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Abstract
Let N ≥ 1 and s∈ (0,1). In the present work we characterize bounded open sets Ω with

C2 boundary (not necessarily connected) for which the following overdetermined problem
(−∆)su = f (u) in Ω;

u = 0 in RN \Ω;
(∂η)su =Const. on ∂Ω

has a nonnegative and nontrivial solution, where η is the outer unit normal vectorfield
along ∂Ω and for x0 ∈ ∂Ω

(∂η)s u(x0) =− lim
t→0

u(x0− tη(x0))

ts .

Under mild assumptions on f , we prove that Ω must be a ball. In the special case f ≡
1, we obtain an extension of Serrin’s result in 1971. The fact that Ω is not assumed to
be connected is related to the nonlocal property of the fractional Laplacian. The main
ingredients in our proof are maximum principles and the method of moving planes.

Keywords. fractional Laplacian · maximum principles · Hopf’s Lemma · overdetermined problems.

Mathematics Subject Classification: 35B50 · 35N25

1 Introduction

Let Ω ⊂ RN , N ≥ 2, be a bounded connected open set with C2 boundary. By the method of
moving planes, Serrin proved, in his celebrated paper [36], that if there is a solution of the
overdetermined problem 

−∆u = 1 in Ω;

u = 0 on ∂Ω;

u > 0 in Ω;

∂ηu = c on ∂Ω

(1.1)
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then Ω must be a ball. The motivations for this problem are both from fluid and solid me-
chanics. Serrin’s argument initiated extensive researches in the field of overdetermined prob-
lems and symmetry properties of solutions to partial differential equations, see e.g. [26, 27]
for applications. The moving plane method was first employed in geometry by Alexandrov in
[2] to characterize the sphere as the only embedded closed hypersurfaces with constant mean
curvature. Over the years there are methods off moving plane to obtain Serrin’s result, see e.g.
[40], [6] and also [18] which reveal the application of Alexandrov’s result in the study of (1.1).
In those arguments Ω were assumed to be connected.
Several works have been devoted to related Serrin’s problem. Since a complete list of references
cannot be given, we only quote: [1, 4, 7, 8, 11, 10, 12, 19, 20, 22, 23, 25, 28, 31, 32, 34, 33, 39,
38].

In the present work we study an overdeterminded problem involving the fractional Lapla-
cian (−∆)s, s ∈ (0,1). It is defined for u ∈C∞

c (RN) as

(−∆)su(x) := cN,sP.V.
∫
RN

u(x)−u(y)
|x− y|N+2s dy,

where

cN,s = s(1− s)4s
π
−N/2 Γ(N

2 + s)
Γ(2− s)

(1.2)

is a normalization constant (see e.g. [14]) so that ̂(−∆)su(ξ ) = |ξ |2sû(ξ ). Due to applications in
Physics, Biology and Finance, differential equations involving the fractional Laplacian (−∆)s

have received growing attention in recent years (see e.g. [14, Introduction] and the references
therein) but still much less understood than their non-fractional counterparts. The overdeter-
minded problem we are interested in is

(∗)


(−∆)su = 1 in Ω;

u = 0 in RN \Ω;

(∂η)s u≡ c on ∂Ω,

where c is a negative constant, Ω ⊂ RN is a bounded open set with C2 boundary, η(x0) stands
for the outer normal at x0 ∈ ∂Ω and

(∂η)s u(x0) :=− lim
t→0

u(x0− tη(x0))

ts .

We note that solutions to the first two equations in (∗) are in Cs(Ω) (see e.g. [37, Proposition
2.9] or [30, Proposition 1]) and therefore the overdetermined Neuman condition make sense
pointwise. Our first result is contained in the following

Theorem 1.1. Let Ω⊂RN , N ≥ 1, be a bounded open set with C2 boundary. Assume that there
is a solution u ∈Cs(Ω) of (∗). Then Ω = BR(x0), a ball centred at x0 with radius R. In addition
u(x) = γN,s

(
R2−|x− x0|2

)s for all x ∈ BR(x0), where

γN,s :=
4−sΓ(N

2 )

Γ(N
2 + s)Γ(1+ s)

.
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We point out that the precise nonnegative and nontrivial function solving (∗) when Ω is a
ball were calculated in [5] (see also [15]). We should mention that the overdetermined problem
(∗) arises from Euler-Lagrange equations of domain dependent variational problems involving
the fractional Laplacian. We refer to [13] where the authors considered the case N = 2, s = 1/2
and ∂Ω of class C∞ and assumed Ω to be connected. In addition, under the aforementioned
assumptions, the authors obtained similar result via the moving plane method. We also men-
tion that the authors in [13] used the fact that the 1/2-Laplacian can be realized locally via a
Dirichlet-to-Neumann operator.

Here we use the moving plane argument only in the fractional framework which is a fun-
damental difference with respect to [13]. In particular our approach could be feasible for more
general types of integro-differential equations. Moreover, we take advantages to the nonlo-
cal structure of the fractional laplacian to construct subsolutions yielding a Hopf lemma (see
Lemma 3.3) and a version of Serrin’s corner boundary point lemma (see Lemma 4.4). The non-
local structure of (−∆)s forces the Dirichlet condition in RN \Ω. This is a key property which
allows us to prove that Ω must be connected at some stage during the moving plane process.
The moving plane method have been also employed within the fractional framework in [3, 9,
17, 21, 29, 24].

Our next result is a generalization of the previous one.

Theorem 1.2. Let c ∈ R and Ω ⊂ RN , N ≥ 1, be a bounded open set with C2 boundary. Fur-
thermore, let f : R→ R be locally Lipschitz and assume that there is a function u ∈ Cs(Ω),
which is nonnegative, nontrivial and satisfies

(−∆)su = f (u) in Ω;

u = 0 in RN \Ω;

(∂η)s u = c on ∂Ω.

(1.3)

Then Ω is a ball and u > 0 in Ω.

The paper is organized as follows. In Section 2 we will give some preliminaries and no-
tation. Dealing with the moving plane method leads to dealing with antisymmetric functions
so we will give a proof of Hopf’s Lemma and some maximum principles for antisymmetric
functions in Section 3. Finally, Section 4 is devoted to the proof of Theorem 1.1 and in Section
5, we prove Theorem 1.2.

Acknowledgement: The authors would like to thank Tobias Weth for helpful discussions and
Xavier Ros-Oton for taking their attention to [15]. Part of this work was done while the second
author was visiting AIMS-Senegal. He would like to thank them for their kind hospitalities.
The first author is supported by the Alexander von Humboldt foundation.
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2 Definitions and Notation

Let N ≥ 1 and s ∈ (0,1). For u,v ∈ Hs(RN), we consider the bilinear form induced by the
fractional laplacian:

E (u,v) :=
cN,s

2

∫
RN

∫
RN

(u(x)−u(y))(v(x)− v(y))
|x− y|N+2s dxdy.

Furthermore, let
H s

0 (Ω) = {u ∈ Hs(RN) : u = 0 on RN \Ω},

where Ω⊂RN is an arbitrary open set. If Ω is bounded, we define the first Dirichlet eigenvalue:

λ1(Ω) = min
u∈H s

0 (Ω)

E (u,u)∫
Ω

u2dx
.

Then we have λ1(Ω) ≥CN,s|Ω|−
2s
N , see e.g. [42], where CN,s =

N
2s |B1(0)|1+2s/NcN,s and cN,s is

the constant in (1.2).
In the following all equalities involving (−∆)s are meant in the weak sense, i.e. for g ∈

L2(Ω) we call u ∈ D s(Ω) := {u : RN → R measurable : E (u,ϕ) < ∞ for all ϕ ∈H s
0 (Ω)} a

supersolution (subsolution) of
(−∆)su = g in Ω, (2.1)

if for all ϕ ∈H s
0 (Ω), ϕ ≥ 0

E (u,ϕ)≥
∫
Ω

g(x)ϕ(x) dx

E (u,ϕ)≤
∫
Ω

g(x)ϕ(x) dx

 .

We call u ∈D s(Ω) an entire supersolution (subsolution) if additionally we have

u≥ 0 on RN \Ω (u≤ 0 on RN \Ω).

The function u is called a solution, if u is an entire supersolution and an entire subsolution.
We note that if u is an entire supersolution of (2.1) then u− =−min{w,0} ∈H s

0 (Ω).
Finally we want to note that if u∈C1,1(Ω), for some open set Ω⊂RN , we have that (−∆)su

is continuous on Ω (see e.g. [37, Proposition 2.5]). Thus if u has such regularity (2.1) holds
pointwise.

The following further notation is used throughout the paper: for x ∈ RN and r > 0, Br(x) is
the open ball centered at x with radius r and ωN will denote the volume of the N-dimensional
ball with radius 1. Moreover, we denote S1 := {x ∈RN : |x|= 1}. For any subset M ⊂RN , we
denote by 1M : RN → R the characteristic function of M and diam(M) the diameter of M. The
notation A⊂⊂ B, A,B⊂ RN means that we have A⊂ B and A is compact and nonempty.
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Moreover, w+ = max{w,0} and w− =−min{w,0} denote the positive and negative part of
w resp. For any M ⊂ RN , |M| denotes the Lebesgue measure of M and for D,U ⊂ RN we set

dist(D,U) := inf(|x− y| : x ∈ D, y ∈U}.

If D = {x}, we simply write dist(x,U) in place of dist({x},U). Finally, we denote for Ω⊂ RN ,

δ (x) := δΩ(x) := dist(x,RN \Ω)

the distance to the complement of a set Ω. We will omit the subindex Ω, whenever no confusion
is possible.

3 Maximum principles for entire antisymmetric supersolutions

Due to the fact that we will work with the moving plane method in the following, we will need
to prove some results concerning antisymmetric functions. Let H ⊂ RN be a halfspace, i.e. for
any λ ∈ R, e ∈ S1 we consider

H := Hλ ,e := {x ∈ RN : x · e > λ}.

Let Ω ⊂ H be a bounded open set. Let T := ∂H and denote by Q : RN → RN , x 7→ x̄ the
reflection of x at T , i.e. x̄ = x−2(x ·e)e+2λe. We will call u ∈D s(Ω) an entire antisymmetric
supersolution of (−∆)su = g in Ω, if u is a supersolution of (−∆)su = g in Ω and if additionally
we have u≥ 0 on H \Ω and u(x̄) =−u(x) for all x ∈ H.

Proposition 3.1 (Weak Maximum Principle). Let H be a halfspace and let Ω⊂H be any open,
bounded set, let c∈ L∞(Ω) be such that c≤ c∞ < λ1(Ω) in Ω for some c∞ ≥ 0 and let g∈ L2(Ω)
be, such that g≥−κ with

0≤ κ <
λ1(Ω)− c∞

|Ω|1/2 .

If u is an entire antisymmetric supersolution of

(−∆)su = c(x)u+g(x) in Ω (3.1)

then ‖u−‖L2(Ω) ≤ κ|Ω|1/2/(λ1(Ω)− c∞) < 1. In particular, if κ = 0 then u ≥ 0 almost every-
where in Ω.

Proof. Note that ϕ := u−1H ∈H s
0 (Ω) and

(u(x)−u(y))(ϕ(x)−ϕ(y))+(ϕ(x)−ϕ(y))2 =−u(x)ϕ(y)−u(y)ϕ(x)−2ϕ(x)ϕ(y)

=−ϕ(x)(ϕ(y)+u(y))−ϕ(y)(ϕ(x)+u(x)) .

Thus we have

E (u,ϕ) =−E (ϕ,ϕ)− cN,s

∫
RN

∫
RN

ϕ(y)(ϕ(x)+u(x))
|x− y|N+2s dxdy
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=−E (ϕ,ϕ)− cN,s

∫
H

∫
H

ϕ(y)u+(x)
|x− y|N+2s +

ϕ(y)u(x̄)
|x̄− y|N+2s dxdy

≤−E (ϕ,ϕ)− cN,s

∫
H

∫
H

ϕ(y)u+(x)
|x− y|N+2s −

ϕ(y)u(x)
|x̄− y|N+2s dxdy

=−E (ϕ,ϕ)− cN,s

∫
H

ϕ(y)
∫
H

u+(x)
(

1
|x− y|N+2s −

1
|x̄− y|N+2s

)
+

u−(x)
|x̄− y|N+2s dxdy

≤−E (ϕ,ϕ). (3.2)

Thus we have

0≤ E (u,ϕ)+
∫
Ω

c(x)ϕ2(x) dx−
∫
Ω

g(x)ϕ(x) dx

≤−E (ϕ,ϕ)+ c∞‖ϕ‖2
L2(Ω)+κ

∫
Ω

ϕ(x) dx

≤ (c∞−λ1(Ω))‖ϕ‖2
L2(Ω)+κ|Ω|1/2‖ϕ‖L2(Ω).

If ‖ϕ‖L2(Ω) > 1 we have, since ‖ϕ‖L2(Ω) < ‖ϕ‖2
L2(Ω)

,

0≤ (c∞−λ1(Ω))‖ϕ‖2
L2(Ω)+κ|Ω|1/2‖ϕ‖L2(Ω)

<
(

c∞ +κ|Ω|1/2−λ1(Ω)
)
‖ϕ‖L2(Ω) ≤ 0,

since c∞−λ1(Ω)+κ|Ω|1/2 < 0, resulting in a contradiction. Thus we must have ‖ϕ‖L2(Ω) ≤ 1.
In this case we have

0≤
(
−(λ1(Ω)− c∞)‖ϕ‖L2(Ω)+κ|Ω|1/2

)
‖ϕ‖L2(Ω),

Thus we must have ‖ϕ‖L2(Ω) ∈ [0,κ|Ω|1/2/(λ1(Ω)− c∞)], finishing the proof.

Remark 3.2. Note that the result also holds if u is an entire supersolution of (−∆)su= c(x)u+g
in Ω, where Ω ⊂ RN is an arbitrary open, bounded set. The proof then simplifies, since the
inequality (3.2) follows trivially.

For the proof of the following version of Hopf’s Lemma, we will need the function ψB

satisfying
(−∆)s

ψB = 1, in B; (3.3)

where B⊂RN is a ball. If B = Br(x0) for some r > 0 and x0 ∈RN we have (see e.g. [5] or [15])

ψB(x) = γN,s
(
r2−|x− x0|2

)s
+
, γN,s :=

4−sΓ(N
2 )

Γ(N
2 + s)Γ(1+ s)

.

It was proved in [3, Lemma 4.3] that if u is a continuous supersolution of (−∆)su = 0 in some
open set Ω ⊂ RN , such that u ≡ 0 on RN \Ω, then we have for any outernormal η and any
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x1 ∈ ∂Ω such that there is an interior ball B ⊂ Ω with x1 ∈ ∂B∩ ∂Ω, that ∂ηu(x1) = −∞ this
was enough to carry over a moving plane argument. Here we will need precise behavior of
antisymmetric solutions near some corner points at the boundary. A recent result in [35] states
that if u ∈H s

0 (Ω) is a solution of (−∆)su = g in Ω⊂ RN , with g ∈ L∞(Ω), then u
δ s ∈C0,α(Ω),

for some α ∈ (0,1). For x1 ∈ ∂Ω, it therefore make sense to define

(∂η)s u(x1) :=− lim
t→0+

u(x1− tη(x1))

ts .

Proposition 3.3 (Hopf’s lemma). Let H ⊂ RN be a halfspace and Ω ⊂ H. Consider a ball
B1 ⊂⊂ H and B1 ⊂ Ω. Furthermore, let c ∈ L∞(Ω) and assume that c0 = ‖c‖L∞(Ω) < λ1(B1).
Let u ∈D s(Ω) be an entire antisymmetric supersolution of

(−∆)su = c(x)u, in Ω; (3.4)

such that
u≥ 0, in H. (3.5)

Let K ⊂⊂ H \B1 such that |K| > 0 and suppose that essinfKu > 0. Then there is a constant
d = d(N,s,diam(B1),K,dist(B1,K),c0,essinfKu)> 0 such that

u(x)≥ dδ
s
B1
(x) for almost every x ∈ B1.

In particular, if u ∈C(B1) and u(x0) = 0, for some x0 ∈ ∂B1, then we have

− liminf
t→0+

u(x0− tη(x0))

ts < 0.

Figure 1: K can be far away from Ω and does not need to be a ball.

Proof. For α > 0, consider the barrier

w(x) := ψB1(x)+α1K(x)−ψQ(B1)(x)−α1Q(K)(x),
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where Q : RN → RN , x 7→ x̄ is the reflection at ∂H and 1M is the characteristic function for any
M ⊂ RN . Note that we have w ∈ D s(B1) since dist(B1,K) > 0. Let ϕ ∈H s

0 (B1), ϕ ≥ 0 be
arbitrary. Then

E (w,ϕ) = E (ψB1 ,ϕ)+αE (1K ,ϕ)−E (ψQ(B1),ϕ)−αE (1Q(K),ϕ)

=
∫
B1

ϕ(x) dx−αcN,s

∫
B1

∫
K

ϕ(x)
|x− y|N+2s dydx

+αcN,s

∫
B1

∫
Q(K)

ϕ(x)
|x− y|N+2s dydx+ cN,s

∫
B1

∫
Q(B1)

ψQ(B1)(y)ϕ(x)
|x− y|N+2s dydx

≤
∫
B1

ϕ(x)

κ−αcN,s

∫
K

(
|x− y|−N−2s−|x− ȳ|−N−2s) dy

dx,

where κ := 1+ supx∈B1
ψB1(x) · supx∈B1,ȳ∈H |x−y|−N−2s < ∞ since dist(B1,RN \H)> 0. More-

over since K has a positive distance to ∂H and B1 we have

C1 =C1(N,s,K,B1) = cN,s|K| inf
x∈B1,y∈K

|x− y|−N−2s−|x− ȳ|−N−2s > 0.

With this we have
E (w,ϕ)≤

∫
B1

ϕ(x)(κ−αC1)dx.

Thus we may take α large so that κ−αC1 ≤−c0 supx∈B1
ψB1(x) and thus we have

(−∆)sw≤ c(x)w in B1.

Note furthermore that, by construction, w= 0 on RN \(B1∪K) and w(x̄)=−w(x) for all x∈RN .
By assumption, we can pick

ε =
essinfKu

α
> 0

so that v(x) := u(x)− εw(x) ≥ 0 on H \B1. Since we chose B1 such that ‖c‖L∞(B1) < λ1(B1),
we can apply Proposition 3.1 to the supersolution v yielding u ≥ εw = εψB1 in B1. Finally, if
u(x0) = 0 with x0 ∈ ∂B1, we have

− liminf
t→0+

u(x0− tη(x0))

ts ≤−ε lim
t→0+

ψB1(x0− tη(x0))

ts < 0.

As a consequence of Proposition 3.3, we have

Corollary 3.4 (Strong maximum principle). Let H ⊂ RN be a halfspace and let Ω ⊂ H be
an open bounded set. Furthermore let c ∈ L∞(Ω) and u ∈ D s(Ω) be an entire antisymmetric
supersolution of

(−∆)su = c(x)u, in Ω. (3.6)

If u≥ 0 in H then either u≡ 0 in H or u > 0 in Ω.
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Remark 3.5. We emphasize that Proposition 3.3 remains true for entire supersolutions. In-
deed, one would repeat the same proof by considering the barrier w(x) = ψB1(x)+αψK(x). In
particular Corollary 3.4 is also valid for entire supersolutions.

4 Proof of Theorem 1.1

Our objective in this section is to prove Theorem 1.1 for the case N ≥ 2. We present an argument
based on the fact that u > 0 in Ω. As we shall see, simple observations shows that after two
steps of the moving plane argument, we see that Ω must be connected. For the case N ≥ 1 and
general right hand side, we postpone the proof in the section.

Theorem 4.1 (Theorem 1.1 for N ≥ 2). Let Ω⊂RN , N ≥ 2, be an open, bounded set such that
∂Ω is C2 and assume that there is a solution u ∈Cs(Ω) of

(−∆)su = 1 in Ω, u = 0 in RN \Ω.

If there is a negative real number c such that

(∂η)s u≡ c on ∂Ω,

then Ω is a ball and u = ψΩ, where ψΩ is given as in Section 3.

Remark 4.2. We note that by regularity theory u ∈ C∞(Ω). In addition a nontrivial solution
u ∈H s

0 to (−∆)su = 1 in Ω is strictly positive in Ω by Hopf’s lemma (see also Remark 3.5)
and there must be c < 0.

Proof of Theorem 4.1. Let e ∈ S1 be fixed and consider Tλ := Te,λ := {x ∈ RN : x · e = λ} as
a hyperplane in RN , which we will continuously move by continuously varying λ . Since Ω is
bounded, denote l := maxx∈Ω x · e, so that Tλ ∩Ω = /0 for λ ≥ l. Denote Hλ := He,λ := {x ∈
RN : x · e > λ} and define Ωλ := Ωe,λ := Ω∩Hλ . Let Qλ := Qe,λ be the reflection about Tλ

as described in Section 3 and denote Ω′
λ

:= Qλ (Ωλ ), i.e. the reflection of Ωλ about Tλ . Since
∂Ω is C2 we have that for λ < l but close to l, that Ω′

λ
⊂ Ω. As we decrease λ , i.e. continue

moving Tλ , two possible situations may occur:

Situation 1: There is a point P0 ∈ ∂Ω∩Ω′
λ
\Tλ or

Situation 2: Tλ is orthogonal to ∂Ω at some point P0 ∈ ∂Ω∩Tλ .
(4.1)

We note, that although Ω is not necessarily connected, there is no other possibility since ∂Ω

is C2 and Ω is bounded.

Let λ0 be the point at which one of these situations occur for the first time. (4.2)

For simplicity, we put T = Tλ0 and H = Hλ0 . Our aim is to prove that if any of the above situa-
tion occurs, Ω must be symmetric with respect to the plane T .
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To prove that the situations yield symmetry, we let Q be the reflection about T as described
in Section 3. Then define Q(x) =: x̄ and consider the function

v(x) := u(x)−u(x̄) for x ∈ RN .

Since U := Ω′
λ0
⊂Ω we have that v satisfies

(−∆)sv = 0 in U

and
v≥ 0 on H ′ \U ;

v(x̄) =−v(x) for all x ∈ RN .

Here H ′ := RN \H. Thus we have, that v is an entire antisymmetric supersolution on U with
v ≥ 0 on H ′ by the weak maximum principle. The strong maximum principle (Corollary 3.4)
then implies v≡ 0 on RN or v > 0 in U .

We will show, that v > 0 in U is not possible. This will be separated in to two cases.

Case 1) First assume we are in the first case, i.e. there is some point P0 ∈Ω∩U \T .
Note, that we have P0 ∈ ∂Ω∩ ∂U due to the choice of λ0, we have u(P0) = 0 = u(P̄0), espe-
cially v(P0) = 0. Since v > 0 in U Hopf’s Lemma (Proposition 3.3) gives, that (∂η)s v(P0)< 0,
where η is the outernormal at P0 on ∂U . But since (∂η)s u(P0) = c = (∂η)s u(P̄0) we must have
(∂η)s v(P0) = 0 which is a contradiction and thus we cannot be in the first case.

Case 2) Assume that v > 0 in U and that T is orthogonal to ∂Ω at a point P0 ∈ T ∩∂Ω.
Up to translation and rotations, we may assume that P0 = 0 is the origin, e = e1, the interior
normal of ∂Ω at the origin is e2 and ∇2δΩ(0) is diagonal. Without loss of generality, we may
also assume that λ = 0.

Lemma 4.3. We have
v(tη̄) = o(t1+s), as t→ 0,

where η̄ = (−1,1,0, . . . ,0).

Lemma 4.4. Let Ω⊂RN , N ≥ 2 be an open bounded set with C2 boundary such that the origin
0 ∈ ∂Ω. Assume that the hyperplane {x1 = 0} is orthogonal to ∂Ω at 0. Let D⊂Ω be an open
set with C2 boundary and symmetric about {x1 = 0}. Let D∗ := D∩{x1 < 0}. Let c ∈ L∞(D∗)
and w be an antisymmetric supersolution of

(−∆)sw≥ c(x)w in D∗;

w≥ 0 in {x1 < 0};
w > 0 in D∗.

Then letting η̄ = (−1,1,0 . . . ,0), there exists C, t0 > 0 depending only on Ω,N,s such that

w(tη̄)≥Ct1+s ∀t ∈ (0, t0).
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Then applying Lemma 4.3 and 4.4 (see the proofs below), we reach a contradiction. Therefore
v≡ 0 as desired.

If v≡ 0 on RN , then u≡ 0 on RN \Ũ , where Ũ =U ∪Qλ0(U)∪ (T ∩Ω). This implies that
Ω = Ũ yielding symmetry about T . It is then clear that Ũ might have many components lined
up along T .

Assume by contradiction that there are two connected components Ũ1 and Ũ2. (4.3)

Observation: There exists a plane T ′ perpendicular to T and separating Ũ1 and Ũ2. Otherwise
one surround the other (recall that they cannot meet at any boundary points by C2 regularity of
∂Ũ) contradicting the minimality of λ0.

We now move the plane T ′ touching, say, Ũ1 first. This leads to property (4.2) with some
λ1 with direction e1 and T ′ = Tλ1 . Then the same argument as a above yields

Ũ = Ũ1 = Ũ ∪Qλ1(Ũ)∪ (Tλ1 ∩Ũ).

By symmetry of u with respect to Tλ1 and since u = 0 in RN \Ũ1, we deduce that u vanish in Ũ2
which is in contradiction with the fact that u is positive in Ω. Hence Ω = Ũ is connected with
C2 boundary.

Restarting the moving plane process, we conclude that Ω is symmetric with respect to all planes
for which Situation 1 and/or Situation 2 occur for a first time. We then conclude that Ω must be
a ball.

We observe that Lemma 4.3 states that ”derivatives of order 1+ s” of v vanish at the origin.

Proof of Lemma 4.3. Thanks to [35, Theorem 1.2], we can write

u(x) = δ
s(x)ψ(x),

where ψ(x) ∈C0,α(Ω) for some α ∈ (0,1) (recall that δ = δΩ is the distance function to ∂Ω).
It is clear from our hypothesis that

ψ(x) =−c ∀x ∈ ∂Ω. (4.4)

Put ū(x) = u(x̄) = u(−x1,x2, . . . ,xN), δ̄ (x) = δ (x̄) and ψ̄(x) = ψ(x̄). By continuity, we have

ψ(tη̄) =−c+o(1) = ψ̄(tη̄), as t→ 0.

Then we have

v(tη̄) = u(tη̄)− ū(tη̄) = [δ s(tη̄)− δ̄
s(tη̄)](c+o(1)), as t→ 0. (4.5)

By Taylor expansion, we have

δ (tη̄) = δ (0)+∇δ (0) · (tη̄)+
1
2

∇
2
δ (0)[(tη̄)] · (tη̄)+o(t2), as t→ 0
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and
δ̄ (tη̄) = δ (0)+∇δ̄ (0) · (tη̄)+

1
2

∇
2
δ̄ (0)[(tη̄)] · (tη̄)+o(t2), as t→ 0.

In addition, since e2 = ∇δ (0) is the normal direction, ∂xiδ (0) = 0 for all i 6= 2. Therefore

∇δ (0) · η̄ = ∇δ̄ (0) · η̄ = e2 · η̄ = 1.

Since ∇2δ (0) is diagonal, it is plain that

∇
2
δ (0)[η̄ ] · η̄ = ∇

2
δ̄ (0)[η̄ ] · η̄ = ∇

2
δ (0)[e2] · e2 +∇

2
δ (0)[e1] · e1.

It follows that
δ

s(tη̄) = ts(1+
s
2

∇
2
δ (0)[η̄ ] · (tη̄)+o(t)), as t→ 0

and
δ̄

s(tη̄) = ts(1+
s
2

∇
2
δ (0)[η̄ ] · (tη̄)+o(t)), as t→ 0.

We then conclude that
δ

s(tη̄)− δ̄
s(tη̄) = o(t1+s), as t→ 0.

This together with (4.5) prove the claim.

We also observe that Lemma 4.4 can be seen as the Serrin’s corner boundary point lemma.

Proof of Lemma 4.4. Let R > 0 small so that B := BR(Re2)⊂Ω and ∂BR(Re2)∩∂Ω = {0}. Put

K = BR(Re2)∩{x1 < 0}.

Define B2 =BR(4Rη) and B1 =BR(4Rη̄), where η̄ = e2−e1. From now on we will consider
R small such that B1∪B2 ⊂⊂ D (see Figure 2 below):

We next consider the truncated distance functions to the boundary of these balls denoted by

d2(x) = (R−|x−4Rη |)+, d1(x) = (R−|x−4Rη̄ |)+.

As in Section 3 we use
ϕB(x) = (R2−|x−Re2|2)s

+,

and for α > 0 (to be chosen later), we consider the barrier

h(x) =−x1[ϕR(x)+α(d1(x)+d2(x))].

Note that h(x) = −h(x̄) and h ∈ C1,1(B). Using [15, Theorem 1 + Table 3, pp.549], together
with a scaling and translation,

|(−∆)s(x1ϕR(x))|= |CN,sR−1x1| ≤C|x1| ∀x ∈ K, (4.6)
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Figure 2: B2 = Q(B1), where Q is the reflection at ∂H ′

where here and in the following C is a positive constant (possibly depending on R, N, s) but
never on α . Now we put

I(x) :=−(−∆)s [x1(d1(x)+d2(x))
]
.

Then for x ∈ K we have

I(x) =−P.V.
∫
RN

−y1(d1(y)+d2(y))
|x− y|N+2s dy

=
∫
B1

y1d1(y)
(
|x− y|−N−2s−|x− ȳ|−N−2s) dy

=
∫
B1

y1d1(y)|x− y|−N−2s

(
1−
(
|x− y|
|x− ȳ|

)N+2s
)

dy,

=
∫
B1

y1d1(y)|x− y|−N−2s

(
1−
(

|x− y|2

|x− y|2 +4x1y1

)(N+2s)/2
)

dy.

Observe that by construction,

7R > |x− y|> R ∀x ∈ ∩BR(Re2), ∀y ∈ B1.

Using this and the fact that the map

a 7→ 1−
(

a
a+d

)k
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is strictly monotone decreasing in a for all d,k > 0, we therefore get

I(x)≤
∫
B1

y1d1(y)|x− y|−N−2s

(
1−
(

(7R)2

(7R)2 +4x1y1

)(N+2s)/2
)

dy.

Hence we have (recall that y1 < 0)

I(x)≤−C
∫
B1

(
1−
(

(7R)2

(7R)2 +4x1y1

)(N+2s)/2
)

dy

=−C
∫
B1

(
1−
(

1− 4x1y1/(7R)2

1+4x1y1/(7R)2

)(N+2s)/2
)

dy.

Using the elementary inequality

(1− t)β ≤ 1− t for t ∈ (0,1), β > 1

we get, for all x ∈ K,

I(x)≤−C
∫
B1

4x1y1/(7R)2

1+4x1y1/(7R)2 dy≤−C|x1|,

where we have used the fact that |y1| is bounded away from 0 as long as y ∈ B1 and |x1| ≤ 5R.
Combining this with (4.6), we infer

(−∆)sh(x)− c(x)h(x)≤ (C−αC)|x1| ∀x ∈ K.

Hence we can choose α so that (−∆)sh− c(x)h ≤ 0 in K. Since also we can find a positive
constant M > 0 so that w≥Mh in B1, we get immediately w−Mh≥ 0 in {x1 < 0}\K. We then
deduce from the weak maximum principle that w≥Mh in D∗. Now since

h(tη̄) = t1+s(2R−4t2),

the proof follows immediately because tη̄ ∈ D∗ for t > 0 small.

5 Generalization

Theorem 5.1 (Theorem 1.2 for N ≥ 2). Let c ∈ R and Ω ⊂ RN , N ≥ 2, be an open, bounded
set with C2 boundary. Furthermore, let f : R→ R be locally Lipschitz and assume that there is
a function u ∈Cs(Ω), which is nonnegative and nontrivial in Ω and fulfills

(−∆)su = f (u) in Ω;

u = 0 in RN \Ω;

(∂η)s u = c on ∂Ω.

(5.1)

Then Ω is a ball and u > 0 in Ω.
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Proof. Let e ∈ S1 and consider λ0 as defined in (4.2) and U := Ω′
λ0
⊂ Ω as before. We define

vλ0(x) := u(x)− u(x̄) for all x ∈ RN , where we use the notation as usual, i.e. Qλ ,e(x) =: x̄ and
Qλ ,e is the reflection of T = Tλ ,e. Then vλ0 solves

(−∆)svλ0 ≥−c f (x)vλ0 in U ,

where

c f (x) :=


f (u(x))− f (u(x̄))

u(x)−u(x̄)
, if u(x) 6= u(x̄);

0, if u(x) = u(x̄).

Let L f be the Lipschitz constant of f for B = [0,‖u‖L∞(RN)]. Then we have ‖c‖L∞(U) ≤ L f .
Here, we cannot directly apply the maximum principle to get vλ0 ≥ 0 in H ′ as in the previous
section because L f might be large. However, by using the moving plane method, we can prove
that

vλ0 ≥ 0 on H ′; (5.2)

To this end, we observe that for λ ∈ (λ0, l) but close to l we have L f ≤ λ1(Ω
′
λ
) so that u(x)−

u(Qλ ,e(x))≥ 0 in Ω′
λ

by the weak maximum principle. Now by the strong maximum principle

(Sλ ) vλ (x) := u(x)−u(Qλ (x))> 0 for all x ∈Ω
′
λ

as u is nontrivial. We let

λ̃ := inf{λ > λ0 : (Sµ) holds for all λ > µ}.

Our aim is to prove that λ̃ = λ0. Assume by contradiction that λ̃ > λ0. Then by continuity and
the strong maximum principle we have that (S

λ̃
) holds. Since λ̃ > λ0, there is by continuity

ε > 0 such that Ω′
λ̃−ε
⊂ Ω. Choose an open set Π ⊂ Ω′

λ̃−ε
such that {v ≤ 0}∩Ω′

λ̃−ε
⊂ Π and

we may assume that |Π| is small by making ε possibly smaller. The maximum principle then
can be applied to Π giving v

λ̃−ε
> 0 in Π (as before) and thus S

λ̃−ε
holds in contradiction to the

choice of λ̃ . Thus λ̃ = λ0. Hence (5.2) is proved. We have now that v is an entire antisymmetric
supersolution on U with vλ0 ≥ 0 in H ′ by the weak maximum principle. Arguing as in the
proof of Theorem 1.1 in the previous section, we obtain vλ0 ≡ 0 in RN . This implies that u is
symmetric with respect to all planes Tλ0,e = Tλ0(e),e for which (4.1) occur for a first time. More
than that, the moving plane process above yield monotonicity through lines perpendicular to
Tλ0,e: for every e ∈ S1

u(x)−u(Qλ ,e(x))> 0 for all λ ∈ (λ0, l) and for all x ∈Ω
′
λ ,e .

In particular for all e ∈ S1 and for all λ ∈ R, we have either u(x) ≥ u(Qλ ,e(x)) for all x ∈ Hλ ,e
or u(x)≤ u(Qλ ,e(x)) for all x ∈Hλ ,e. Now by a well known result (which we include a proof in
the Appendix for the readers convenience), u coincides to a radial function up to a translation
which is decreasing. Hence supp(u) is a ball.
We claim that Ω = supp(u). Indeed, assume on the contrary that supp(u) 6= Ω. Then there is
a ball B ⊂⊂ Ω \ supp(u), such that u ≡ 0 in B. Consider the hyperplane T separating B and
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supp(u). It is clear that u ≡ 0 on the halfspace H with boundary T containing B. Let e ∈ S1

normal to T and contained in H. Now by moving the planes Tλ ,e as above, we get, for very
λ ∈ (λ0, l)

u(x)> u(Qλ ,e(x))≥ 0 for all x ∈Ω
′
λ ,e .

This, in particular, implies that u > 0 in Ω∩Hλ0,e which is impossible.

Theorem 5.2 (Theorem 1.1 and Theorem 1.2 for N = 1). Let c ∈ R and Ω ⊂ R be a bounded
open set. Let f : R→ R be locally Lipschitz and assume that there is a function u ∈ C(Ω),
which is nonnegative, nontrivial in Ω and satisfies

(−∆)su = f (u) in Ω;

u = 0 in R\Ω;

(∂η)s u = c on ∂Ω.

(5.3)

Then Ω = (α,β ) for some α,β ∈ R, α < β and u > 0 in Ω.

Proof. Now assume that Ω has at least two different connected components (α,β ) and (a,b)
with a < b < α < β . Note that as in the case N ≥ 2 we can move points (instead of moving
planes!) from the right up to λ0 = (α +β )/2, so that v(x) := u(x)−u(x̄) solves

(−∆)sv≥−c f (x)v in (a,λ0)

and v(x) ≥ 0 for x < λ0 by arguing as in the proof of Theorem 5.1. Note that only interior
touching can occur. Hence by Hopf’s Lemma we obtain v ≡ 0 on R, but this gives u ≡ 0 on
R \ (α,β ). Next moving from the left up to λ0 = (a+ b)/2 implies, as previously, u ≡ 0 in
(a,b). Therefore u≡ 0 in R leading to a contradiction. The positivity of u finally follows as in
Theorem 5.1 by the monotonicity which is a byproduct of the moving plane method.

6 Appendix

The result below was stated in [41].

Proposition 6.1. Let u : RN → R be continuous and such that lim|x|→∞ u(x) = c∞ ∈ R∪{±∞}
exists. Then the following statements are equivalent:

(i) There is z ∈ RN , such that u(·− z) or −u(·− z) is radially symmetric and decreasing in
the radial variable.

(ii) For every half space H ∈H we either have u(x)−u(QH(x))≥ 0 for all x ∈H or u(x)−
u(QH(x))≤ 0 for all x ∈ H. We say H is dominant or subordinate for u respectively.

Here H is the set of all affine half spaces in RN and QH is the reflection at ∂H for any H ∈H .

The following proof is communicated to the authors by Tobias Weth.
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Proof. Assertion (i) implies (ii) is obvious and can be found in [41]. Thus we only need to
show that (ii) implies (i). Without restriction, we may assume that u is not constant. Consider
the halfspace Hλ = {x ∈ RN : x1 > λ}, for λ ∈ R and the open set

I := {λ ∈ R : u(x)> u(QHλ
(x)) for some x ∈ Hλ}.

Since u is not constant, we may assume, replacing u with −u if necessary, that u is larger than
c∞ at some point in RN . Hence there exists a maximal s1 ∈ R∪{∞} such that I contains the
interval (−∞,s1). By (ii) the half spaces Hλ , λ ∈ (−∞,s1) are dominant for u, which implies
that

u is nondecreasing in x1 in the set {x ∈ RN : x1 < s1}. (6.1)

This forces s1 < ∞, since u is not constant and tends to c∞ as |x| → ∞. By the maximal choice
of s1 and the continuity of u, u is symmetric with respect to the hyperplane {x1 = s1}. By the
same argument, we can find si ∈ R, such that u is symmetric with respect to the hyperplanes
{xi = si} for i= 2, . . . ,N. Translating u if necessary, we may assume, that si = 0 for i= 1, . . . ,N,
so that u is symmetric with respect to all coordinate reflections. This implies that u is even, i.e.
u(x) = u(−x) for all x ∈ RN . As a consequence, if H ∈H0 = {H ∈H : 0 ∈ ∂H} is such
that u(x) ≥ u(QH(x)) for all x ∈ H, then also u(QH(x)) = u(−QH(x)) ≥ u(−x) = u(x) for
every x ∈ H, so that u is symmetric with respect to the hyperplane ∂H. This implies that u is
symmetric with respect to any hyperplane containing 0, so that u is radially symmetric (see e.g.
[41, Section 2.1]). Finally, (6.1) implies that u is decreasing in the radial variable.
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Poincaré 22 (2005), 83–97.

[4] I. Birindelli and F. Demengel. Overdetermined problems for some fully non linear opera-
tors, Comm. Part. Diff. Eq. 38.4 (2013), 608–628.

[5] K. Bogdan and T. Byczkowski, Potential Theory of Schrödinger Operator based on frac-
tional Laplacian, Probability and Mathematical Statistics, 2.20 (2000), 293–335.

[6] B. Brandolini, C. Nitsch, P. Salani and C. Trombetti, Serrin-type overdetermined prob-
lems: an alternative proof, Arch. Ration. Mech. Anal. 190.2 (2008), 267–280.

[7] F. Brock and A. Henrot, A symmetry result for an overdetermined elliptic problem using
continuous rearrangement and domain derivative, Rend. Circ. Mat. Palermo (2) 51.3
(2002), 375–390.



An overdetermined problem involving the fractional Laplacian 18

[8] G. Buttazzo and B. Kawohl, Overdetermined boundary value problems for the ∞-
laplacian, International Mathematics Research Notices 2011 2, 237–247.

[9] W. Chen, C. Li and Biao Ou: Classification of solutions for an integral equation. Comm.
Pure Appl. Math. 59 (2006), 330–343.

[10] M. Choulli and A. Henrot, Use of the domain derivative to prove symmetry results in
partial differential equations, Math. Nachr. 192 (1998), 91–103.

[11] A. Cianchi and P. Salani. Overdetermined anisotropic elliptic problems, Math. Ann.
345.4 (2009), 859–881.

[12] F. Da Lio and B. Sirakov. Symmetry results for viscosity solutions of fully nonlinear
uniformly elliptic equations, J. Eur. Math. Soc. (JEMS) 9.2 (2007), 317–330.

[13] A.-L. Dalibard and D. Gérard-Varet, On shape optimization problems involving the frac-
tional laplacian, ESAIM. Control, Optimisation and Calculus of Variations 19.4 (2013),
976–1013.

[14] E. di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s Guide to the Fractional Sobolev
Spaces, Bulletin des Sciences Mathé matiques 136 (2012), 521–573.
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