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Critical domains for the first nonzero Neumann

eigenvalue in Riemannian manifolds

Mouhamed Moustapha Fall and Tobias Weth

to the memory of Ahmed El Soufi.

Abstract

The present paper is devoted to geometric optimization problems related to the

Neumann eigenvalue problem for the Laplace-Beltrami operator on bounded subdo-

mains Ω of a Riemannian manifold (M ,g). More precisely, we analyze locally ex-

tremal domains for the first nontrivial eigenvalue µ2(Ω) with respect to volume pre-

serving domain perturbations, and we show that corresponding notions of criticality

arise in the form of overdetermined boundary problems. Our results rely on an ex-

tension of Zanger’s shape derivative formula which covers the case when µ2(Ω) is

not a simple eigenvalue. In the second part of the paper, we focus on product mani-

folds of the form M = R
k ×N , and we classify the subdomains where an associated

overdetermined boundary value problem has a solution.

1 Introduction

Let (M ,g) be a complete Riemannian manifold of dimension N, N ≥ 2. For a bounded

smooth domain Ω ⊂ M with C2-boundary, we consider the Neumann eigenvalue problem

−∆gu = µ u in Ω, ∂ηu = 0 on ∂Ω, (1)

where ∆gu = divg(∇u) is the Laplace-Beltrami operator of u on M , η is the outer unit

normal to ∂Ω and ∂ηu := 〈∇u,η〉g. The set of eigenvalues, counted with multiplicities, in
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the above eigenvalue problem is given as an increasing sequence 0 = µ1(Ω)< µ2(Ω)≤ . . . .

Of particular interest is the first nontrivial eigenvalue µ2(Ω), characterized variationally as

µ2(Ω) = inf
{

∫

Ω |∇u|2 dx
∫

Ω u2 dx
: u ∈ H1(Ω)\{0},

∫

Ω

udx = 0
}

. (2)

Here H1(Ω) is the usual first order Sobolev space. A natural question is to study extremal

values of µ2(Ω) among domains Ω⊂M satisfying a volume constraint. By classical results

of Szegö and Weinberger (see [12, 13]), balls maximize µ2 among domains Ω having fixed

volume |Ω|= v > 0 in M = R
N . We note that, if BN ⊂ R

N is the unit ball, the eigenvalue

µ2(B
N) has multiplicity N with corresponding eigenfunctions of the form x 7→ ϕ(|x|) xi

|x| ,

i = 1, . . . ,N, see Section 4 below for details. As remarked in [5] and [2], the maximization

property of balls extends to the case of the N-dimensional hyperbolic space. Moreover, the

same property is valid in a hemisphere [2] and – under further restrictions on the domain –

also in rank-1 symmetric spaces [1]. On the other hand, the problem of globally minimizing

µ2 among domains Ω having fixed volume |Ω| = v < |M | has no solution, since µ2(Ω)

approaches zero within the class of domains Ω built by connecting two disjoint subdomains

with a thin tube.

The present paper consists of two parts. In the first part, we characterize – by means of

overdetermined boundary value problems – subdomains of a general Riemannian manifold

which are locally maximizing or minimizing µ2 with respect to volume preserving domain

variations. In the second part we focus on the special case of cylindrical manifolds of

the form R
k ×N , where more information can be derived. Here N is a given closed

Riemannian manifold. In this case we wish to determine global constrained maximizers for

µ2 and classify solutions of an associated overdetermined boundary value problem.

To state our main results, we need to introduce some notation. Since we assume that M

is complete, we have a globally defined exponential map expx : TxM → M at every x ∈
M , and every bounded subset of M is relatively compact. For a nonnegative integer k,

we let Ok(M ) denote the class of all bounded subdomains Ω ⊂ M with Ck-boundary.

Moreover, we let V k(M ) denote the space of all Ck-vector fields on M with bounded

covariant derivatives of order i ≤ k, which is a Banach space with canonical norm ‖ · ‖Ck ,

see e.g. [3]. For V ∈ V k(M ), we define the map

τV ∈ C
k(M ,M ), τV(x) = Expx(V (x)),

and we put ΩV := τV(Ω) for Ω ⊂ M .

Definition 1.1. Let Ω ⊂ M be a bounded domain. We say that V ∈ V 1(M ) is an ad-

missible deformation field for Ω if τV maps a neighborhood of Ω diffeomorphically onto a

neighborhood of ΩV and |ΩV |= |Ω|.



3

The requirement V ∈ V 1(M ) in this definition guarantees – in particular – that ΩV has a

C1-boundary if this is true for Ω. We can now define the notion of constrained local extrema

for µ2.

Definition 1.2. Let Ω ∈ O1(M ). We say that Ω is a constrained local maximum for µ2 if

there exists ε > 0 such that for every admissible deformation field V ∈ V 1(M ) for Ω with

‖V‖C1 < ε we have µ2(ΩV)≤ µ2(Ω). If this inequality is strict in the case where ΩV 6= Ω,

we call Ω a strict constrained local maximum. Constrained local minima are defined in an

analogous way via the opposite inequalities.

Finally, we define corresponding notions of criticality. The main difficulty here is the fact

that µ2(Ω) may or may not be a simple eigenvalue. In the case where µ2(Ω) is simple,

Zanger’s formula [14] for the shape derivative of Neumann eigenvalues with respect to

domain variations gives rise to a straightforward notion of criticality which we will refer to

as criticality in strong sense in the following, see Definition 1.3 below. In the case where

µ2(Ω) is degenerate, µ2 in general does not have shape derivatives at Ω and thus Zanger’s

formula is not valid. In Proposition 3.1 below we will derive a useful variant for one-

sided shape derivatives. In contrast to the argument by Zanger in [14], our derivation solely

relies on the variational characterization of µ2(Ω), and we believe that the resulting formula

does not extend to higher Neumann eigenvalues. On the other hand, the formula allows to

conclude that constrained local minima for µ2 are critical in strong sense, whereas in the

case of constrained local maxima it gives rise to a weaker notion of criticality. The precise

notions of weak and strong criticality used in this paper are the following.

Definition 1.3. Let Ω ∈ O1(M ).

(i) We say that Ω is a constrained critical point for µ2 in strong sense if, for some

constant λ ∈ R, there exists a solution u 6= 0 of the overdetermined problem

{

−∆gu = µ2(Ω)u in Ω,

∂η u = 0, |∇u|2 −µ2(Ω)u2 = λ on ∂Ω.
(3)

(ii) We say that Ω is a constrained critical point for µ2 in weak sense if there exists finite

many solutions u1, . . . ,um ∈C2(Ω)\{0} of the Neumann eigenvalue problem

{

−∆gui = µ2(Ω)ui in Ω,

∂η ui = 0 on ∂Ω,

with the property that
m

∑
i=1

(

|∇ui|2 −µ2(Ω)u2
i

)

= λ on ∂Ω for some constant λ ∈ R.
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The weak notion of criticality defined here is inspired by [6,11]. The first main result of the

present paper is the following.

Theorem 1.4. Let Ω ∈ O2(M ).

(i) If Ω is a constrained local maximum for µ2, then Ω is a constrained critical point for µ2

in weak sense.

(ii) If Ω is a constrained critical point for µ2 in strong sense and ∂Ω is connected, then it is

a strict constrained local maximum for µ2.

(iii) If Ω is a constrained local minimum with respect to domain variations, then M is

compact and Ω = M .

Some remarks are in order. It is already evident from the euclidean case M = R
N that,

in general, criticality in weak sense cannot be improved to criticality in strong sense for

constrained local maxima Ω ∈ O2(M ) for µ2. Indeed, by Weinberger’s result discussed

above, the unit ball Ω = BN ⊂ R
N is a constrained global (and thus local) maximizer, and

it does not admit a solution of the overdetermined problem (3) unless N = 1. On the other

hand, we shall see in Corollary 3.2 below that constrained local minima Ω ∈O2(M ) for µ2

are critical in strong sense, and from this we will deduce Theorem 1.4(iii).

As indicated already, the proof of Theorem 1.4 relies on the calculation of one-sided shape

derivatives along curves of admissible deformation fields for Ω. In the case where Ω ∈
O2(M ), these curves are closely related to C1-functions h : ∂Ω → R with

∫

∂Ω hdσ = 0.

More precisely, for any such function h, there exists ε0 > 0 and a C1-curve (−ε0,ε0) →
V 1(M ), t 7→ Vt of admissible deformation fields for Ω with V0 = 0 and ∂t

∣

∣

t=0
Vt ≡ hη on

∂Ω, where η is the outer unit normal on ∂Ω as before. This fact is rather well known (at

least in the euclidean case, see e.g. [8, 9]), and we give a short proof for the convenience

of the reader in Lemma 2.2(i) below. Note that we require Ω ∈ O2 to guarantee that η and

therefore V are of class C1.

In [6], the authors derive a similar notion of criticality in weak sense for locally extremals of

higher Dirichlet eigenvalues on −∆g on M with respect to variations of the metric g. With

regard to the underlying methods, the present paper differs from [6] as we use the variational

characterization of µ2(Ω) instead of Kato’s analytic perturbation theory used in [6].

We shall see in Remark 1.9 that the connectedness assumption on ∂Ω in Theorem 1.4(ii)

cannot be removed. On the other hand, a more general version of Theorem 1.4(ii) – not

requiring the connectedness of ∂Ω – is available when the class of admissible deformation

fields is reduced. For ε > 0 and a compact subset K of M , we denote by Uε(K) the ε-tubular

neighborhood of K in M .
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Definition 1.5. Let ε > 0. We say that an admissible deformation field V ∈ V 1(M ) for

Ω ∈ O1(M ) is locally volume preserving in Uε(∂Ω) if (ΩV \Ω)∪ (Ω\ΩV )⊂Uε(∂Ω) and

|(ΩV \Ω)∩A|= |(Ω\ΩV)∩A| for every connected component A of Uε(∂Ω).

In the case where Ω ∈O2(M ), locally volume preserving admissible deformation fields for

Ω can, similarly as remarked above, be constructed starting from C1-functions h : ∂Ω → R

with the property that
∫

Γ hdσ = 0 for every connected component Γ ⊂ ∂Ω, see Lemma

2.2(ii) below. We then have the following generalization of Theorem 1.4(ii).

Theorem 1.6. If Ω ∈ O2(M ) is a constrained critical point for µ2 in strong sense, then

there exists ε > 0 such that µ2(ΩV)< µ2(Ω) for every admissible deformation field V for Ω

which is locally volume preserving in Uε(∂Ω) and such that ΩV 6= Ω.

Next we restrict our attention to cylindrical manifolds of the type M := R
k ×N , where

(N ,gN ) is a closed connected manifold and the product metric g = geucl ⊗gN is consid-

ered on M . For the problem of maximizing µ2(Ω) among domains of fixed volume v, one

may expect a different shape of maximizers depending on the size of v. If v > 0 is small,

the results in [7] on the corresponding asymptotic profile expansion suggest that maximiz-

ing domains are perturbations of small geodesic ellipsoids in M , whereas for large v the

domains

Ωr := {(t,x) ∈ M : t ∈ R
k, |t| ≤ r, x ∈ N } ⊂ M , r > 0

are natural candidates for maximizers in view of Weinberger’s result [13] for the euclidean

case. The following result partially supports this intuition. For this we consider the (critical)

volume parameter

vc :=
( µ2(B

k)

µ2(N )

)
k
2
ωk|N |.

Here Bk ⊂ R
k denotes the unit ball with volume ωk, |N | denotes the volume of N , and

µ2(N ) resp. µ2(B
k) denote the first nontrivial Neumann eigenvalues of −∆gN

, −∆geucl
on

N , Bk, respectively.

Theorem 1.7. Let v ≥ vc and r =
(

v
ωk|N |

)
1
k

, so that |Ωr|= v. Then we have

µ2(Ω)≤ µ2(Ωr) for every domain Ω ∈ O
1(M ) with |Ω|= v.

Moreover, equality holds if and only if Ω coincides with Ωr up to translation in the R
k-

variable.
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It remains open whether the vc is optimal in Theorem 1.7. The value vc is critical in the

sense there exists eigenfunctions for µ2(Ωr) which do not depend on the N -variable if and

only if v ≥ vc, i.e., if and only if r ≥
(

µ2(B
k)

µ2(N )

)
1
2
. This property is essential for the proof of

Theorem 1.7, which is modeled on Weinberger’s argument in [13].

In the case where k = 1, the domains Ωr ⊂M , r ≥
(

µ2(B
k)

µ2(N )

)
1
2

also have the special property

of being constrained critical points for µ2 in strong sense. The following results shows that,

up to translation, these are the only examples arising in this setting.

Theorem 1.8. Let Ω ∈ O2(M ) be a domain such that the overdetermined problem

{

−∆gu = µ2(Ω)u in Ω,

∂η u = 0, |∇u|2 −µ2(Ω)u2 = λ on ∂Ω.

admits a solution for some constant λ ∈R. Then k = 1 and Ω = Ωr for some r ≥
(

µ2(B
k)

µ2(N )

)
1
2

up to translation in the t-variable.

The proof of Theorem 1.8 is not straightforward, as it combines the analysis of partial

derivatives of eigenfunctions (with respect to the t-variable) with estimates on the number

of nodal domains and a sliding argument using the cylindrical structure of the problem. We

recall that, in the euclidean setting, the sliding method has been developed in [4].

Remark 1.9. In the case k = 1, r ≥
(

µ2(B
k)

µ2(N )

)
1
2

the domain Ω = Ωr ⊂ M is a constrained

global maximizer for µ2 and a constrained critical points for µ2 in strong sense, but it is

not a strict constrained local maximizer. Indeed, for given ε > 0, one may consider an

admissible deformation field V ∈ V 1(M) for Ω with ‖v‖C1 < ε and such that ΩV is a mere

translation of Ω in the t-variable, which implies that µ2(ΩV ) = µ2(Ω). This shows that we

cannot remove the additional assumptions on ∂Ω or V in Theorems 1.4(ii) and 1.6.

The paper is organized as follows. Section 2 contains two preliminary lemmas. The first

provides an expansion of metrics associated with domain deformations, and the second en-

sures the existence of suitable curves of admissible deformation fields. In Section 3.1, we

prove a one-sided variant of Zanger’s shape derivative formula which holds without requir-

ing simplicity of µ2. From this formula, we then derive the solvability of associated overde-

termined boundary value problems, and by this we complete the proof of Theorem 1.4. In

Section 4 we restrict our attention to the case of cylindrical manifolds, and we prove Theo-

rems 1.7 and 1.8.
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2 Preliminaries

In this section we state and prove two preliminary lemmas. We start with a lemma on the

expansion of a pullback metric under a curve of diffeomorphisms generated by a corre-

sponding curve of vector fields.

Lemma 2.1. Consider a C1-curve (−ε0,ε0) → V 1(M ), ε 7→ Vε of vector fields Vε ∈
V 1(M ) with V0 = 0 and the maps

τε ∈ C
1(M ,M ), τε(x) = Expx(Vε (x)), ε ∈ (−ε0,ε0).

Moreover, let gε denote the pull back of the metric g under the map τε for ε ∈ (−ε0,ε0). In

local coordinates x1, . . . ,xN , setting ∂i =
∂

∂xi
and gi j = 〈∂i,∂ j〉g, gε, i j = 〈∂i,∂ j〉gε

, we then

have the locally uniform expansions

gε, i j = gi j + ε〈∇∂ j
V,∂i〉g + ε〈∇∂i

V,∂ j〉g +o(ε), (4)

g
i j

ε = gi j − ε〈∇∂ j
V,∂i〉g − ε〈∇∂i

V,∂ j〉g +o(ε), (5)

as ε → 0, where V := ∂ε

∣

∣

ε=0
Vε and (g i j

ε )i j denotes the inverse of (gε, i j)i j. Moreover, for

the volume form of gε we have the expansion

dvgε (x) =
(

1+ ε divgV +o(ε)
)

dvg(x) as ε → 0. (6)

Proof. We first prove (4). Fix x ∈ M and w ∈ TxM . Then we have

Dτε(x)[w] =
d

dt

∣

∣

∣

t=0
τε(α(t)),

where α : (−ε ,ε) → M is a smooth curve with α(0) = x and dα
dt
(0) = w. Note that the

curve ε 7→ τε(x) satisfies τ0(x) = x and

d

dε

∣

∣

∣

ε=0
τε(x) =

d

dε

∣

∣

∣

ε=0
Expx(Vε(x)) =

d

dε

∣

∣

∣

ε=0
Vε (x) = DExpx(0)V (x) =V (x).

Therefore, denoting by D
d

covariant derivatives along curves, we get

D

dε

∣

∣

∣

ε=0
Dτε(x)[w] =

D

dε

∣

∣

∣

ε=0

d

dt

∣

∣

∣

t=0
τε(α(t)) =

D

dt

∣

∣

∣

t=0

d

dε

∣

∣

∣

ε=0
τε(α(t))

=
D

dt

∣

∣

∣

t=0
V (α(t)) = ∇ dα

dt
V (α(t))

∣

∣

∣

t=0
= [∇wV ](x). (7)
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Next, we consider local coordinates (y1, . . . ,yN) in a neighborhood of x. Moreover, we write

∂i =
∂

∂yi
for the corresponding coordinate vector fields and

gi j = 〈∂i,∂ j〉g, as well as gε, i j = 〈∂i,∂ j〉gε
for ε ∈ (−ε0,ε0).

For fixed i, j, the function

(x,ε) 7→ gε, i j(x) = 〈Dτε(x)[∂i],Dτε(x)[∂ j]〉g

∣

∣

∣

τε (x)
(8)

then satisfies g0, i j(x) = gi j(x) and, by (7),

∂ε

∣

∣

∣

ε=0
gε, i j(x) =

〈 D

dε

∣

∣

∣

ε=0
Dτε(x)[∂i],Dτ0(x)[∂ j]

〉

g
+
〈

Dτ0(x)[∂i],
D

dε

∣

∣

∣

ε=0
Dτε(x)[∂ j]

〉

g

=
(

〈∇∂i
V,∂ j〉g + 〈∇∂ j

V,∂i〉g

)
∣

∣

∣

x
.

Consequently, we have that

gε, i j(x) = gi j(x)+ ε
(

〈∇∂i
V,∂ j〉g + 〈∇∂ j

V,∂i〉g

)∣

∣

∣

x
+o(ε)

as ε → 0. Moreover, this expansion is locally uniform in x, since it follows from the as-

sumption that the functions (x,ε) 7→ ∂ε gε, i j(x), i, j,= 1, . . . ,N are continuous in x and ε .

Hence (4) holds, and (5) is a direct consequence of (4). It thus remains to derive (6) from

(4). For this we note that

dvgε (x) =

√

|gε |
|g| dvg(x) with |g| := det(gi j), |gε | := det(gε, i j). (9)

Moreover, writing V =V k∂k in local coordinates, we see that

|gε |= |g|
(

1+ εgi j∂ε

∣

∣

∣

ε=0
gε, i j +o(ε)

)

= |g|
(

1+ εgi j
(

〈∇∂i
V,∂ j〉g + 〈∇∂ j

V,∂i〉g

)

+o(ε)
)

= |g|
(

1+ εgi j
[(

∂iV
k +V ℓΓk

ℓi

)

〈∂k,∂ j〉g +
(

∂ jV
k +V ℓΓk

ℓ j

)

〈∂k,∂i〉g

)]

+o(ε)
)

= |g|
(

1+ εgi j
[(

∂iV
k +V ℓΓk

ℓi

)

gk j +
(

∂ jV
k +V ℓΓk

ℓ j

)

gki

)]

+o(ε)
)

= |g|
(

1+2ε
(

∂kV
k +V ℓΓk

ℓk

)

+o(ε)
)

= |g|
(

1+2ε divgV +o(ε)
)

and consequently

√

|gε |
|g| = 1+ 2ε divgV + o(ε) as ε → 0. Combining this expansion with

(9), we obtain (6). Moreover, the expansion is locally uniform since this is the case for (4).

This ends the proof.

The next lemma ensures the existence of curves of admissible deformation fields for a given

domain Ω ∈ O2(M ). It follows in a straightforward way from a well known rate of change

formula for the volume functional (see e.g. [8, 9]), but we prefer to give a proof for the

convenience of the reader.
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Lemma 2.2. Let Ω ∈O2(M ), let h : ∂Ω →R be a C1-function and ε > 0. Then there exists

ε0 > 0 and a C1-curve (−ε0,ε0)→ V 1(M ), t 7→Vt with

V0 = 0, ∂t

∣

∣

∣

t=0
Vt ≡ hη on ∂Ω

and the following properties:

(i) If
∫

∂Ω hdσ = 0, then Vt is an admissible deformation field for Ω for t ∈ (−ε0,ε0).

(ii) If
∫

Γ hdσ = 0 for every connected component Γ ⊂ ∂Ω, then, for t ∈ (−ε0,ε0), Vt is

an admissible deformation field for Ω which is locally volume preserving in Uε(∂Ω).

Moreover, if h 6≡ 0, then ΩVt
6= Ω for every t ∈ (−ε0,ε0).

Proof. Let W ∈ V 1(M ) be an arbitrary extension of the outer normal η on ∂Ω, and let

h̃ ∈ C1(M ) be an extension of h to M . We first consider the case where
∫

∂Ω hdσ = 0, as

assumed in (i). We then define the C1-function

R×R→ R, (t,δ ) 7→ |ΩVt ,δ
| with Vt,δ = (th̃+δ )W ∈ V

1(M ).

By the volume element expansion given in the appendix, Lemma 2.1, we then have that

∂

∂δ

∣

∣

∣

(t,δ )=(0,0)
|ΩVt ,δ

|=
∫

Ω

divgWdx =
∫

∂Ω

〈W,η〉gdσ = |∂Ω|> 0.

Hence the implicit function theorem yields the existence of ε0 > 0 and a C2-function (−ε0,ε0)→
R, t 7→ δ (t) such that, setting Vt := (th̃ + δ (t))W ∈ V (M ), we have |ΩVt

| = |Ω| for

t ∈ (−ε0,ε0) and thus, again by Lemma 2.1,

0 = ∂t

∣

∣

∣

t=0
|ΩVt

|=
∫

Ω

divg[(h̃+ δ̇(0))W ]dx =

∫

∂Ω

(h+ δ̇ (0))dσ = δ̇ (0)|∂Ω|.

We conclude that δ̇ (0) = 0. Hence ∂t

∣

∣

∣

t=0
Vt = h̃W , which coincides with hη on ∂Ω. More-

over, if h 6≡ 0, we may make ε0 > 0 smaller if necessary to guarantell that ΩVt
6= Ω for every

t ∈ (−ε0,ε0). Hence the claim holds.

We now consider the case where
∫

Γ hdσ = 0 for every connected component Γ ⊂ ∂Ω, as

assumed in (ii). Making ε > 0 smaller if necessary, we may assume, by the compactness

of ∂Ω, that the set Uε(∂Ω) has finitely many connected components A1, . . . ,An. For i =

1, . . . ,n, let Γi := ∂Ω ∩Ai, and let Wi ∈ V (M ) be a vector field supported in Ai which

coincides with the outer unit normal η on Γi.

Similarly as above, the implicit function theorem yields the existence of ε0 > 0 and a C1-

function

(−ε0,ε0)→ R
n, t 7→ δ (t) = (δ1(t), . . . ,δn(t))
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such that, setting Vt :=
n

∑
i=1

(th̃+δi(t))Wi ∈ V (M ), we have

|ΩVt
∩Ai|= |Ω∩Ai| for i = 1 . . . ,n, t ∈ (−ε0,ε0).

Moreover, making ε0 smaller if necessary, we may assume that

(ΩVt
\Ω)∪ (Ω\ΩVt

)⊂Uε(∂Ω) for t ∈ (−ε0,ε0).

Lemma 2.1 then implies that

0 = ∂ε

∣

∣

∣

ε=0
|ΩVt

∩Ai|=
∫

Ω∩Ai

divg

( n

∑
j=1

[(h̃+ δ̇ j(0))Wj]
)

dx =

∫

Ω∩Ai

divg

[

(h̃+ δ̇i(0))Wi

]

dx

=

∫

Γi

〈(h+ δ̇i(0))Wi,η〉gdσ =

∫

Γi

hdσ + δ̇i(0)|Γi|.

Since
∫

Γi
hdσ = 0 for i= 1, . . . ,n, we conclude that δ̇i(0) = 0 for i= 1, . . . ,n. Consequently,

we have ∂t

∣

∣

∣

t=0
Vt =

n

∑
i=1

h̃Wi, and the RHS coincides with hη on ∂Ω. If h 6≡ 0, we may again

make ε0 > 0 smaller if necessary to guarantell that ΩVt
6= Ω for every t ∈ (−ε0,ε0). The

claim follows.

3 A variant of Zanger’s domain variation formula and its con-

sequences

In this section we extend Zanger’s formula for the domain dependance of Neumann eigen-

values in the case of the variational eigenvalue µ2. Note that, in the case where µ2(Ω) is

not a simple eigenvalue, µ2 is usually not a differentiable with respect to regular variations

of Ω. Nevertheless, the following one-sided derivative can be calculated.

Proposition 3.1. Let Ω ∈O2(M ), and let (−ε0,ε0)→ V 1(M ), ε 7→Vε be a C1-curve with

V0 = 0 and V := ∂ε

∣

∣

∣

ε=0
Vε . Then we have

∂+
ε

∣

∣

∣

ε=0
µ2(ΩVε ) = min

{

∫

∂Ω

(|∇u|2 −µ2(Ω)u2)〈V,η〉g dσ : u ∈ L
}

, (10)

where L ⊂C1(Ω) is the set of all Neumann eigenfunctions u of −∆g on Ω corresponding to

the eigenvalue µ2(Ω) with
∫

Ω u2 dx = 1.

Proof. We start with some preliminary considerations. We first simplify the notation de-

fined in the introduction, writing Ωε in place of ΩVε
and τε in place of τVε

for ε ∈ (−ε0,ε0).
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In the following, we let gε denote the pull back of the metric g under the map τε . Since

τε : (M,gε) → (M,g) is an isometry and Ωε = τε(Ω), the variational characterization for

µ2(Ωε) can be rewritten as

µ2(Ωε) = inf
{

∫

Ω |∇gε u|2gε
dvgε

∫

Ω[u−m(u,ε)]2 dvgε

: u ∈ H1(Ω),u 6≡ const
}

, (11)

where

m(u,ε) =
1

|Ω|gε

∫

Ω

udvgε for u ∈ H1(Ω)

and dvgε denotes the volume element with respect to the metric gε . To prove the assertion,

we thus need to use the expansions for the metric gε derived in Lemma 2.1. For vector fields

w,z defined in Ω, locally written as w = wi∂i, z = z j∂ j, (4) gives rise to the expansion

〈w,z〉gε = gε, i j wiz j = 〈w,z〉g + ε〈∇∂ j
V,∂i〉wiz j + ε〈∇∂i

V,∂ j〉wiz j +o(ε),

= 〈w,z〉g + ε〈∇ZV,W 〉g + ε〈∇WV,Z〉g +o(ε). (12)

Simply writing, as before, ∇ f in place of ∇g f for a smooth function f : Ω → R in the

following, we also deduce from (5) that

〈∇gε f ,∇gε h〉gε = g
i j

ε ∂i f ∂ jh

= 〈∇g f ,∇gh〉g − ε〈∇∇hV,∇ f 〉g − ε〈∇∇ fV,∇h〉g +o(ε) (13)

for smooth functions f ,h : Ω →R. Moreover, the expansion is uniform when f ,h are taken

from a bounded set in C1(Ω). In order to establish (10), we now first prove that

∂+
ε

∣

∣

∣

ε=0
µ2(Ωε)≤ min

{

∫

∂Ω

(|∇u|2 −µ2(Ω)u2)〈V,η〉g dσ : u ∈ L
}

. (14)

Let u ∈ L. From (11) it follows that

µ2(Ωε)≤ ρu(ε) :=

∫

Ω |∇gε u|2gε
dvgε

∫

Ω[u−m(u,ε)]2 dvgε

for |ε | ≤ ε0.

Since also µ2(Ω) = ρu(0), we have ∂+
ε

∣

∣

∣

ε=0
µ2(Ωε) ≤ ρ ′

u(0), so the inequality (14) follows

once we have shown that

ρ ′
u(0) =

∫

∂Ω

(|∇u|2 −µ2(Ω)u2)〈V,η〉g dσ for u ∈ L. (15)

By expansions (6) and (13), we have that
∫

Ω

|∇gε u|2gε
dvgε =

∫

Ω

|∇u|2g dx+ ε

∫

Ω

(

|∇u|2divgV −2〈∇∇uV,∇u〉g

)

dx+o(ε) (16)
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and therefore, via integration by parts,

∂ε

∣

∣

∣

ε=0

∫

Ω

|∇gε u|2gε
dvgε =

∫

Ω

(|∇u|2divgV −2〈∇u,∇∇uV 〉g dx

=

∫

∂Ω

|∇u|2〈V,η〉gdσ −2

∫

Ω

(

〈∇∇u∇u,V 〉g + 〈∇u,∇∇uV 〉g

)

dx.

Since ∇u ·η = 0 on ∂Ω and −∆u = µ2(Ω)u in Ω, we also have that

0 =

∫

∂Ω

〈∇u,V 〉g〈∇u,η〉g dσ =

∫

Ω

div
(

〈∇u,V 〉g∇u
)

dx

=

∫

Ω

(

〈

∇〈∇u,V 〉g∇u
〉

g
+ 〈∇u,V 〉g∆u

)

dx =

∫

Ω

(

∂∇u 〈∇u,V 〉g −µ2(Ω)u〈∇u,V 〉g

)

dx

=
∫

Ω

(

〈∇∇u∇u,V 〉g + 〈∇u,∇∇u
V 〉g −µ2(Ω)u〈∇u,V 〉g

)

dx (17)

and thus

∂ε

∣

∣

∣

ε=0

∫

Ω

|∇gε u|2gε
dvgε =

∫

∂Ω

|∇u|2g〈V,ν〉g dσ −2µ2(Ω)

∫

Ω

u〈∇u,V 〉g dx.

Using (6), we also see that

∂ε

∣

∣

∣

ε=0

∫

Ω

u2dvgε =

∫

Ω

u2divgV dx =

∫

∂Ω

u2〈V,η〉g dσ −2

∫

Ω

u〈∇u ·V 〉g dx.

Moreover, since m(u,0) = 0, we have ∂ε

∣

∣

ε=0

[

|Ωε |m2(u,ε)
]

= 0 and therefore

∂ε

∣

∣

∣

ε=0

∫

Ω

[u−m(u,ε)]2 dvgε = ∂ε

∣

∣

∣

ε=0

(

∫

Ω

u2 dx−|Ωε |m2(u,ε)
)

= ∂ε

∣

∣

∣

ε=0

∫

Ω

u2 dvgε

=
∫

∂Ω

u2〈V,η〉g dσ −2

∫

Ω

u〈∇u ·V 〉g dx

by (6) and integration by parts. Combining the above identities, we find that

ρ ′
u(0) =

(

∫

Ω

u2 dx
)−2[

∫

∂Ω

|∇u|2〈V,η〉g dσ −2µ2(Ω)

∫

Ω

u〈∇u,V 〉g dx

−
∫

Ω

|∇u|2 dx
(

∫

∂Ω

u2〈V ·η〉g dσ −2

∫

Ω

u〈∇u,V 〉g dx
)]

=
(

∫

Ω

u2 dx
)−2[

∫

∂Ω

|∇u|2〈V,η〉g dσ −2µ2(Ω)

∫

Ω

u〈∇u,V 〉g dx

−µ2(Ω)
(

∫

∂Ω

u2〈V,η〉g dσ −2

∫

Ω

u〈∇u,V 〉g dx
)]

=

∫

∂Ω

(|∇u|2 −µ2(Ω)u2)〈V,η〉g dσ ,
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as claimed in (15). We thus conclude that (14) holds. Next, to show the opposite inequality

in (10), we argue by contradiction. Hence we suppose that

liminf
ε→0+

µ2(Ωε)−µ2(Ω)

ε
< κΩ := min

u∈L

∫

∂Ω

(|∇u|2 −µ2(Ω)u2)〈V,η〉g dσ , (18)

which means there exists a sequence of positive numbers εk, k ∈ N with εk → 0 and such

that

lim
k→∞

µ2(Ωεk
)−µ2(Ω)

εk

< κΩ. (19)

For the ease of notation, we simply write ε in place of εk in the following. Moreover, we let

uε denote an L2-normalized eigenfunction on Ωε corresponding to the eigenvalue µ2(Ωε).

Using again the fact that the map τε : (M,gε) → (M,g) is an isometry, we find that the

functions uε ∈C2(Ω), uε := uε ◦ τε satisfy

−∆gε uε = µ2(Ωε)uε in Ω, ∂ηε uε = 0 on ∂Ω.

Here ηε denotes the outer normal on ∂Ω with respect to the metric gε . By elliptic regularity

(using the fact that the coefficients of gε are locally uniformly Lipschitz), it follows that the

sequence (uε )ε remains bounded in C1,α(Ω), and thus uε → w in C1(Ω) after passing to

a subsequence. Integrating by parts and using the expansions (6) and (13) again, we thus

infer that

µ2(Ωε)

∫

Ω

uε wdvgε =−
∫

Ω

(∆gε uε)wdx =

∫

Ω

〈∇gε uε ,∇gε w〉gε dvgε

=
∫

Ω

∇uε ·∇wdx+ ε

∫

Ω

(

〈∇uε ,∇w〉gdivgV −〈∇∇uε
V,∇uε 〉g −〈∇∇wV,∇uε 〉g

)

dx+o(ε)

= µ2(Ω)

∫

Ω

uε wdx+ ε

∫

Ω

(

|∇w|2 divgV −2〈∇∇wV,∇w〉g

)

dx+o(ε)

= µ2(Ω)
[

∫

Ω

uε wdvgε − ε

∫

Ω

uε wdivgV dx
]

+ ε

∫

Ω

(

|∇w|2 divgV −2〈∇∇wV,∇w〉g

)

dx+o(ε)

Using also that

∫

Ω

uε wdvgε =

∫

Ω

w2 dx+o(1) = 1+o(1) and

∫

Ω

uε wdivgV dx =

∫

Ω

w2divgV dx+o(1)
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we conclude that

µ2(Ωε) = µ2(Ω)

+ ε
(

∫

Ω

uε wdvgε

)−1(
∫

Ω

(

|∇w|2divgV −µ2(Ω)w2divgV −2〈∇∇wV,∇w〉g

)

dx+o(ε)

= µ2(Ω)+ ε

∫

Ω

(

|∇w|2divgV −µ2(Ω)w2divgV −2〈∇∇wV,∇w〉g

)

dx+o(ε).

Integrating by parts, we thus find that

µ2(Ωε)−µ2(Ω)

ε
=

∫

Ω

(

|∇w|2divgV −µ2(Ω)w2divgV −2〈∇∇wV,∇w〉g

)

dx+o(1)

=

∫

∂Ω

(

|∇w|2 −µ2(Ω)w2
)

〈V,η〉g dσ

+2

∫

Ω

(

µ2(Ω)w〈∇w,V 〉g −〈∇∇wV,∇w〉g −〈∇∇w∇w,V 〉g

)

dx+o(1)

=
∫

∂Ω

(

|∇w|2 −µ2(Ω)w2
)

〈V,η〉g dσ +o(1)≥ κΩ +o(1),

where we used (17) with w in place of u. Recalling that this holds for a subsequence of the

sequence (εk)k for which we assumed (19), we thus get a contradiction. We conclude that

both ≤ and ≥ holds in (10), and thus the proof is finished.

Corollary 3.2. Let Ω and L be as in Proposition 3.1. Then we have the following.

(i) If Ω is a local minimum with respect to domain variations, then the quantity |∇u|2 −
µ2(Ω)u2 is constant on ∂Ω for all u ∈ L. In particular, Ω is a constraint critical point

for µ2 in strong sense.

(ii) If Ω is a local maximum with respect to domain variations, then Ω is a constraint

critical point for µ2 in weak sense.

Proof. (i) If suffices to show that

∫

∂Ω

(

|∇u|2 −µ2(Ω)u2
)

hdσ = 0 (20)

for every u ∈ L and every C1-function h : ∂Ω → R with
∫

∂Ω hdσ = 0. Fix such a func-

tion h, and consider the corresponding C1-curve (−ε0,ε0) → V 1(M ), t 7→ Vt given by
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Lemma 2.2(i). Combining the assumption with Proposition 3.1 and Lemma 2.2(i), we then

deduce that

0 ≤ ∂+
t

∣

∣

∣

t=0
µ2(ΩVt

) = min
{

∫

∂Ω

(|∇u|2 −µ2(Ω)u2)hdσ : u ∈ L
}

.

Replacing h by −h, we then also deduce that

max
{

∫

∂Ω

(|∇u|2 −µ2(Ω)u2)hdσ : u ∈ L
}

≤ 0,

and thus (20) follows.

(ii) By the same argument as in the proof of (i), we see that

min
{

∫

∂Ω

(|∇u|2 −µ2(Ω)u2)hdσ : u ∈ L
}

≤ 0

for all C1-functions h : ∂Ω → R with
∫

∂Ω hdσ = 0. By density, this yields,

min
{

∫

∂Ω

(|∇u|2 −µ2(Ω)u2)hdσ : u ∈ L
}

≤ 0 for h ∈ L2(∂Ω) with

∫

∂Ω

hdσ = 0. (21)

We now consider the set K ⊂ L2(∂Ω) given as the convex hull of the set

K0 :=
{(

|∇u|2 −µ2(Ω)u2
)
∣

∣

∣

∂Ω
: u ∈ L

}

.

Since K0 is a compact set contained in the finite dimensional space E0 ⊂ L2(∂Ω) spanned

by

(

|∇ui|2 −µ2(Ω)u2
i

)
∣

∣

∣

∂Ω
,

(

〈∇ui,∇u j〉g −µ2(Ω)uiu j

)
∣

∣

∣

∂Ω
, i, j = 1, . . . , ℓ, (22)

where u1, . . . ,uℓ denotes a basis of the eigenspace corresponding to µ2(Ω), it follows from

Carathéodory’s theorem that K is compact as well. Let P⊂ L2(∂Ω) denote the one-dimensional

subspace of constant functions. We claim that

K ∩P 6=∅. (23)

For this we consider the the finite dimensional space E = E0 +P ⊂ L2(∂Ω), which is a

Hilbert space with the induced scalar product of L2(∂Ω). Suppose by contradiction that

K ∩P =∅. Then there exists a convex relatively open neighborhood K̃ of K in E such that

K̃∩P =∅. By Mazur’s separation theorem, there thus exists some function h̃ ∈ E such that

∫

∂Ω

h̃wdσ = 0 for w ∈ P and

∫

∂Ω

h̃wdσ > 0 for w ∈ K̃.
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In particular,

∫

∂Ω

h̃dσ = 0 and

∫

∂Ω

(|∇u|2 −µ2(Ω)u2)h̃ dσ > 0 for all u ∈ L,

which contradicts (21) since L is compact. Hence we conclude that (23) holds. Conse-

quently, there exists m ∈N, λ1, . . . ,λm ≥ 0 with
m

∑
k=1

λk = 1 and u1, . . . ,um ∈ L such that

m

∑
k=1

λk(|∇uk|2 −µ2(Ω)u2
k) = λ on ∂Ω

with a constant λ ∈ R. Without loss of generality, we may assume here that λk 6= 0 and

uk 6= 0 for k = 1, . . . ,m. Replacing uk by
√

λkuk, we thus obtain that

m

∑
k=1

(|∇uk|2 −µ2(Ω)u2
k) = λ on ∂Ω, (24)

which means that Ω is a constrained critical point for µ2 in weak sense, as claimed.

Remark 3.3. The above proof is, to some extend, inspired by similar arguments in [11]

and [6]. An inspection of the proof shows that the number m in (24) can be chosen less than

or equal to
ℓ(ℓ+1)

2
+1, where ℓ is the dimension of the eigenspace L corresponding to µ2(Ω).

This follows from Carathéodory’s theorem and the fact that the dimension of the space E0

spanned by the functions in (22) is less than or equal to
ℓ(ℓ+1)

2
. It would be interesting to

know whether this bound on m is optimal.

The following Proposition is the second main step in the proofs of Theorem 1.4(ii),(iii) and

Theorem 1.6.

Proposition 3.4. Let Ω ∈ O2(M ) be such that there exists a nontrivial solution of the

overdetermined problem

{

−∆gu = µ2(Ω)u in Ω,

∂ηu = 0, |∇u|2 −µ2(Ω)u2 = λ on ∂Ω,
(25)

for some constant λ ∈ R. Then

u2 ≡− λ

µ2(Ω)
> 0 on ∂Ω. (26)

In addition, there exists ε > 0 such that µ2(ΩV)< µ2(Ω) for every admissible deformation

field V for Ω which is locally volume preserving in Uε(∂Ω) and such that ΩV 6= Ω.
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Proof. Let u be a nontrivial solution of (25). To see this, choose x1,x2 ∈ ∂Ω such that

u2(x1) = max
∂Ω

u2 and u2(x2) = min
∂Ω

u2, so that ∇u2(x1) = 2u(x1)∇u(x1) = 0. By unique

continuation, we know that u2(x1) 6= 0, so that ∇u(x1) = 0, yielding u2(x1) = − λ
µ2(Ω) > 0.

This latter property and the fact that ∇u2(x2) = 2u(x2)∇u(x2) = 0 imply that ∇u(x2) = 0

and thus u2(x2) =− λ
µ2(Ω) . This proves (26).

In the following, we put λ0 :=− λ
µ2(Ω) for the constant value of u2 on ∂Ω. Moreover, we let

∆∂ Ω denote the Laplace-Beltrami operator on the N − 1-dimensional submanifold ∂Ω and

H∂ Ω the mean curvature of ∂Ω. Since ∆∂ Ωu ≡ 0 and ∂ηu = 0 on ∂Ω, we find that

∂ηη [u
2] = 2u∂ηη u = 2u

(

∆u−∆∂ Ωu−H∂ Ω∂η u
)

= 2u∆u =−2µ2(Ω)u2 = 2λ < 0

on ∂Ω. Consequently, there exists ε > 0 such that

u2 < λ0 in Uε(∂Ω)∩Ω. (27)

Next, we decompose ∂Ω into the compact subsets Γ± := {x ∈ ∂Ω : u(x) = ±
√

λ0}. By

making ε > 0 smaller if necessary, we can then achieve that

Uε(Γ+)∩Uε(Γ−) =∅

and

0 < u <
√

λ0 in Uε(Γ+)∩Ω, −
√

λ0 < u < 0 in Uε(Γ−)∩Ω. (28)

In the following, we fix an admissible deformation field V ∈ V (M ) for Ω which is locally

volume preserving in Uε(∂Ω) and such that ΩV 6= Ω. To complete the proof, we need to

show that

µ2(ΩV )< µ2(Ω). (29)

For this we define the function w ∈C1(Uε(Ω)) by

w(x) =















u(x), x ∈ Ω,

+
√

λ0, x ∈Uε(Γ+)\Ω,

−
√

λ0, x ∈Uε(Γ−)\Ω.

Since ΩV ⊂ Uε(Ω), we may use w in the variational characterization of µ2(ΩV) to deduce

that

µ2(ΩV )≤
∫

ΩV
|∇w|2 dx

∫

ΩV
(w−m(w))2 dx

with m(w) :=
1

|ΩV |

∫

ΩV

wdx. (30)

Since |ΩV |= |Ω|, we have

∫

ΩV

(w−m(w))2 dx =

∫

ΩV

w2 dx− 1

|ΩV |
(

∫

ΩV

wdx
)2

=

∫

ΩV

w2 dx− 1

|Ω|
(

∫

ΩV

wdx
)2

. (31)
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Moreover, since |ΩV \Ω|= |Ω\ΩV |, we have that

∫

ΩV

w2 dx =
∫

ΩV\Ω

w2 dx+
∫

Ω

w2 dx−
∫

Ω\ΩV

w2 dx

= λ0|ΩV \Ω|+
∫

Ω

u2 dx−
∫

Ω\ΩV

u2 dx =
∫

Ω

u2 dx+
∫

Ω\ΩV

(λ0 −u2)dx. (32)

Furthermore, since

∫

Ω

udx =− 1

µ2(Ω)

∫

Ω

∆udx =

∫

∂Ω

uν dσ = 0,

we find that

∫

ΩV

wdx =

∫

ΩV\Ω

wdx+

∫

ΩV∩Ω

u =

∫

ΩV\Ω

wdx−
∫

Ω\ΩV

udx (33)

= ∑
i=±

(

∫

(ΩV\Ω)∩Uε (Γi)

wdx−
∫

(Ω\ΩV )∩Uε (Γi)

udx
)

=
√

λ0

(

∣

∣(ΩV \Ω)∩Uε(Γ+)
∣

∣−
∣

∣(ΩV \Ω)∩Uε(Γ−)
∣

∣

)

− ∑
i=±

∫

(Ω\ΩV )∩Uε (Γi)

udx

=

∫

(Ω\ΩV )∩Uε (Γ+)

(
√

λ0 −|u|)dx −
∫

(Ω\ΩV )∩Uε (Γ−)

(
√

λ0 −|u|)dx (34)

Here we used (28) and the fact that |(ΩV \Ω)∩Uε(Γ±)| = |(Ω \ΩV)∩Uε(Γ±)|. Applying

the Cauchy Schwarz inequality to the RHS of (34), we deduce that

(

∫

ΩV

wdx
)2

≤
(

|(Ω\ΩV)∩Uε(Γ+)|+ |(Ω\ΩV)∩Uε(Γ−)|
)

∑
i=±

∫

(Ω\ΩV )∩Uε (Γi)

(
√

λ0 −|u|)2 dx

= |Ω\ΩV |
∫

Ω\ΩV

(
√

λ0 −|u|
)2

dx. (35)

Combining (31), (32) and (35), we find that

∫

ΩV

(w−m(w))2 dx ≥
∫

Ω

u2 dx+
∫

Ω\ΩV

[

(λ0 −u2)− (
√

λ0 −|u|)2
]

dx

=
∫

Ω

u2 dx+2

∫

Ω\ΩV

|u|
(

√

λ0 −|u|
)

dx >
∫

Ω

u2 dx, (36)
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where the last inequality follows from (27) and the fact that |Ω \ΩV | > 0 by assumption.

Since w is constant on ΩV \Ω, we also have that

∫

ΩV

|∇w|2 dx =

∫

ΩV\Ω

|∇w|2 dx+

∫

Ω

|∇w|2 dx−
∫

Ω\ΩV

|∇w|2 dx

=

∫

Ω

|∇u|2 dx−
∫

Ω\ΩV

|∇u|2 dx ≤
∫

Ω

|∇u|2 dx. (37)

Combining (30), (36) and (37), we finally conclude that

µ2(ΩV)<

∫

Ω |∇u|2 dx
∫

ΩV
u2 dx

= µ2(Ω).

We thus have (29), as required.

Corollary 3.5. Under the assumptions of Proposition 3.4 , Ω is not a constrained local

minimum for µ2 unless Ω = M . Moreover, it is a strict local maximum if ∂Ω is connected.

Proof. Let ε > 0 be given by Proposition 3.4. If Ω 6=M , then by Lemma 2.2(ii) there exists

an admissible deformation field V ∈ V (M ) for Ω which satisfies ‖V‖C1 < ε , is locally

volume preserving in Uε(∂Ω) and such that ΩV 6= Ω. Moreover, Proposition 3.4 yields that

µ2(ΩV)< µ2(Ω) in this case. Hence Ω is not a constrained local minimum for µ2.

Moreover, if ∂Ω is connected, then there exists ε1 = ε1(ε) > 0 such that every admissible

deformation field V ∈ V (M ) for Ω with ‖V‖C1 < ε1 is also locally volume preserving in

Uε(∂Ω), and thus Proposition 3.4 yields that µ2(ΩV) < µ2(Ω) if ΩV 6= Ω. This ends the

proof.

Proof of Theorem 1.4 (completed). Part (i) is already contained in Corollary 3.2(ii), and

Parts (ii) and (iii) follows directly from Proposition 3.4.

Proof of Theorem 1.6 (completed). The result is already contained in Proposition 3.4.

4 The case of cylindrical manifolds

In this section, we restrict our attention to the case M is a cylindrical manifold of the form

M := R
k ×N , where (N ,gN ) is a closed connected manifold and M is endowed with

the product metric g = geucl ⊗gN .

In the following, we let Bk ⊂ R
k denote the unit ball. As noted already in the introduction,

µ2(B
k) is of multiplicity N with corresponding eigenfunctions x 7→ ϕ(|x|) xi

|x| , i = 1, . . . ,k,
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where ϕ is the unique solution of the boundary value problem

ϕ ′′+
k−1

t
ϕ ′+

(

µ2(B)−
k−1

t2

)

ϕ = 0, t ∈ (0,1), ϕ(0) = ϕ ′(1) = 0.

The function ϕ and the eigenvalue µ2(B) can be characterized via Jk/2, the Bessel function

of the first kind of order k/2, see e.g. [10]. Indeed,
√

µ2(B) is the first positive zero of the

derivative of t 7→ t(2−k)/2Jk/2(t), and ϕ is a scalar multiple of the function

t 7→ g(t) = t(2−k)/2Jk/2(
√

µ2(B)t). (38)

As a consequence of these facts, the cylindrical domain

Ωr := {(t,x) ∈ M : |t| ≤ r, , x ∈ N } ⊂ M , r > 0 (39)

admits the Neumann eigenvalue µr := µ2(B
k)

r2 with eigenfunctions

ui
r : Ωr → R, ui

r(t,x) := ϕ(
|t|
r
)

ti

|t| , i = 1, . . . ,k. (40)

In particular, for k = 1 we have µ2(B
1) = π2

4
, and there is only one function of the type (40),

up to a constant factor, given by

ur : M → R, ur(t,x) = sin(
π

2r
t). (41)

The following observation is the first step in the proof of Theorem 1.7, and it is closely

related to Weinberger’s euclidean isoperimetric inequality for µ2 in [13].

Proposition 4.1. Let r > 0. If Ω ∈ O1(M ) satisfies |Ω| = |Ωr|, then µ2(Ω) ≤ µr with

equality if and only if Ω = Ωr up to translation in t-direction.

Proof. The proof is modeled on Weinberger’s argument in [13]. Consider the function

G : [0,∞) → R defined by G(τ) = ϕ( τ
r
) for τ ≤ r and G(τ) = ϕ(1) for τ ≥ r. Moreover,

consider the continuous vector field

V : Rk → R
k, V (y) =

∫

Ω

G
(

|t − y|
) t − y

|t − y|d(t,x).

Since Ω is bounded, we have
V (y)
|V (y)| = − y

|y| + o(1) as |y| → ∞. Hence Brower’s fixed point

implies that V has a zero, and without loss we may, by translation Ω in the t-variables if

necessary, assume that V (0) = 0. Consequently, the restrictions of each of the functions

vi : M → R, vi(t,x) = G(|t|) ti

|t|
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to Ω belongs to H1(Ω) and satisfies
∫

ΩVi dx = 0. Therefore (2) implies that

µ2(Ω)
∫

Ω

G2(|t|)d(t,x) =
k

∑
i=1

µ2(Ω)
∫

Ω

v2
i d(t,x)

≤
k

∑
i=1

∫

Ω

|∇vi|2 d(t,x) =

∫

Ω

H(|t|)d(t,x) (42)

with H : (0,∞) → R given by H(τ) = [G′(τ)]2 + G2(τ)
τ2 . As noted in [13], G and H are

nonnegative functions such that G is increasing and H is strictly decreasing. Consequently,

since |Ω|= |Ωr|, we have that
∫

Ω

G2(|t|)d(t,x) =
∫

Ωr

G2(|t|)d(t,x)+
∫

Ω\Ωr

G2(|t|)d(t,x)−
∫

Ωr\Ω

G2(|t|)d(t,x)

≥
∫

Ωr

G2(|t|)d(t,x)+G(1)
(

|Ω\Ωr|− |Ωr \Ω|
)

≥
∫

Ωr

G2(|t|)d(t,x),

and, similarly,
∫

Ω

H(|t|)d(t,x) ≤
∫

Ωr

H(|t|)d(t,x). (43)

Moreover, equality holds in (43) if and only if |Ωr \Ω| = |Ω \Ωr| = 0, i.e. if Ω = Ωr.

Consequently, we have that

µ2(Ω)≤
∫

Ωr
G2(|t|)d(t,x)

∫

Ωr
H(|t|)d(t,x)

(44)

with equality if and only if Ω = Ωr. Since equality holds in (42) when Ω is replaced by Ωr

and µ2(Ω) by µr, the right hand side of (44) equals µr. Thus the proof is finished.

We may now finish the

Proof of Theorem 1.7. Let r > 0. By separation of variables, only two cases may occur:

Case 1: µ2(Ωr) = µ2(N ), and at least one associated eigenfunction on Ωr is of the form

(t,x) 7→ w(x), where w ∈C2(N ) is an eigenfunction corresponding to µ2(N ).

Case 2: µ2(Ωr) = µr, and the functions given in (41) are contained in the associated

eigenspace.

Clearly, Case 2 occurs if and only if µr = µ2(B
k)

r2 ≤ µ2(N ), which holds if and only if

|Ωr| = ωk|N |rk is larger than or equal to the critical volume given in Theorem 1.7. Thus,

if v ≥ vc is fixed and r =
(

v
ωk|N |

)
1
k

, then Proposition 4.1 yields that

µ2(Ω)≤ µr = µ2(Ωr) for every domain Ω ∈ O
1(M ) with |Ω|= v.

Moreover, equality holds if and only if Ω = Ωr up to translation in the t-variable.
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We now turn to the overdetermined boundary value problem

{

−∆gu = µ2(Ω)u in Ω,

∂η u = 0, |∇u|2 −µ2(Ω)u2 = λ on ∂Ω.
(45)

The remainder of this section will be devoted to the proof of Theorem 1.8, which we restate

here for the reader’s convenience.

Theorem 4.2. Let Ω ∈ O2(M ) be a domain such that the overdetermined problem (45)

admits a solution for some constant λ ∈R. Then k = 1 and Ω = Ωr for some r ≥
(

µ(Bk)
µ(N )

)
1
2

up to translation in the t-variable.

Proof. Let u be a nontrivial solution of (45). By Theorem 4.2 we have that λ < 0 and

u2 ≡ λ0 := − λ
µ2(Ω) on ∂Ω. So u is locally constant and nonzero on ∂Ω. Next we consider

some unit vector σ ∈ R
k and the directional derivative

uσ = ∂(σ ,0)u : Ω → R, uσ (t,x) = lim
ε→0

u(t + εσ ,x)−u(t,x)

ε
.

We claim that

for every unit vector σ ∈R
k we have uσ > 0 in Ω or uσ < 0 in Ω. (46)

Indeed, differentiating the first equation in (45) and recalling that ∇u ≡ 0 on ∂Ω, we see

that uσ solves
{

−∆guσ = µ2(Ω)uσ in Ω,

uσ = 0 on ∂Ω,
(47)

If we now suppose by contradiction that uσ changes sign, then the second Dirichlet eigen-

value λ2(Ω) of −∆g on Ω is less than or equal to µ2(Ω). On the other hand, the variational

characterization (2) gives rise to the inequality µ2(Ω)≤ λ2(Ω), and so equality holds. But

then a nontrivial linear combination v of the positive and negative part of uσ is a correspond-

ing Neumann eigenfunction which thus solves the equation −∆v = µ2(Ω)v in Ω together

with homogeneous Dirichlet and Neumann boundary conditions on ∂Ω. This is impossible

by unique continuation. Hence uσ does not change sign.

Next we suppose by contradiction that uσ ≡ 0. Let then (t,x) ∈ Ω, and let C be the con-

nected component of the set {(t + τσ ,x) : τ ∈ R}∩Ω which contains (t,x). Then u is

constant on C . Since C ∩∂Ω 6=∅, we thus conclude that u(t,x) =
√

λ0 or u(t,x) =−
√

λ0.

Since this holds for every point(t,x) ∈ Ω, the connectedness of Ω implies that u ≡
√

λ0 in

Ω or u ≡ −
√

λ0 in Ω, which contradicts the first equation in (45). Consequently we have

uσ 6≡ 0. Now (47) and the strong maximum principle imply that uσ > 0 in Ω or uσ < 0 in
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Ω, as claimed in (46).

Next we observe that (46) is impossible if k ≥ 2, since then every unit vector σ ∈R
k can be

connected with −σ by a continuous curve of unit vectores, whereas u−σ =−uσ .

So we conclude that k = 1, and we write ut in place of uσ for σ = 1. Replacing u by

−u if necessary, we may assume by (46) that ut > 0 in Ω. For x ∈ N we now define

Sx := {t ∈ R : (t,x) ∈ Ω} ⊂ R, and we consider a nonempty connected component S ⊂ Sx.

Then the function t 7→ u(t,x) is strictly increasing in S. Moreover, if t1 = inf S and t2 =

supS, then (t1,x),(t2,x) ∈ ∂Ω and u(t1,x) < u(t2,x), which implies that u(t1,x) = −
√

λ0

and u(t2,x) =
√

λ0. We thus have the following property:

If x ∈ N and S is a nonempty connected component of Sx, then

t 7→ u(t,x) is an increasing homeomorphism from S to (−
√

λ0,
√

λ0).
(48)

Next we claim the following:

For every x ∈ N there exists precisely one

τ = τ(x) ∈ R with (τ(x),x) ∈ Ω and u(τ(x),x) = 0.
(49)

Indeed, let N0 ⊂N denote the set of all x∈N such that (t,x)∈ Ω and u(t,x) = 0 for some

t ∈ R. Then N0 is open and nonempty, since Ω is open and, by (48), for every (t,x) ∈ Ω

there exists t̃ ∈R such that (t̃,x)∈ Ω and u(t̃,x) = 0. Moreover, N0 is closed in N . Indeed,

let (xn)n be a sequence in N0 with xn → x ∈ N as n → ∞, and let tn ∈ R, n ∈ N be such

that (tn,xn) ∈ Ω and u(tn,xn) = 0. Since Ω is bounded, we may pass to a subsequence such

that tn → t as n → ∞. We then have (t,x) ∈ Ω and u(t,x) = 0. Hence (t,x) 6∈ ∂Ω since

u2 ≡ λ0 > 0 on ∂Ω. Consequently, (t,x) ∈ Ω and therefore x ∈ N0. In sum, it follows that

N0 = N since N is connected, and thus for every x ∈ N there exists at least one t ∈ R

with (t,x) ∈ Ω and u(t,x) = 0. Combining this with the fact that u does not vanish on ∂Ω,

we see that the functions

t± : N → R,

{

t−(x) := min{t ∈R : (t,x) ∈ Ω and u(t,x) = 0}
t+(x) = max{t ∈ R : (t,x) ∈ Ω and u(t,x) = 0}

are well defined, and that (t±(x),x) ∈ Ω for every x ∈ N . Moreover, since ut > 0 in Ω,

it follows from the implicit function theorem that these functions are continuous. As a

consequence, the open sets

Ω− := {(t,x) ∈ Ω : t < t−(x)}, Ω+ := {(t,x) ∈ Ω : t > t+(x)}

and Ω0 := {(t,x) ∈ Ω : t−(x) < t < t+(x)} are disjoint, and Ω± 6= ∅ since (t±(x),x) ∈ Ω

for every x ∈ N . Since u has precisely two nodal domains by the Courant nodal domain
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theorem, it follows that Ω0 = ∅ and therefore t−(x) = t+(x) for all x ∈ N . Thus (49) is

true, and the function N →R, x 7→ τ(x) is continuous. Moreover, as a consequence of (48)

we have, for (t,x) ∈ Ω,

u(t,x) < 0 iff t < τ(x) and u(t,x) > 0 iff t > τ(x). (50)

Next we consider the disjoint sets

M+ = {(t,x) ∈ M \Ω : t > τ(x)} and M− = {(t,x) ∈ M \Ω : t < τ(x)},

and we set Γ± := ∂M±. It then follows that M \Ω = M+ ∪M− and ∂Ω = Γ+ ∪ Γ−,

whereas u ≡
√

λ0 on Γ+ and u ≡ −
√

λ0 on Γ− by (50). Since |∇u| = 0 on ∂Ω, we may

therefore extend u to a C1-function on M by setting u ≡
√

λ0 on M+ and u ≡ −
√

λ0 on

M−. Next, we fix r > 0 such that µ2(Ω) = π2

4r2 , and we consider the functions

vs : M → R, us(t,x) =



















−
√

λ0 t ≤−r− s,
√

λ0 sin(
π

2r
(t + s)), − r− s < t < r− s,

√

λ0 t ≥ r− s.

for s ∈ R. Moreover, we set

s+ := min{t : (t,x) ∈ Γ+} and s− := min{t : (t,x) ∈ Γ−}= inf{t : (t,x) ∈ Ω}.

If s > 0 is chosen sufficiently large, we have vs ≡
√

λ0 on Ω∪M+. Hence we may consider

s0 := inf{s ≥ r− s+ : vs ≥ u on M }.

Writing ṽ instead of vs0
, we see that ṽ ≥ u on M by continuity. Since ṽ(t, ·) ≡ −

√
λ0 for

t ≤−r− s0 and u >−
√

λ0 in Ω, we infer that

s− ≥−r− s0. (51)

Moreover, setting Ω̃ := {(t,x) ∈ M : −r− s0 < t < r− s0}, we have that

−∆g(ṽ−u) = µ2(Ω)(ṽ−u) in Ω̃∩Ω. (52)

We distinguish the following cases.

Case 1: There is a point (t0,x0) ∈ Ω such that u(t0,x0) = ṽ(t0,x0). In this case, we have

ṽ(t0,x0) = u(t0,x0) ∈ (−
√

λ0,
√

λ0), so that (t0,x0) ∈ Ω̃. By (52) and the strong maximum

principle, we then conclude that ṽ ≡ u in the connected component Z of Ω̃∩Ω containing

(t0,x0). Since ∂Z ⊂ ∂ Ω̃ ∪ ∂Ω, we infer that ṽ2 = u2 = λ0 on ∂Z by continuity. We
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claim that Ω ⊂ Z . Indeed, let (t,x) ∈ Ω, and let γ be a curve joining (t,x) and (t,x0)

within Ω. Then u2 < λ0 along γ , and therefore γ does not intersect ∂Z . Hence (t,x) ∈ Z .

We conclude that Ω ⊂ Z . Using that ṽ2 < λ0 in Ω̃, we similarly conclude that Ω̃ ⊂ Z .

Consequently we have Ω̃∪Ω ⊂ Z ⊂ Ω̃∩Ω and hence Ω̃ = Ω, which means that Ω = Ωr

and ṽ = u in Ωr after translation in the t-variable.

Case 2: ṽ > u in Ω and s0 = r− s+. In this case there exists x+ ∈ N such that (s+,x+) ∈
Γ+∩∂ Ω̃. Moreover, the outer normal of Ω at (s+,x+) and the outer normal of Ω̃ at (s+,x+)

are both given by ν = (1,0) ∈ R×Tx+N . Consequently, by (52) and since u < ṽ in Ω and

u(s+,x+) = λ0 = ṽ(s+,x+), the Hopf boundary lemma implies that ∂η(ṽ− u)(s+,x+) < 0.

This however is impossible since ∇u(s+,x+) = ∇ṽ(s+,x+) = 0.

Case 3: ṽ > u in Ω and s0 > r− s+. In this case we claim that

s− =−r− s0. (53)

Indeed, if – recalling (51) – we suppose by contradiction that s− > −r− s0, then ṽ > u in

Ω∪ Γ−, and this easily easily implies that vs0−ε ≥ u on M for ε > 0 sufficiently small,

contradicting the definition of s0. Hence (53) is true. Arguing similarly as in Case 2,

we now consider x+ ∈ N such that (s−,x−) ∈ Γ− ∩ ∂ Ω̃. In this case, the outer normal

of Ω at (s−,x−) and the outer normal of Ω̃ at (s−,x−) are both given by ν = (−1,0) ∈
R×Tx−N . Noting that u(s−,x−) =−

√
λ0 = ṽ(s−,x−), we arrive at a contradiction via the

Hopf boundary lemma as in Case 2.

Hence Case 1 must occur, and in this case we already concluded that Ω=Ωr and ṽ= u in Ωr

after translation in the t-variable. From the definition of ṽ we then deduce that µ2(Ω) = µr,

which, by the separation of variables argument given in the proof of Theorem 1.7, implies

that µr ≤ µ2(N ) and therefore r ≥
(

µ(Bk)
µ(N )

)
1
2
. The proof is thus finished.
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