e, x)dx + 51*25/ w? (e, z)dx > ¢
B 2e

/ /
T T

lim (z - Vyw(e, x)) et *wy(e, x) do = —HS/ (x - Vyw) V(x)wdx.
e—0 B’ \B/ B’\B’
22 /o222 r\Pp

We conclude (replacing O, with O, , for a sequence ¢, — 0) that

N —2s o N +2—2s

/ t1_28|Vw(z)|2dz +m — / t1 2502 dz
BI\BS BI\Bf

—m?L 129248 + m?22 12 w?dS = z/ t1_25|Vw|2dS—r/ =2
2 Js; 2 Sy 2 /s S;

78/ t1*25|Vw|2dep/ f1-2s
2 Sp+ s+

P

(4.13)

2

ow S

ov

ow

ov

2
s — KS/ (x - Vyw) V(z)wdx.
BI\B,
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Furthermore, integration by parts yields

1
(4.14) /B/\B/ (z - Vew)V(x)wdr = —= /B;\B;J (NV(z) +VV(x) - z)w? dzx

r

+ —/ V(x)w? dS’ — /—)/ V(z)w?*dS'.
2 Jon, 2 Jon,

Sincew € H! (BE; t172%) | in view of Hardy and Sobolev inequalities, there exists a sequence p,, — 0
such that

lim pn|:/ t1_28[|Vw|2+w2]dS+/ V()| + |=||VV|w?dS’
n—o0 S/jn 63;)71’

Hence, taking p = p, and letting n — oo in (4.13) and (4.14), we obtain (4.10). Finally (4.11)
follows the proof in [9, Lemma 3.1]. U

5. THE ALMGREN TYPE FREQUENCY FUNCTION

In this section, we introduce the Almgren frequency function at the origin 0 for the extended
problem associated to the relativistic operator (—A + m?)® and study its limit as r — 0. Let
R > 0and w € HY(B};t'72%) be a nontrivial solution to

(5.1)

—div(t!=2Vw) + t1=2m?w = 0, in B},
—limy_, o+ t' =252 Si(t,x) = ns(a(m/‘m‘)w + hw), on Bj,

‘1‘25

in the sense of (4.9). Arguing as in [9], it is easy to check that, for a.e. r € (0, R) and every

g€ C=(B})
al =
Ay / (‘””‘)w+hw Fdx.
ov B!, ||

The main result of this section is the existence of the limit as 7 — 07 of the Almgren’s frequency
function (see [1] and [14]) associated to w

(5.2) / 2 (Vw - V@ + m*w@) dz = /
B St

r l/ 72 (|Vw]? + mPw?) dt dz — ns/ (a(ﬁ{z'fl)w + hw?) da ]
B+

(53)  N(r)= == -
/ 1252 45
st

Theorem 5.1. Let w satisfy (5.1), with s € (0,1), a € CYSN71) satisfy (1.10), and h as in
assumption (1.2). Then, letting N (r) as in (5.8), there there exists ko € N, ko > 1, such that

(5.4) lim N(r):—N_28+\/(N_28) + pi, (a).

r—0+ 2 2

Furthermore, if v denotes the limit in (5.4), M > 1 is the multiplicity of the eigenvalue pj,(a) =
fiosr(a) = -+ = pipn—1(a) and {5 (Go < ko < jo+ M —1) is an L2(SY;0{7*)-
orthonormal basis for the eigenspace of problem (1.7) associated to py,(a), then

Jo+M—1 _
T Tw(70) Z Bibi(0) in CO’O‘(Sf) as T — 0T,
i=Jjo
Jo+M—1

7 Yw(0,76") Z Bii(0,60) in CH(SNTY) as T — 0T,

i=Jo
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for some o € (0,1), where

(5.5) Bi =R /SN 012 w(R 0);(0) dS

+

_ R—27—N+2s /RLNl ,.;S/ h(pf")w(0, pd")1;(0,6") dS’
0o 27+ N —2s SN-1 7 ,

—m2p? 2 /SN 01 w(pd) v (9) dS) dp

+

R 25—y—1
14 ’ ’ ’ /
s h(p0 ) 0 i 79 d
+ [ MN_QS(H L ooy, p0)00.0) a5

—m?p*? /S 02 w(p0)yi (0) dS) dp

N
for all R > 0 such that By, C Q and (Bjy, Bjg+1, - - - Bjo+ar—1) # (0,0,...,0).
From the Pohozaev-type identity (4.10) and (4.11) it follows that, for a.e. r € (0, R),

N -2 a(fz7)
(5.6) — i [/ 2 (|Vw]® + m*w?®)dz — ms/ ‘2‘ dex]
BF B |z[*
r 1—2s 2 2, 2 _ a(‘—i‘) 2 5qr
+ 2 |Vl + m*w?)dS — ks oW dS
2| Jor oB; |@[?
|ow|® : s ,
:r/ p1-2s| 20 dS—“—/ (Nh+ Vh-z)w?de + = / h?dS +m? | 2 wldz
S; v 2 B!, oB!, B;f

and

al -
(5.7) / 2 ([Vw? + mPw?) dz — Iis/ MwQ dz = / tlfQSa—ww ds + HS/ hw? dz.
B B |7* st 0 B

14

/
r

For every r € (0, R] we define

/ 1725 (|Vw]® + m*w?) dt do — KS/
+

(5.8) D(r) = TN%[ (“(”C”x')w? n h(:c)w2) dx}

B} B\ |z
and
1
_ Hp) — — — 1-2s, 2 Jq _ 1-2s 2 _
(5.9) (r) NTi /Si t % w*dS o 0;“*w*(rf)dS
Lemma 5.2. H € C1(0,R) and
2 ow
/ _ 1—2s

(5.10) H'(r) = N1 /Sit wa ds, for every r € (0, R),

2
(5.11) H'(r) ==D(r), for everyr € (0, R).

r

17

Proof. The proof of (5.10) can be performed arguing as in [9, Lemma 3.8] and using the regularity
results of Lemma 4.1 and Proposition 3.7. The continuity of H' on the interval (0, R) follows by the
representation of H’ given above, Lemma 4.1, Propositions 3.5, 3.7 and the Dominated Convergence

Theorem. Finally, (5.11) follows from (5.10), (5.8), and (5.7).
The regularity of the function D is established in the following lemma.

Lemma 5.3. The function D defined in (5.8) belongs to W' (0, R) and

loc
2
dS — kg /
B

in a distributional sense and for a.e. r € (0, R).

2 ow
’ _ 1-2s |
D'(r) = PN+1-2s [r /Si ¢ )

v

(sh + %(Vh : x))w2 dx +m?

t1_25w2dz]
B

/
r

O
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Proof. For any r € (0,79) let

(5.12) I(r) = / =2 (|Vw]® + m*w?) dt do — HS/
Bf

B

(%uﬂ + h(m)wQ) da.

Since w € H'(B};¢172%), from [9, Lemma 2.5] we deduce that I € W1(0, R) and

(5.13) I'(r) = /3+ (MwQ +h(:c)w2) ds’

4 |1.|25

125 (|Vw]? + m*w?) dS — HS/
oB!.

for a.e. 7 € (0,R) and in the distributional sense. Therefore D € W,.!(0, R) and, using (5.6),
(5.12), and (5.13) into

D'(r) = r? 1N (N = 28)I(r) + rI'(r))],
we obtain the conclusion. Ol
We prove now that, since w # 0, H(r) does not vanish for r sufficiently small.

Lemma 5.4. There exists Ry € (0, R) such that H(r) > 0 for any v € (0, Ry), where H is defined
by (5.9).

Proof. Let Ry € (0, R) such that 1 — nSChRBC(C;,N,S)fl > 0, with Ct/z,N,s as in Corollary 2.6.
Suppose by contradiction that there exists 9 € (0, Rg) such that H(rg) = 0. Then w = 0 a.e. on
St. From (5.7) it follows that

/ 2 ([Vw]? + mPw?) dz — Iis/
BY B

From (1.2), Corollaries 2.3 and 2.6, it follows that

wdzfns/ hw? dz = 0.
B

/
70

a(7z7)
0= / 1725 (|Vw]? + mPw?) dz — KS/ |2|5 w? dz — HS/ hw? da
B By, || Bl

0

> CVa,N,s(1 - ’ischr()f(ctllﬁjv’s)il) /+ t172S|Vw|2dz,
B/,

which, being 1 — x,Cprg (Cl, )" > 0, implies w = 0 in B} by Lemma 2.2. Classical unique
continuation principles for second order elliptic equations with locally bounded coefficients (see
e.g. [27]) allow to conclude that w = 0 a.e. in B}, a contradiction. U

Letting Ry be as in Lemma 5.4 and recalling (5.3), the Almgren type frequency function

(5.14) N(r) =

is well defined in (0, Rp).
Lemma 5.5. The function N defined in (5.14) belongs to Wli’cl (0, Ry) and
(5.15) N'(r) =vi(r) + va(r)

in a distributional sense and for a.e. v € (0, Ry), where

2| (for 172|521 dS) (S 12w dS) — (g 2w e dsﬂ

(5.16) v (r) = p)
(s 1= as)
and
2m? [+ t1725w?dz — ks [, (2sh + Vh - 2)w? dx
(5.17) (1) = Js: s, .

Jor 6202 dS

Proof. It follows from Lemmas 5.2, 5.4, and 5.3. ]
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Lemma 5.6. Let N be the function defined in (5.14). There exist R € (0, Ro) and a constant
C > 0 such that

(5.18) / 72 (|Vw]? + mPw?) dt dz — HS/ (710 + h(m)wQ) dx
+

B} B\ |z[*

N —2 o 2 i i 2
> - i / t172502dS + C / - ,d:c+/ t1_25|Vw|2dtd:c+/ 125 gt dy
2r s By |z[* B B |2

’
r r

a(z/lz])

and

(5.19) N(r) > —

for every r € (0, R).

Proof. From Lemma 2.2 and Corollary 2.6, it follows that

/B+ (Mw2 +h(x)w2) d:c+(N2_25) /sr t' 2 w?ds

; |25 r

172 (|Vw?+m?w?) dt dov—rk /
B

’
T

2,2 X
> (1 B m rN_QS - HCS”CM’ )(/ 11725\ Vaw|? dt dar
Ml(a) + ( 2 ) N,a,s B;f

N -2
_HS/ a($/|$|)w2 dr + S / A=25,,209
Byl 2r st

’
r

for every r € (0, Rp). The conclusion follows from the above estimate, choosing r sufficiently small
and using Lemma 2.2 and Corollaries 2.3, 2.6. Ol

Lemma 5.7. Let R be as in Lemma 5.6 and vy as in (5.17). There exists C; > 0 such that

N —2s
2

[a(r)] < Cy [N(T) +

for a.e. 7 € (0, R).
Proof. From (1.2) and (5.18) we deduce that

|’LU|2 ~—1 N—2s N—2s
< 2C)rX /B/ P dx <2C,C " rxt [D(r) + 85522 H(r)]

/B (2sh(z) + Vh(z) - 2)w? dx

’
T

and, therefore, for any r € (0, R), we have that
[, 2sh(z) 4+ Vh(z) - 2)w? dx
Jor -2 dS

D(r) + 552 H(r)
H(r)
N — 2s
o

(5.20) < 20,0 pltx

= 20,0 X {N(r) +

On the other hand, from (5.18) it also follows that

S+t 2 w?dz

Jor -2 w2 dS

——1

(5.21) <C r {N(r) +

N —2s
5 .

Combining (5.20) with (5.21) we obtain the stated estimate. U

Lemma 5.8. Let R be as in Lemma 5.6, N as in (5.14) and H as in (5.9). Then

(i) there exist a positive constant Co > 0 such that N'(r) < Co for all r € (0, R);

(ii) the limit v := lim,_,o+ N(r) exists and is finite;

(iti) there exists a constant Ky > 0 such that H(r) < Kir®Y for all v € (0, R);

(iv) for any o > 0 there exists a constant K»(o) > 0 depending on o such that H(r) > Ka(o) r®’*e
for all v € (0, R).
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Proof. By Lemma 5.5, Schwarz’s inequality, and Lemma 5.7, we obtain

N —2s\’ N-2
(5.22) (N+ 5 S) (r) > va(r) > —C4 |:N(T) + 5 S} poltx
for a.e. 7 € (0, R). Integration over (r, R) yields
N -2 ~ N -2 1 X
Ny < -2 S+(Nua+ QS)eiR

for any 7 € (0, R), thus proving claim (i).

By Lemmas 5.7 and 5.8, the function v, defined in (5.17) belongs to L' (0, R). Hence, by Lemma
5.5 and Schwarz’s inequality, N is the sum of a nonnegative function and of a L!-function on (0, R)
Therefore

_ R
N =N(B) - [ N (p)dp

admits a limit as r — 07 which is necessarily finite in view of (5.19) and part (i). Claim (ii) is
thereby proved. }
By (ii) N7 € L*(0, R) and, by (i), N is bounded, then from (5.22) and (i) it follows that

N =1 = [ N dp = ~Car
0

for all € (0, R). Therefore by (5.11) and (5.14), we deduce that, for all 7 € (0, R),
H'(r)  2N(r) - 2y
H(r)y r ~r

—14
- 2037’ X,

which, after integration over the interval (r, R), yields (iii).
From (ii) it follows that, for any ¢ > 0 there exists 7, > 0 such that N(r) < v+ § for any
r € (0,r,) and hence

!/
Hr) _ 2N () < 2y +o for all r € (0,7,).
r

Integrating over the interval (r,r,) and by continuity of H outside 0, we obtain (iv). U

5.1. The blow-up argument.

Lemma 5.9. Let w satisfy (5.1), with s € (0,1), h as in assumption (1.2) and a € CH(SVN~1)
satisfy (1.10). Let «y :=lim,_,o+ N(r) as in Lemma 5.8. Then

(i) there exists ko € N, ko > 1, such that v = — 8525 + \/(%)2 + Lo (@)
(ii) for every sequence T, — 07, there exist a subsequence {7y, }ren and an eigenfunction ¥ of
problem (1.7) associated to the eigenvalue py,(a) such that Hw”LQ(Sﬁ;_GifzS) =1 and

w(Tn, 2) ol 2
7H(Tnk) — |z Q/J(H)

strongly in HY(B;F;t172%) and in C%(B;\ {0}) for some a € (0,1) and all v € (0,1) and

loc

w(0, Ty, x) T
H(Tny) - |z|w(o, m)

in Cige (B \ {0}).

loc
Proof. Let us set
w(Tz)
H(r)
We notice that fs* t1725|w™ |2dS = 1. Moreover, by scaling and Lemma 5.8, part (i),

(5.23) w(z) =

/Br 172 (1907 ()P + m?7 |’ ()] ) dz HS/B <a('£_') + T2Sh(7':c)> W™ [2dz = N(7) < Cy

i |z|2¢
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for every 7 € (0, R), whereas, from (5.18),

T N+2s N —2s 1—92s 9 — 19 5
> — —2s —2s
N(r) > o < < 5 >/Sit w dSJrC/Bjt [Vw| dtdz)

N —2 —
S ke c/ 125 |V (2) 2d=
Bf

2

for every 7 € (0, R). From the above estimates, {w™}, e,k is bounded in HY(Bf ;t172%). There-
fore, for any given sequence 7,, — 0T, there exists a subsequence 7,,, — 0% such that w™ — w
weakly in H(B;;t172%) for some w € H'(Bj;t'~2%). Moreover, fST t1=25|w|2dS = 1 due to
compactness of the trace embedding H'(B;;t'72%) s L2(S{;¢;72%). In particular w % 0.

For every small 7 € (0, R), w™ satisfies

(5.24) —div(t'72Vw") + 2B mPwT = 0, in By,
' —lim, o t1720 280 = ﬁs(%uf + TQSh(T.T)’LUT), on Bj,

in a weak sense, i.e.

a(r)
/ 2 (V' Vg + m*m?w” @) dz = fis/ < |w2| w’ + TQSh(Tx)wT) ¢(0,z) dx
Bl+ B |$| °

for all p € HY(Bf;t'72%) s.t. =0 on SY and, for such @, by (1.2) and [9, Lemma 2.5],
728/ h(rx)w™$(0,2)dwv = o(1) asT — 07
By
and, by [9, Lemma 2.4],

7'2/ 25w pdz = 0(1) asT — 0.
BY

From weak convergence w™r — w in H'(B]";t'72%), we can pass to the limit in (5.24) along the
sequence T,, and obtain that w weakly solves

(5.25)

—limy_, g+ t1 72582 = g,

{div(t12svw) =0, in B},

ow _ . a(@/|z]) ~ /
por e W, on Bj.

From Proposition 3.5, we have that

w™r — w in CO’Q(B_;F\ {0}),

loc

while Proposition 3.7 and Lemma 4.1 imply that

in O (BF \ {0})

loc

~ ow™ 0w
(5.26) Vow™s — V@, and @0 1—25_1;

%
ot o)
for some a € (0,1) and all » € (0,1). By (1.2), [9, Lemma 2.
in HY(B;t'729), it follows that

5], and boundedness of {w™} ¢ g

(5.27) 7'25/ h(rz)|w™|?*de = o(1) as T — 0%,
By

and, by [9, Lemma 2.4],
(5.28) 7'2/ 25w P dz = 0o(1) asT —07T.
Bf

Multiplying equation (5.24) with w”, integrating in B;", and using (5.26), (5.27), (5.28), and

Corollary 2.3, we easily obtain that [[w™ || g1 g+ j1-20) = |0 g2 (gt 4120y for all 7 € (0,1), and
hence

(5.29) w™™ — w in HY(B;t'7%)
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for any r € (0,1). For any r € (0,1) and k € N, let us define the functions

1

Dk (T) = TN72S

[/ 2 (V™ 2+ mPr2 [w™e|?) dt da
B
a(é_ﬂ 2s Tn, |2
—hs | P + Ty W(Tny ) | W™k [2d
1

Hy(r) = m/g t1_28|wT"’k |2dS.

r

and

Direct calculations show that Ny (r) := gzg:; H(:"kT) ) for all 7 € (0,1). From (5.29),
T

N (7
(5.27), and (5.28), it follows that, for any fixed r € (0,1), Dy(r) — D(r), where
)

~ 1 alf)
D(r):TN_QS[/ 17|V dt do — s / e Qdac] for all r € (0,1).
B B!

The compactness of the trace embedding H'(B;';t'72%) <s< L2(S;;t17%%) ensures that, for every
r e (0,1), Hi(r) = H(r), where

7 1 1-2s5~2

Arguing as in Lemma 5.4, we can easily prove that H(r) > 0 for all 7 € (0,1) and the function

(5.30) N(r) =

is well defined for r € (0,1). From Lemma 5.8 part (ii), we deduce that
N(r) = lim N (7, 1) =7

k—o0

for all 7 € (0,1). In particular, N is constant in (0,1) and hence N’ (r) = 0 for any r € (0,1). By
(5.25) and Lemma 5.5 with h = 0 and m = 0, we obtain

2
(/ ti=2s dS) : (/ tl—QSdeS) — (/ t= 2”2 dS) =0
St St St

for all r € (0,1), which implies that @ and 22 have the same direction as vectors in L?(S;; ¢172¢)
and hence there exists a function 1 = n(r) such that $2(r,0) = n(r)w(r,0) for all v € (0,1) and
6 € S¥. After integration we obtain

6_@
ov

(5.31) @(r, 0) = e/ 1UG5(1,0) = p(r)w(0), re(0,1), 08y,
where @(r) = /1 15)4s and (#) = @(1,6). From (5.25) and (5.31), it follows that

S (P20 0170 (0) 4 1712 (r) diven (0] Vs (0)) = 0,
—limg, Lo+ 0] 2 Vv p(6) - e1 = rsa(0)1(0,6").

Taking r fixed we deduce that 1 is an eigenfunction of the eigenvalue problem (1.7). If py,(a) is
the corresponding eigenvalue then ¢(r) solves the equation

o (r) + N+1-2s ;o [ko (@)

r 72
and hence p(r) is of the form

p(r) =0

. )
p(r) = exr%o + cyrFo

for some ¢y, co € R, where

_ o2 _ _ o2
O']:; = 7_1\/225 + \/(—NQ%) + po(a) and oy = ——N225 — \/(—NQ%) + g, (a).
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Since the function |z|a’;01/)(‘7””‘) ¢ L?(Bj;|x|~2%) and hence |z|a’;oz/1(ﬁ) ¢ HY(B{;t172%) in virtue

of Lemma [9, Lemma 2.5], we deduce that co = 0 and ¢(r) = clrd’jo. Moreover, from ¢(1) =1, we
obtain that ¢; = 1 and then

(5.32) @(r,0) = r7%(0), forallr € (0,1) and 6 € S
Substituting (5.32) into (5.30), we obtain that v = N(r) = ?IE:; = o,jo. This completes the proof
of the lemma. O

Lemma 5.10. If w satisfies (5.1), H is defined in (5.9), and v :=lim,_ o+ N(r) is as in Lemma
5.8, then the limit lim,_ o+ r=2YH(r) exists and it is finite.

Proof. In view of Lemma 5.8, part (iii), it is sufficient to prove that the limit exists. From (5.9),
(5.11), and Lemma 5.8 it follows that

d H(r)
dr r2v

=2 D) () =2 ) [N o

which, by integration over (r, R), yields

- 3 3
(5.33) HR) HE)_ [ nordo+ [ oo

R2Y r2Y

where fi(p) = 2p"2Y" H(p) ([ vi(t)dt), i = 1,2, and vy and v are as in (5.16) and (5.17). Since,

by Schwarz’s inequality, 11 > 0, we have that lim,_ o+ fTR f1(p)dp exists. On the other hand, by
Lemmas 5.7 and 5.8, we have that

[f2(p)| <

2K,1C4 (02 n N — 23)p—1+x
X 2

for all p € (0, R), which proves that f, € L(0,R). Hence both terms at the right hand side of
(5.33) admit a limit as r — 0" thus completing the proof. ]

From Lemma 5.9, the following point-wise estimate for solutions to (5.1) follow.

Lemma 5.11. Let w satisfy (5.1). Then there exists C4y > 0 and 7 € (0, R) such that |w(z)| <
Cylz|” for all z € By, where v := lim,_,o+ N(r) is as in Lemma 5.8.

Proof. We first claim that

(5.34) sup |w|*> = O(H(r)) asr— 0.
st

In order to prove (5.34), we argue by contradiction and assume that there exists a sequence 7, — 0T

such that
2
sup w(T—HH)‘ > nH(T—n),
oesy 2 2
i.e., defining w” as in (5.23),
(5.35) sup |w™ (2)]* > 2N+172Sn/ 172w (2))?dS.
z€ST st

1/2 1/2

From Lemma 5.9, along a subsequence 7, we have that w™r — |z|”z/1(ﬁ) in CIOO’?(S;F/Q), for some

1 eigenfunction of problem (1.7), hence passing to the limit in (5.35) gives rise to a contradiction
and claim (5.34) is proved. The conclusion follows from combination of (5.34) and part (iii) of
Lemma 5.8.
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We will now prove that lim,_,o+ =Y H(r) is strictly positive.
Lemma 5.12. Under the same assumptions of Lemma 5.10, lim,_o+ r=27H(r) > 0.

Proof. For all k& > 1, let ¥, be as in (2.3), i.e. ¢ is a LQ(S%@%*QS)—normalized eigenfunc-
tion of problem (1.7) associated to the eigenvalue pr(a) and {tx}x is an orthonormal basis of
L2(SE;6,7%%). From Lemma 5.9 there exist jo, M € N\ {0}, such that M is the multiplicity of the

eigenvalue jj, (a) = prjo+1(a) = -+ = pj+nm-1(a) and
N —2s N —2sY o ,
~v= lim N(r) =— + +ui(a), i=joy...,jo+M—1.
r—0t 2 2

Let us expand w as w(z) = w(r0) = Y7, or(T)¢r(0), where 7 = |z| € (0,R], 0 = z/|z| € S,
and

Pr(T) = /SN 015 w(T 0)y (0) dS.

+
The Parseval identity yields
(5.36) H(r) = / 0125w (16) dS = Z ©i(r), forall0 <71 <R.
sy k=1
In particular, from Lemma 5.8 (iii) and (5.36) it follows that, for all k£ > 1,
(5.37) or(T) =0(T7) asT —07.
Equations (5.1) and (2.3) imply that, for every k,
N+1-—2s vr(a .
) - T B oy B () — ), in (0.),
where
(5.38) () = %/ h(10")w(0,70")¢x(0,0") dS" — m®py(7).
T §N—-1

A direct calculation shows that, for some c¥,c5 € R,

N R y—of41 _ R 4—o, +1
539 )=t (d+ [ ) s (G [ qwa),

O — Ok O — Ok

with off = — 852 + \/(%)2 + pg(a). From (1.2), (5.37), and Lemma 5.11, we deduce that, for
alli:jo,...,jo—f—M—l,

(5.40) Gi(r) = 0(772+X+"i+) as T — 0.

Consequently, the functions ¢ — ¢~ T1¢;(t), t — t=7 +1¢;(¢) belong to L'(0, R). Hence

ot 7 " p76j+1 o, +
7% [} + P — —CGi(p)dp | =o(r% ) asT— 0T,
- :

and then, by (5.37), there must be
) R t70;+1
0o 0; —0;
Using (5.40), we then deduce that
e R 407 +1 - T p—oi 41 .
sy o (e [ e a) = ([ ) =06
r O 0 ;

+
i 0 0; —0;

as 7 — 0%. Combining (5.39) and (5.41), we obtain that, for all i = jo,...,jo + M — 1,

i ) R tfa':r+1
(5.42) wi(T) =71% (czl + / ——G(t)dt + O(TX)> as 7 — 0.
s 0] —0;
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Let us assume by contradiction that limy_,o+ A™2YH(\) = 0. Then, (5.36) would imply that
lim, o+ 7ot wi(T) =0 for all i € {jo,...,j0o + M — 1}. Hence, in view of (5.42),

) R t—o’j-‘rl
& +/ ———G(t)dt =0,
0 Ui 70’1-

which, together with (5.40), implies

+

_ R —of+1 T —of +1
(5.43) 7ol <c§ + / %Q—(t) dt> s / L ) dt = O )
T O 0

i 0y 0; —0;

as T — 0F. Collecting (5.39), (5.41), and (5.43), we conclude that ¢;(7) = O(77 +X) as 7 — 0+
for every i € {jo,-..,j50 + M — 1}, namely,

H(r) (’U_)Tfl/))LQ(Sﬁ;G}fZS) = O(T'v+x> as T — 0t

for every ¢ € Ag = span{z/;i}{‘;;y*l, where A is the eigenspace of problem (1.7) associated to
the eigenvalue 15, (a) = pj,+1(a) = --- = pjoram—1(a). From Lemma 5.8 part (iv), there exists

C(x) > 0 such that \/H(7) > C(x)™*% for 7 small, and therefore
(5.44) (W, %) L2 sy 012y = O(r3) ast— 0t

for every v € Ap. From Lemma 5.9, for every sequence 7, — 0T, there exist a subsequence
{Tn, tren and an eigenfunction ¢ € Ay

(5.45) /S OTFRO)dS =1 and w™e = in LA(SY; 017,
o
From (5.44) and (5.45), we infer that

0= kgl}rloo(wﬂlk ) w)LZ(Sf;Gifh) = ||1/)||2L?(Si’;9i’25) =1,

thus reaching a contradiction. U

5.2. Proof of Theorem 5.1. Identity (5.4) follows from part (i) of Lemma 5.9, thus there exists

ko € N, kg > 1, such that v = lim, o+ N(r) = =852 4 \/(%)2 + p,(a). Let us denote
as M the multiplicity of uj;,(a) so that, for some jo € N, jo > 1, jo < ko < jo+ M — 1,
Wio (@) = pjo+1(a) = -+ = pjo+nm—1(a) and let {T/Jz}z:xn*l be an L?(SY; 01 **)-orthonormal basis
for the eigenspace associated to pg,(a).

Let {7 }nen C (0, +00) such that lim, 4o 7, = 0. Then, by Lemma 5.9 part (ii) and Lemmas

5.10 and 5.12, there exist a subsequence {7, }xen and M real numbers 8, ..., Bjo+m—1 € R such
that (ﬂjoaﬂjoJrla R 7ﬂj0+M*1) 7é (Oa 07 ) 0) and
jo+M—1
(5.46) Tl w(rn,0) & > Bigi(0) in CO(SY) as k — +oo,
=Jjo
jo+M—1
(5.47) T w(0, 75, 0") — Z Bii(0,0") in CH(SNTY)  as k — +oo,
i=Jjo

for some « € (0,1). We now prove that the ;’s depend neither on the sequence {7, },en nor on
its subsequence {7, }ren-
Defining ¢; and ¢; as in (5.37) and (5.38), from (5.46) it follows that, for any i = jo, ..., jo+M—1,

(5.48) T @i(Tn) = Bi
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as k — +o00. As deduced in the proof of Lemma 5.12, for any ¢ = jo,...,jo+ M — 1 and 7 € (0, R]
there holds

o [ i el or Tttt
(5.49) pi(t) =717 (C1 +/T ﬁ@(f) dt) +T (/0 ——G(?) dt)

0; —0;

7 A

7 A

i ) R tfa':r+1
= 7% <C11+/ ﬁé}(f)dlf‘i‘O(TX)) aSTg)()‘F,
e

for some ¢t € R. Choosing 7 = R in the first line of (5.49), we obtain

+ o p—
0; 0;

. _ R o, +1
o = ngjgai(R) N / 579(5) ds.
0
Hence (5.49) yields

N L R et R t—aj+1
T Tpi(T) = R pi(R) — R7: 7% / ——Gi(t)dt +/ ——Gi(t)dt
o 0, —O0; 0o 0, —O0;

as 7 — 07, and therefore from (5.48) we deduce that (5.5) holds; in particular the 3;’s depend nei-
ther on the sequence {7, }en nor on its subsequence {7, }ren, thus implying that the convergences
in (5.46) and (5.47) actually hold as 7 — 0T and proving the theorem. U

We are now in position to prove Theorem 1.1 and its corollaries.

Proof of Theorem 1.1. Let u € H*(RY) be a nontrivial weak solution to Hu = 0 in 2. By
Theorems 6.1 and 7.1 in the appendices there exists a unique w = H(u) € H*(RYT;#172%) weakly
solving

—div(t =2 Vw) + m2t 2w =0, in RYT,
w=u, on ORY T = {0} x RV,

which also satisfies
—(z) = ks(—A + mQ)Su(ac), in H_S(RN)

in a weak sense. Therefore w solves (5.1) in the sense of (4.9). Then Theorem 1.1 follows from
Theorem 5.1. ]

Proof of Corollary 1.2. It follows as a particular case of Theorem 1.1 in the case a = 0. U

Proof of Theorem 1.3. It follows from Theorem 1.1, observing that if, by contradiction, u Z 0,
then convergences stated Theorem 1.1 would hold, thus contradicting that u(x) = o(|z|™) as |x| — 0

it > — 852 4\ /(85200 4 gy (), O

Proof of Theorem 1.4. The proof follows from Corollary 1.2 arguing as in the proof of [9,
Theorem 1.4]. U

6. APPENDIX A: EXTENSION THEOREM

Let s € (0,1) and N € N*. Throughout this section RY ™' := {z = (t,z) : t > 0, z € RV}. Let

P(D) = P(D,) be a pseudo-differential operator with constant coefficients and Fourier transform
(symbol) P(¢) > 0 with order £ € R. We mean |P(£)| < C(1 + |€])*, for some positive constant C.
For every s € (0,1), define the s-power of P(D) as

P(D)*u(§) = P(§) u(§).

Assume that the bilinear form

(v) > [ (PE)yTdE = [ u(P(D))vda
]RN RN
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defines a scalar product in C2°(RY) for every s € (0,1]. Let H$(RY) be the completion of C2°(RY)
with respect to the above scalar product. Next we define the space H}, (Rf“; t172%) to be the

completion of C° (Rf 1) with respect to the norm

w2 1/2
(/ t' =% wP(D)w dxdt+/ =2 (—) dxdt) .
R+ R+ ot

Scalar products in the above spaces are denoted as (-, '>HE @~y and (-, '>Hb ®YF11-26)-
Under the above setting and assumptions, the following result holds.

Theorem 6.1. Let s € (0,1) and u € Hy(RN). Then there exists a unique w € Hb(Rf"'l;tl’Qs)
solution to the problem

(6.1) {tLQSP(D)w(H—%uHLO, in RY+L,

w = u, on RN,
where the subscript t means derivatives with respect to t. In addition

ow .
1 1-2s - k. s : —s N
(6.2) tlgr(l)t 57 = hs (P(D))’u in Hp*(RY),

in the sense that: for any ¥ € Hb(Rerl;tl’Qs)
<'LU7 \II>H1D(]R£+1;1§1*25) = K',S<’ll,7 \II>HSD(]RN)
Here Hp*(RY) denotes the dual of H3)(RY) while
T'(1—5s)
6.3 g=2t72s
and T is the usual Gamma function.

Extension theorems found useful applications in the study of fractional partial differential equa-
tions. For P(D) = —A, see [4]. We also quote [23] with P(D) a second order differential operator
with possibly non constant coefficients, see also [5]. A main point in our result is that the function
space is explicitly given.

6.1. Proof of Theorem 6.1. We start with some preliminaries. For any v € C2°(RY), we define

7 (v) via its Fourier transform with respect to the variable x as %(t, &) =0(§)9(\/P(&)t), where
¥ € HY (R, ;t1729) solves the ordinary differential equation:

?W+Q$2W—ﬂ:Q

(6.4) 9(0) = 1.

We note that 9 is a given by a Bessel function:

(65) 00) = 57 (5) 0.

where, K, denotes the modified Bessel function of the second kind with order v. It solves the
equation

(6.6) rPK!+rK!, - (r* +v*)K, =0.
We have, see [8], for v > 0,

(6.7) ko)~ 2 (5)

asrT — 0and K_, = K, for v < 0, while

(6.8) K, (r) ~ %Tlﬂer

as r — +oo. BY using the 1dent1ty
1<]I/(r)) — Vl(l/ lfy—la
r
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we get

(6.9) Ks = /OOO 25 (|9 ()2 + [9(8)|?) dt = — tlgr(l) 12 () = 21_257“11(;)8)

Since v € C°(RY), ¥ decays faster than any polynomial. Then H(v) € Hp(RY™';¢172%) and in
addition it satisfies the equation

(6.10) "2 P(D)YH(v) — (' "> H(v);): =0 in RYTL

We start by showing that P(D) satisfies the trace property that any w € HE(RY ! #172%)
trace which belongs to H$ (RN).

has a

Proposition 6.2. There exists a (unique) linear trace operator
T: Hy(RYTH 172 = Hy (RY)
such that T(w)(t,z) = w(0,2) for any w € C(RYT) and moreover

6.11 s |7 (w)1% < |lw for all w € HE(RY 1 41729),
+

E(RN H1 (RN+1 11— 23)
where Ky is given by (6.9). Equality holds in (6.11) for some function w € Hb(RfH; t1=2%) if and

only if 1= P(D)w — (t12%w;); = 0 in Rerl.

Proof. Let v € C°(RY). By (6.10), we have that any w € C2°(RY ™) such that w(0,-) = v on
R satisfies

(612) ”H(U)HEB(Ri’*l;tl*ZS) < ”wH?{b(Rf*l;tl*QS)'

Thanks to Parseval identity, we have

2 o (OH ()
WM@MMW)AMﬁHmmmeAMﬁﬂ7%yM
+ +

2
:/ 25 PO (6)[9(/ P(€)t)] dgdt+/ t1_2562(§)(%19(\/P(§)t)) dedt
]Rfﬂ N+1
= [ B PP PO Pt + / 1-252(6) ()19 (/P2 dedt
]Rfﬂ N+1

- ([ roree ds) ([ e0ror+ o).

We conclude that, for any v € C2°(RY),
(6.13) | H (v)]|%

HHB(R17+1¢1725) = HSHU

2
||H,3<RN>'
This with (6.12) implies that

ks||w(0, )% < (RY) < ||wHHl B2 for all w € Cgo(RfH).

The operator T is now defined as the unique extension of the operator w — w(0, ).

]
For sake of simplicity, in this paper, we have denoted the trace of a function w € H}, (Rf“; t1=29)
with the same letter w.

6.1.1. Proof of Theorem 6.1. We first consider u € C°(RY). In this case w = H(u) and it is, of
course, unique in H} (R} #1729),
Now we observe that — lim;_q tl_QS% = ks(P(§))*u(€) so that
0
~ lim $12s H(u)
t—0 ot
By (6.10) and Proposition 6.2, we deduce, after integration by parts, that

(6.14) (H(u), \I]>H15 ®YHhp1-20) = ks {u, \I/>H]5__) (RN)

= rs(P(D))*u in H;*(RY).
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for any ¥ € H}, (Rf“; t172%) and this proves the theorem in this case.
For the general case u € Hj(RYN), there exists a sequence u, € C°(RY) such that u, — u

in H3(RN). Tt turns out that H(u,) — @ in Hh(RY T ¢172%) and Tr(H(u,)) — Tr(@) = u in
H3(RN) . In particular for every ¢ € C2°(RY )
<’LE, 1/1>Hb (Ri’+1;t1725) =0.
This implies that @ = w and it is unique in H}(RY™';¢172%). By (6.14)
(H(un), O) jry @y 1;1-20) = s {n, ¥) gy vy

for any W € HE(RY 1! #172%). Taking the limit as n — co, we get the desired result. U
Remark 6.3. We note that the trace operator T' defined in Proposition 6.2 is surjective. To see
that, we argue by density. Let v € H3(RYN). There exists a sequence v, € C°(RYN) such that
v — v in Hy(RY). By (6.13) H(vy,) is bounded and thus converges (up to subsequences) weakly

to some function w € Hllj (Rerl;tl_%) and Theorem 6.1 implies that the convergence is strong
and thus

Hw”i]b(Rerl;ﬂfu) = KS”T(U})”2 2 (RY) = HS””H?{E(RN)'
7. APPENDIX B: THE RELATIVISTIC SCHRODINGER OPERATOR (—A + m?)*

Given m > 0, letting P(D) = —A + m?2, we have Hh(RY;#172%) = gY(RY 4172 and
H3(RYN) = H5(RY). Applying Theorem 6.1, we have the following result.

Theorem 7.1. Letu € H*(RY) and let w € H*(RY 1 #172%) be the unique solution to the problem

—div(t}172Vw) + m*t1 725w =0, in Rerl,
(7.1) .
w=1u, on RY.
Then
—lim tl_QSa—w = ks(—A+m?)*u  in H*(RY)
t—0 ot s '

7.1. Bessel Kernel. We can observe that the Bessel kernel P, (¢, ) is given by the Fourier trans-
form of the mapping & — ¥(4/|€|> + m2t), where ¢ is the Bessel function solving the differential
equation (6.4) and yet we can determine it explicitly.
Let U satisfy
—div(t! " VU) + m*' 72U =0, in RYTL
We have that V = tlfQS%—[tJ solves the conjugate problem:
—div(t "2EVV) +m2 BV =0, in RYTL
We look for F' (the fundamental solution) which satisfies
—div(|t|TTEVE) £ m2 |t T T F =6, in RV
By direct computations we have

—25—

F(z) = On.g mWN 2572721 | 7252 |0y () 2),
2

where Cy s is a normalizing constant and K, denotes the modified Bessel function of the second
kind with order v solving (6.6). Hence the choice of the Bessel Kernel in RY ' is

142s OF(t,x)

Po(t,z) = ——1+2s 2200
m(t,) ot
Using the identity K,(r) = 2K, — K, 1, we obtain

N+2s N+2s

(7.2) Pp(z) =Cy t**m™ = |27 2 Ko (m|z]).
By using (6.7) we deduce that Cy | is given by
2(N+25)/271

/ —
O =PV 29)2)
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where py s is the constant for the (normalized) Poisson Kernel with m = 0, see [3]. We refer
to [2], [6] for some Green function estimates for relativistic killed process. We also refer to [22] for
estimates of the Bessel Kernel.

We notice that, since Py, (t, ) is the Fourier transform of & — 9(1/|€|2 + m2t), we have

(7.3) /]RN P, (t, z)dx = 9(mt).

Now we deduce the norm from the Dirichlet form associated to (—A +m?)* —m?® via the Bessel
kernel P,,. For s =1/2 and N = 3, it was determined in [19, Theorem 7.12].

Proposition 7.2. For every u € H*(RY), we have that

_ 2
/ 18+ mial? - ] dxf%m%/ (@) Z W) . mfa — y]) dedy,
RN R2N 3 2

2 |z — |
with
9—(N+2s)/2+1 1_ -1 9—(N+2s)/2+1 I(N+t2s
(74) eNs==———"—— (/ 73\(])5(&)) = —7‘('_%2257( 2 )3(1 —3).
’ L((N +2s)/2) \Jr~y |§|NF28 (N +2s5)/2) 2 -s)

Proof. We know that

- [ e P G g g [ (i )k g

~ t—=0 at

:Fas/ [(—A+m?)2u (30)‘2 dx.
RN

Or equivalently

N t—0

(7.5) 725/}1@ lim ut |§|2;;Sm2t) — 1172(5) d§ = ks /]RN |(—A+ mQ)%u(:c)‘2 dx.

We now compute the left hand side of the above equality using the Bessel Kernel P,,,. Given ¢t > 0,
again by Parseval identity, we have

IV IE2+m2t) — 1 1 9
/R g = g [ (6@Pa) s ) - (@) do.
where P, = Jan u(y) P (t, 2—y)dy. We normalize P,, by putting P, (£, 2) = um(t,z)
so that fRN (t x)dx =1 We therefore have for ¢ > 0
OVIEP +m?t) — 1
(G
H(tm) ~
O (@) Bt ) e 0(0) 02 ot e [ @) 0m) 1)
RN N
I(t 1
SR / u(@) = w(9)* Pt — ) dyde + = [ w?(@)(0(m) — 1) d
R2N N
1
=55 | (@) —uy)’Pult,e —y)dyde + o [ u’(2)(@(tm) —1)dz
2t R2N t
We conclude that for every ¢ > 0
E2+m2t) —1__
ao [ AL ac - a2 (@) (B(tm) — 1) da
RN RN
2s - 2
(7.7) — Cyam™F / (“(””) “(y)ll% K wize (m(t2 + |z — y|?)/2) dwdy.
o (2 4 Jr - gf?)
We now have to check that we can pass to the limit as ¢ — 0 under all the above three integrals.

Firstly, we observe that the function r — % is decreasing because K is decreasing and thus

since u € H*(RY), we deduce from (7.5) that

(7.8) lim /RN il |§|2;sm2t) — 1a2(§) ¢ =

t—0

/ (A +m?) ()| da.

23
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For the same reason, we have that
1 2 2s s 2

(7.9) %1_{% el . uw*(x)(I(tm) —1)de = —m % /]RN u®(z) du.
Secondly, thanks to the asymptotics of K, we have that there exist r, R > 0 such that

Clz|=?, for |z —y| <,

2|7 Ky (mlz]) < 4 C, for R> [z —y[ =,

Clz|=?, for |z —y| > R,
where C is a positive constant depending only on N,s,r, R and m. Since u € H*(RY), we can
pass the limit as ¢t — 0 under the integral in (7.7). This with (7.8) and (7.9) in (7.6) yields the

result. Finally, to prove (7.4) we use the precise estimate (6.7) and comparing with the Dirichlet
form in the case m = 0, see [7].

Remark 7.3. We first remark from the above result that for every u € C2(RY)

N+42s
" o -y

(—A +m?)su(z) = chsmNgh P.V. / MK% (m|x — y|) dy + m*u(z).
R
We observe, using similar arguments as in the the proof of Proposition 7.2, that, for
w(t,z) = Py(t,-) *u,

with u € C2(RYN), we have that

{div(t1_2st)(t,:c) +m2ti = w(t, z) = 0, for all (t,z) € RYT,

— limy_, tl_Qs%(t, 7) = ks(—=A +m?)%u(z), for all x € RN,

We now prove the following result.
Proposition 7.4. Let u € C(Q) such that [ (1 + x|V +2) " u(x)|de < +oo. Let

w(t,x) = (Pn(t,) *u)(x).
Then

li tx) =
Jm w(t, z) = u(z)

for every x € Q.

Proof. We recall from (7.3) that [,y Py (¢, z)dz = 9(tm) for all t > 0. Let ¢ € €; by continuity,
for every € > 0, there exist t.,7. > 0 such that [u(y) — J(tm)u(wzo)| < € for every y € B,_(zo) and
0 <t<t.. Then

‘w(t, xo) — V(tm)u(xg)

/RN (u(y) — u(@o)) P (t, 1o — y>dy}

< /| ) — (o) Pon (1,70 — )y + /|| [uy) — (o) P (t,70 — v)dy
< ed(tm) +/_ N [u(y) — w(wo)| P (t, 20 — y)dy.

Using the fact that
2|7V K, (mlz]) < Cyl2| 7%,
we have that
1

P (t,mo — y)dy < Ct** / =dy
/ly—wolzrs ly—zolzre (£2 + |y — zo|2) 2
1

<o / 4
ly—xo|>7e (|y - ‘Tol)N+2s

Hence we have

lw(t, xg) — F(tm)u(xo)| < ed(tm) + t>*C,. [/R [u(z)]

v L+ [zNF2s

Sending ¢t — 07 and € — 0 respectively, we get the result.

dx + |u(zo)||-
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7.2. Harnack and local Schauder estimates for the relativistic Schrédinger equation.
Let f € L} .(B}). We recall that a solution (resp. subsolution, supersolution) u € H*(RY) to the

loc
equation

(7.10) (—=A +m?)%u = (resp. <,>) f in By
satisfies
[ el ey izae = esp. <2) [ fode forall o e RN,
RN B!
or, equivalently, thanks to Proposition 7.2,

N g2 (u(z) —u(y))((z) - ¢(y))
L

N+2s KM(T)’LLCC*deZ'dy
2 |z —y| ™ :

+m? wpdr = (resp. <,>) fodz.
RN B!

The following regularity result holds.
Proposition 7.5. Let a,b € LP(B}), for some p > %
(1) If u € H*(RYN) satisfies (—A +m?)*u < a(z)u + b(z) in B} then u € LS (BY).

(2) If u € H*(RYN) is nonnegative and satisfies (—A + m?)%u > a(x)u + b(x) in B}, then
Ei;lf u+ 0] Lr(;) = C sup u.

1/2 B},
(3) If u € H*(RN) satisfies (—A +m?)*u = a(z)u + b(x) in B}, then u € C*(BY) and
lull ooz < Clllullz=csy,,) + 1l ze(sp),
where C > 0 depends only on N, s, m, ||a||LP(B;)~
Proof. By Theorem 6.1, if u € H*(R") satisfies
(—A +m?)*u = (resp. <,>) a(x)u+b(z) in B}

then there exist a unique w € Hl(RfH; t1=2%) such that

—div(t! 2 Vw) + m*t1 725w = 0, in R+,

w = u, on RV,

fﬁ% limy_sg tl’QS%—f = (resp. <,>) a(z)w + b(z), on Bj,
weakly. The result then follows from Propositions 3.3, 3.4 and 3.5. U
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