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Monotonicity and nonexistence results for some fractional elliptic

problems in the half space

Mouhamed Moustapha Fall and Tobias Weth

Abstract

We study a class of fractional elliptic problems of the form (−∆)su = f(u) in the half space
R

N
+ := {x ∈ R

N : x1 > 0} with the complementary Dirichlet condition u ≡ 0 in R
N \RN

+ . Under
mild assumptions on the nonlinearity f , we show that bounded positive solutions are increasing
in x1. For the special case f(u) = uq, we deduce nonexistence of positive bounded solutions in
the case where q ≥ 1 and q < N−1+2s

N−1−2s
if N ≥ 1+2s. We do not require integrability assumptions

on the solutions we study.

1 Introduction

In the present paper, we are concerned with solutions u ∈ L∞(RN ) of the semilinear fractional
problem

(1.1)

{

(−∆)su = f(u), u ≥ 0 in R
N
+ ,

u = 0 in R
N \RN+ .

Here s ∈ (0, 1), N ∈ N, RN+ := {x ∈ R
N : x1 > 0} and f : [0,∞) → [0,∞) is a nonnegative,

nondecreasing and locally Lipschitz continuous nonlinearity. Special attention will be given to the
case f(t) = tq with q > 1. Due to applications in physics, biology and finance, linear and nonlinear
equations involving the fractional Laplacian (−∆)s have received growing attention in recent years
(see e.g. [34, Introduction] for various references), while they are are still much less understood than
their non-fractional counterparts.
We briefly explain in which sense we consider problems of type (1.1). For functions u ∈ C2

c (R
N ),

the fractional Laplacian (−∆)s is defined by

(1.2) (−∆)su(x) = aN,s lim
ε→0

∫

|x−y|>ε

u(x)− u(y)

|x− y|N+2s
dy,

where aN,s = s(1 − s)π−N/24s
Γ(N

2
+s)

Γ(2−s) (see e.g. [14, Remark 3.11]). Let L1
s denote the space of all

functions u : RN → R such that
∫

RN
|u(x)|

1+|x|N+2sdx <∞. If Ω ⊂ R
N is an open subset and g ∈ L1

loc(Ω),
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we say that a function v ∈ L1
s solves the equation (−∆)sv = g in Ω in the sense of distributions if

∫

RN

v(−∆)sϕdx =

∫

Ω
gϕdx for every ϕ ∈ C2

c (Ω).

Note that the integral on the left hand side is well defined since

(1.3) |(−∆)sϕ(x)| ≤
κ‖ϕ‖C2

c

1 + |x|N+2s
for every ϕ ∈ C2

c (Ω), x ∈ R
N

with a constant κ = κ(N, s,Ω) (see for instance [21]). The following is our first main result:

Theorem 1.1 Suppose that f : [0,∞) → [0,∞) is a nonnegative, nondecreasing and locally Lips-
chitz continuous function satisfying f(t) > 0 for t > 0 and

(1.4) lim
r,t→0

r 6=t

f(r)− f(t)

r − t
= 0.

Then every bounded solution u of (1.1) is increasing in x1. Moreover, either u ≡ 0, or u is strictly
increasing in x1.

We note that, for C1-nonlinearities, condition (1.4) simply amounts to f ′(0) = 0. Our second main
result is of Liouville type.

Theorem 1.2 If N ≤ 1 + 2s and q > 1 or N > 1 + 2s and 1 < q < N−1+2s
N−1−2s , then the problem

(1.5)

{

(−∆)su = uq, u ≥ 0 in R
N
+ ,

u = 0 in R
N \ RN+ .

only admits the trivial solution u ≡ 0.

Our results complement the following recent Liouville type result of Jin, Li and Xiong [27] for the
corresponding full space problem

(1.6) (−∆)su = uq, u > 0 in R
N .

Theorem 1.3 (see [27])
Suppose that N ≤ 2s and q > 0 or N > 2s and 0 < q < N+2s

N−2s . Then (1.6) has no bounded solution.

We note that this result has also been obtained independently in [11] in the case s ≥ 1
2 . Before

that, the special case s = 1
2 had been considered in [35], whereas in [16] the result was proved for a

restricted class of solutions.

To put our results into perspective, some remarks are in order. Theorem 1.2 is an improvement
of [21, Corollary 1.6], where the authors established nonexistence of a restricted class of solutions u
of (1.5) in the subcritical case N > 2s and 1 < q ≤ N+2s

N−2s . More precisely, in [21] we assumed that
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u is contained in the Sobolev space Ds,2(RN+ ) defined as the completion of C∞
c (RN ) with respect to

the norm given by

‖u‖2 =

∫

R2N

(u(x) − u(y))2

|x− y|N+2s
dxdy.

The argument of [21], relying on the method of moving spheres, does not apply under the
assumptions of Theorem 1.2.
Theorem 1.1 is proved by a variant of the moving plane method based on extensions and
modifications of techniques in the papers [3] resp. [39], which were devoted to second order and
polyharmonic boundary value problems, respectively. The first key step in the argument is to
show, without a priori integrability assumptions, that bounded solutions of (1.1) admit a Green
function representation. This representation is obtained, via an approximation argument, from
Green-Poisson type formulas in balls. Once the Green function representation is obtained, we
carry out a moving plane argument for integral equations. We note that moving plane arguments
for integral equations have been applied very successfully in recent years, see e.g. [4, 6, 15–17, 39].
In the present situation, the lack of integrability assumptions creates additional difficulties which
require to argue somewhat differently than in earlier papers.
Theorem 1.2 is deduced from Theorems 1.1 and 1.3 by considering the limits of solutions of (1.5)
as x1 → ∞, which, considered as functions of (x2, . . . , xN ), solve (1.6) in R

N−1.
The boundedness assumption in Theorem 1.2 can be replaced by only assuming boundedness in
compact subsets of RN+ if the assumption on q is strengthened to 1 < q < N+2s

N−2s in case N > 2s.
This can be deduced from Theorems 1.2 and 1.3 by the argument used in [40, Section 4] for the
polyharmonic version of (1.5). The argument is based on the doubling-lemma (see [36]).
The combination of the Liouville type results Theorem 1.2 and 1.3 are expected to give rise, via a
Gidas-Spruck type rescaling argument (see [24]), to a priori bounds for solutions to more general
integral equations in bounded domains and also to elliptic boundary value problems of second
order with mixed nonlinear boundary conditions. For applications of this type, it is essential
that Theorems 1.2 and 1.5 do not contain a priori integrability assumptions. This topic will be
considered by the authors in a future work.
The combination of Liouville type results with rescaling arguments has already been applied
successfully by Cabré and Tan [13] for nonlinear boundary value problems involving the spectral
theoretic square root of the Dirichlet Laplacian, denoted by A1/2 in [13]. In particular, the analogue
of Theorem 1.2 with (−∆)s replaced by A1/2 has been proved in [13, Theorem 1.5]. The subtle
differences between (−∆)s and spectral theoretic powers of the Dirichlet Laplacian are discussed
in [20, Remark 0.4] from a PDE point of view and in [44] in terms of stochastic processes. Because
of these differences, it remains unclear whether Theorem 1.2 can also be obtained via similar
methods as in [13]. The approach of the present paper is completely different. Moreover, the
monotonicity result given by Theorem 1.1 is not available yet for the corresponding problem with
spectral theoretic powers.

The paper is organized as follows. In Section 2 we collect preliminary results on (distributional)
solutions of (−∆)su = f on some open subset of RN with bounded f . In Section 3 we show that
bounded solutions u of the problem (−∆)su = f in R

N
+ with u ≡ 0 in R

N \ R
N
+ admit a Green

function representation whenever f is bounded and nonnegative. In Section 4 we complete the
proof of Theorem 1.1, and in Section 5 we complete the proof of Theorem 1.2. The appendix
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contains a regularity result needed in the proof of Theorem 1.1.

Acknowledgment: The second author wishes to thank Enrico Valdinoci und Eduardo Colorado
for helpful discussions. The first author is funded by the Alexander von Humboldt foundation and
would like to thank Krzysztof Bogdan for useful discussions.

2 Preliminaries

Here and in the following, we consider N ≥ 1 and s ∈ (0, 1). We write B = {x ∈ R
N : |x| < 1} for

the open unit ball in R
N and set BR := {x ∈ R

N : |x| < R} for R > 0. We start by recalling the
following estimate, see [21].

Lemma 2.1 Let Ω ⊂ R
N be a bounded open set. Then there exists a constant C = C(N, s,Ω) > 0

such that for all ϕ ∈ C2
c (Ω) and for all x ∈ R

N

(2.1)

∣

∣

∣

∣

∣

∫

|x−y|>ε

ϕ(x)− ϕ(y)

|x− y|N+2s
dy

∣

∣

∣

∣

∣

≤
C‖ϕ‖C2(Ω)

1 + |x|N+2s
for all ε ∈ (0, 1).

As a consequence, (−∆)su can be defined for functions u ∈ L1
s in the following way in distributional

sense. Here we recall that L1
s is the space of all functions u : RN → R such that

∫

RN
|u(x)|

1+|x|N+2sdx <∞.

Definition 2.2 Let Ω be an open subset of RN . Given u ∈ L1
s, the distribution (−∆)su ∈ D′(Ω) is

defined as

〈(−∆)su, ϕ〉 =
∫

RN

u(−∆)sϕdx for all ϕ ∈ C∞
c (Ω).

The following result is contained in [8, Lemma 3.8].

Lemma 2.3 Let Ω ⊂ R
N be open. If u ∈ L1

s ∩C2(Ω), then the limit lim
ε→0

∫

|x−y|>ε
u(x)−u(y)
|x−y|N+2sdy exists

for every x ∈ Ω. Moreover, (−∆)su is a regular distribution given by

(2.2) (−∆)su(x) = aN,s lim
ε→0

∫

|x−y|>ε

u(x)− u(y)

|x− y|N+2s
dy for x ∈ Ω.

In the situation of this lemma, (−∆)su is a priori only well defined a.e. in Ω as a regular distribution.
Nevertheless, under these hypotheses, we may assume in the following that (−∆)su is defined
pointwise by (2.2) in all of Ω.

Lemma 2.4 Let Ω ⊂ R
N be open, and suppose that u ∈ L1

s ∩ C2(Ω) satisfies (−∆)su ≤ 0 in Ω.
Suppose furthermore that there exists x0 ∈ Ω such that u(x0) ≥ u(y) for a.e. y ∈ R

N . Then
u(y) = u(x0) for every y ∈ Ω and a.e. y ∈ R

N \Ω.

Proof. Let x0 ∈ Ω satisfy u(x0) ≥ u(y) for a.e. y ∈ R
N . Then the function

ε→ h(ε) :=

∫

|x−y|>ε

u(x0)− u(y)

|x0 − y|N+2s
dy
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is nonnegative and nonincreasing in (0,∞), whereas lim
ε→0

h(ε) ≤ 0 by assumption and (2.2). Hence

h ≡ 0 in (0,∞), which, since u ∈ C2(Ω), shows that u(y) = u(x0) for every y ∈ Ω and a.e.
y ∈ R

N \ Ω. ✷

Next we consider the Poisson kernel of BR (see [5]) which is given by

(2.3) ΓR(x, y) = CN,s

(

R2 − |x|2
|y|2 −R2

)s

|x− y|−N , |y| > R, |x| < R

and ΓR(x, y) = 0 elsewhere. The constant CN,s is chosen such that

∫

RN

ΓR(x, y) dy =

∫

RN\BR

ΓR(x, y) dy = 1 for every x ∈ BR.

Lemma 2.5 Let R > 0, g ∈ L1
s, and suppose that g is bounded in a neighborhood of BR. Then the

problem

(2.4)

{

(−∆)su = 0 in BR,

u = g in R
N \BR

has a unique solution u ∈ L1
s ∩C2(BR) ∩ L∞(BR) given by

(2.5) u(x) =

∫

RN\BR

ΓR(x, y)g(y)dy for x ∈ BR.

Moreover, u ∈ C∞(BR).

Proof. Let u : RN → R be defined by u ≡ g in R
N \ BR and by (2.5) in BR. Using the explicit

representation (2.3) and the assumption that g ∈ L1
s is bounded in a neighborhood of BR, it is easy

to see that u ∈ L1
s ∩ C∞(BR) ∩ L∞(BR), and that

(−∆)su(x) = aN,s lim
ε→0

∫

|x−y|>ε

u(x)− u(y)

|x− y|N+2s
dy = 0 for all x ∈ BR.

Conversely, let u ∈ L1
s ∩ C2(BR) ∩ L∞(BR) satisfy (2.4). Let r ∈ (0, R) and define vr ∈ C2(Br) ∩

L∞(RN ) by vr ≡ u in R
N \Br and

(2.6) vr(x) =

∫

RN\Br

Γr(x, y)u(y)dy for x ∈ Br.

Since u is continuous inBR, it is not difficult to see from (2.6) that vr ∈ C(BR). Applying Lemma 2.4
to Ω = Br and the functions u − vr, vr − u which are continuous on R

N and vanish on R
N \ Br,

we infer that u ≡ vr. Passing to the limit r 7→ R− and using the fact that u is bounded in a
neighborhood of BR, we conclude that

u(x) = lim
r 7→R−

∫

RN\Br

Γr(x, y)u(y)dy =

∫

RN\BR

ΓR(x, y)u(y)dy =

∫

RN\BR

ΓR(x, y)g(y)dy,
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as claimed. ✷

Next, we wish to remove the C2-assumption in Lemma 2.4. For this we consider the regularization
of ΓR as defined in [8]. Let χ ∈ C∞

c (1/2, 1) such that
∫ 1
1/2 χ(r)dr = 1 and define

Γ̃ : RN → R, Γ̃(y) =

∫ 1

1/2
χ(r)Γr(0, y)dr.

We have Γ̃ ∈ C∞(RN ) and

(2.7) |Γ̃(y)| ≤ CN,s
1 + |y|N+2+2s

for y ∈ R
N

with a constant CN,s, see for instance [8, Lemma 3.11]. For ε > 0, we define

Γ̃ε : R
N → R, Γ̃ε(x) = ε−N Γ̃(x/ε).

The following result is given in [8, Theorem 3.12] for the case N ≥ 2, but the same proof also gives
the result for N = 1. For the convenience of the reader, we include the proof here.

Theorem 2.6 Let Ω ⊂ R
N be open, and let u ∈ L1

s satisfy (−∆)su = 0 in Ω, i.e.,

(2.8)

∫

RN

u(−∆)sψ dx = 0 for all ψ ∈ C∞
c (Ω).

Then for every ε > 0 we have

(2.9) u ≡ Γ̃ε ∗ u a.e. in Ωε,

where Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε}. In particular, u is equivalent to a C∞-function in Ω.

Proof. We first remark that, by Lemma 2.5 and Fubini’s theorem, the equality (2.9) holds under
the additional assumption u ∈ C2(Ω). Let ρn ∈ C∞

c (B 1
n
) denote the standard radially symmetric

mollifier for n ∈ N. For every ψ ∈ C∞
c (Ω 1

n
), we then have ρn ∗ (−∆)sψ = (−∆)s[ρn ∗ ψ] in R

N and

therefore, by Fubini’s theorem and (2.8),
∫

RN

[ρn ∗ u] (−∆)sψ dx =

∫

RN

u [ρn ∗ (−∆)sψ] dy =

∫

RN

u (−∆)s[ρn ∗ ψ] dy = 0.

Letting un = ρn ∗ u ∈ C∞(RN ) for n ∈ N, we deduce that (−∆)sun ≡ 0 in Ω 1
n
. By the remark

above, we thus have un ≡ Γ̃ε ∗ un in Ωε+ 1
n
. By (2.7), we now may pass to the limit n → ∞ to get

u ≡ Γ̃ε ∗ u a.e. in Ωε, as claimed. ✷

Corollary 2.7 Let Ω ⊂ R
N be open and u ∈ L1

s ∩ C(Ω) such that (−∆)su = 0 in Ω. Then if u
attains it’s maximum or it’s minimum in Ω it is constant.

Proof. By Theorem 2.6 and the continuity of u, we have u ∈ C∞(Ω), so the result follows from
Lemma 2.4. ✷

We finally obtain the following result which improves Lemma 2.5.
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Lemma 2.8 Let R, δ > 0, and let u ∈ L1
s ∩ L∞(BR+δ) satisfy (−∆)su = 0 in BR. Then

u(x) =

∫

RN\BR

ΓR(x, y)u(y)dy for a.e. x ∈ BR.

Moreover, u is equivalent to a C∞-function in BR.

Proof. By Theorem 2.6 we may assume that u ∈ C∞(BR). Hence the result follows from
Lemma 2.5. ✷

Next we consider the Green function associated with (−∆)s and the unit ballB, which was computed
by Blumenthal, Getoor and Ray in [5]. It is given by

G1(x, y) = ksN |x− y|2s−N
∫ (ψ(x,y)+1)1/2

1

(z2 − 1)s−1

zN−1
dz

=
ksN
2
|x− y|2s−N

∫ ψ(x,y)

0

zs−1

(z + 1)N/2
dz with ψ(x, y) =

(1− |x|2)(1− |y|2)
|x− y|2

for x, y ∈ B and G(x, y) = 0 if x 6∈ B or y 6∈ B. Here the normalization constant is given by
ksN = π−(N/2+1)Γ(N/2) sin(πs), see [5]. If N = 1 = 2s, then direct computations give

∫ ψ(x,y)

0

z−1/2

(z + 1)1/2
dz = 2 log

1− xy + (1− x2)1/2(1− y2)1/2

|x− y|

and yet, see [5], in this case

(2.10) G1(x, y) =
1

π
log

1− xy + (1− x2)1/2(1− y2)1/2

|x− y| .

The explicit form of G1 gives rise to the following estimates for x, y ∈ B:

(2.11) GΩ(x, y) ≤



















C|x− y|2s−N min
(

ds(x)ds(y)
|x−y|2s , 1

)

if N > 2s;

Cmin
(

d1/2(x)d1/2(y)
|x−y| , log 3

|x−y|

)

if N = 1 = 2s;

C|x− y|2s−1 min
(

(d(x)d(y))(2s−1)/2

|x−y|2s−1 , d
s(x)ds(y)
|x−y|2s

)

if N = 1 < 2s.

Here z 7→ d(z) = 1 − |z| is the distance function to R
N \ B, and C is a constant depending on N

and s. Similar estimates are available for Greens functions in general C1,1-domains, see e.g. [18,28].
By dilation, the Green function for the ball BR = {x ∈ R

N : |x| < R}, R > 0 is given by

(2.12) GR(x, y) = R2s−NG1

( x

R
,
y

R

)

=
ksN
2
|x− y|2s−N

∫ ψR(x,y)

0

zs−1

(z + 1)N/2
dz

with ψR(x, y) = (R2−|x|2)(R2−|y|2)
R2|x−y|2 . In the next section, we will need the following general Green-

Poisson representation formula.
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Corollary 2.9 Let R, δ > 0 and f ∈ L∞(BR). Moreover, let v ∈ L1
s ∩L∞(BR+δ) satisfy (−∆)sv =

f in BR. Then

(2.13) v(x) =

∫

RN\BR

ΓR(x, y)v(y)dy +

∫

BR

GR(x, y)f(y) dy for a.e. x ∈ BR.

Proof. Without loss of generality, we may assume that R = 1. Consider

w0 : R
N → R, w0(x) =

∫

B

G1(x, y)f(y)dy.

The estimates (2.11) imply that w0 ∈ L∞(RN ). Moreover, (−∆)sw0 = f in B in distributional
sense, since for any ϕ ∈ C∞

c (B) we have

ϕ(x) =

∫

B

G1(x, y)[(−∆)sϕ](y)dy for x ∈ B.

We now consider w := v−w0 ∈ L1
s∩L∞(BR+δ). Clearly (−∆)sw = 0 in BR, and w ≡ v on R

N \BR.
By Lemma 2.8, we have w(x) =

∫

RN\BR
ΓR(x, y)v(y)dy for a.e. x ∈ BR, and thus (2.13) follows. ✷

We finally add the following boundary estimate.

Lemma 2.10 Let f ∈ L∞(B) and consider

v : RN → R, v(x) =

∫

B

G1(x, y)f(y)dy.

Then there exists a constant C = C(N, s) > 0 such that for x ∈ B we have

(2.14) v(x) ≤ C

{

(1− |x|)s ‖f‖L∞ if 2s ≤ N ;

(1− |x|)s− 1
2 ‖f‖L∞ if N = 1 < 2s.

Proof. The second inequality in (2.14) is an immediate consequence of the third inequality in (2.11).

To prove the first inequality in (2.14), we let d(x) = 1−|x| and Bx := {y ∈ R
N : |y−x| < d(x)

2 } ⊂ B

for x ∈ B. We then have

(2.15) v(x) =

∫

Bx

G1(x, y)f(y)dy +

∫

B\Bx

G(x, y)f(y)dy for x ∈ B

and

(2.16) d(y) ≤ |x− y|+ d(x) ≤ 3|x− y| for y ∈ R
N \Bx.

In the following, the letter C stands for positive constants depending only on N and s. We first
consider the case N > 2s. Then the first inequality in (2.11) implies that

∣

∣

∣

∫

Bx

G1(x, y)f(y)dy
∣

∣

∣
≤ C‖f‖L∞

∫

Bx

|x− y|2s−Ndy ≤ Cd2s(x)‖f‖L∞ ,
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and together with (2.16) it also yields

∣

∣

∣

∫

B\Bx

G(x, y)f(y)dy
∣

∣

∣
≤ Cds(x)‖f‖L∞

∫

B\Bx

ds(y)

|x− y|N dy ≤ Cds(x)‖f‖L∞

∫

B

|x− y|s−Ndy

≤ Cds(x)‖f‖L∞

∫

B

|y|s−Ndy = Cds(x)‖f‖L∞ .

Combining these two inequalities, we obtain the assertion in the case N > 2s.
Next we consider the case N = 1 = 2s. Applying the second estimate in (2.11) yields

∣

∣

∣

∫

Bx

G1(x, y)f(y)dy
∣

∣

∣
≤ C‖f‖L∞

∫

Bx

log
3

|x− y| dy ≤ C‖f‖L∞

∫
d(x)
2

0
log

3

t
dt ≤ Cd1/2(x)‖f‖L∞

and, as before, using (2.16)

∣

∣

∣

∫

B\Bx

G1(x, y)f(y)dy
∣

∣

∣
≤ Cd1/2(x)‖f‖L∞

∫

B\Bx

d1/2(y)

|x− y| dy ≤ Cd1/2(x)‖f‖L∞

∫

B\Bx

|x− y|− 1
2 dy

≤ Cd1/2(x)‖f‖L∞

∫ 1

0
t−

1
2 dt = Cd1/2(x)‖f‖L∞ .

Combining these two inequalities, we obtain the assertion in the case N = 1 = 2s. ✷

3 Green representation on the half-space

The purpose of this section is to state conditions on a function u on the half-space R
N
+ under which

the Green representation formula

u(x) =

∫

RN
+

G+
∞(x, y)(−∆)su(y) dy, x ∈ R

N
+

holds, where G+
∞ is the half space Green function given by

(3.1) G+
∞(x, y) =

ksN
2
|x− y|2s−N

∫ ψ∞(x,y)

0

zs−1

(z + 1)N/2
dz with ψ∞(x, y) =

4x1y1
|x− y|2

for x, y ∈ R
N
+ . More precisely, we have the following

Theorem 3.1 Let f ∈ L∞(RN+ ) be nonnegative, and suppose that u ∈ L∞(RN ) satisfies

(−∆)su = f in R
N
+ , u = 0 in R

N \ RN+ .

Then u is continuous, and

(3.2) u(x) =

∫

RN
+

G+
∞(x, y)f(y) dy for every x ∈ R

N
+ .

Moreover, there exist constants C > 0, α ∈ (0, 1) depending only on N , s, ‖f‖L∞, ‖u‖L∞ such that

(3.3) 0 ≤ u(x) ≤ Cxα1 for every x ∈ R
N
+ .
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The remainder of this section will be devoted to the proof of this Theorem. We first show how G+
∞,

as defined in (3.1), arises via an approximation with balls. For this we let PR := (R, 0, . . . , 0) ∈ R
N
+ ,

and we consider the translated ball B+
R := {x ∈ R

N : |x − PR| < R} ⊂ R
N
+ for R > 0. By (2.12),

its Green function G+
R is given by

G+
R(x, y) =

ksN
2
|x− y|2s−N

∫ ψ+
R(x,y)

0

zs−1

(z + 1)N/2
dz for x, y ∈ B+

R

with

(3.4) ψ+
R(x, y) =

(R2 − |x− PR|2)(R2 − |y − PR|2)
R2|x− y|2 =

(2x1 − |x|2
R )(2y1 − |y|2

R )

|x− y|2 ,

and its Poisson kernel is given by

(3.5) Γ+
R(x, y) = CN,s

(

R2 − |x− PR|2
|y − PR|2 −R2

)s

|x− y|−N for |x| < R < |y|.

Note that

(3.6) B+
R ⊂ B+

R′ if R′ > R > 0 and
⋃

R>0

B+
R = R

N
+ .

Lemma 3.2 Let x, y ∈ R
N
+ and R0 > 0 with x, y ∈ B+

R0
. Then G+

R′(x, y) ≥ G+
R(x, y) for R′ ≥ R ≥

R0 and G+
R(x, y) → G+

∞(x, y) as R→ ∞.

Proof. From (3.4) we immediately deduce that ψ+
R′(x, y) ≥ ψ+

R(x, y) for R′ ≥ R ≥ R0, and that
ψ+
R(x, y) → ψ∞(x, y) as R→ ∞. This shows the claim. ✷

We may now complete the

Proof of Theorem 3.1. It follows from Lemma 6.1 below that u is continuous in R
N
+ . Since G+

∞
is invariant under translations of the form (x, y) 7→ (x+ z, y+ z) with z ∈ {0}×R

N−1, it suffices to
show (3.2) for x = (x1, 0, . . . , 0) with x1 > 0. We will fix such a point x from now on. By Corollary
2.9 and the fact that u ≡ 0 in R

N \ RN+ , we have

u(x) =

∫

RN
+\B+

R

Γ+
R(x, y)u(y)dy +

∫

B+
R

G+
R(x, y)f(y) dy for x ∈ B+

R .

Thanks to Lemma 3.2, the nonnegativity of f and monotone convergence, (3.2) follows once we
have shown that

(3.7)

∫

RN
+ \B+

R

Γ+
R(x, y)u(y)dy → 0 as R→ ∞.
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In the following, we assume that R > 2x1, and we let C denote (possibly different) constants which
may depend on N, s, u and x1 but not on R. Using the fact that u is bounded, we have

∣

∣

∣

∫

RN
+ \B+

R

Γ+
R(x, y)u(y)dy

∣

∣

∣
≤ C

∫

RN
+\B+

R

Γ+
R(x, y)dy = C

∫

RN
+ \B+

R

(

R2 − |x− PR|2
|y − PR|2 −R2

)s

|x− y|−Ndy

= C(2x1R− x21)
s

∫

RN
+ \B+

R

|x− y|−N (|y|2 − 2y1R)
−sdy

≤ CRs
∫

RN
+ \B+

R

|x− y|−N (|y|2 − 2y1R)
−sdy = CR−s

∫

RN
+\B+

1

|y − x

R
|−N (|y|2 − 2y1)

−sdy.(3.8)

We will now show that, as R→ ∞,

(3.9)

∫

RN
+\B+

1

|y − x

R
|−N (|y|2 − 2y1)

−sdy =



























O(1) if 0 < s <
1

2
;

O(R2s−1) if
1

2
< s < 1;

O(logR2) if s =
1

2
.

Together with (3.8) this implies (3.7), since s < 1. To show (3.9), we decompose the domain of
integration as

RN

+ \B+
1 = A1 ∪A2 with A1 := ((0, 1) ×R

N−1) \B+
1 , A2 := ([1,∞) × R

N−1) \B+
1 .

We then have |y − x
R | ≥ |y − e1| for every y ∈ A2, where e1 = (1, 0, . . . , 0), and therefore

∫

A2

|y − x

R
|−N (|y|2 − 2y1)

−sdy ≤
∫

A2

|y − e1|−N (|y − e1|2 − 1)−sdy

≤
∫

RN\B1(0)
|y|−N (|y|2 − 1)−sdy = ωN−1

∫ ∞

1
τ−1(τ2 − 1)−s dτ <∞.(3.10)

In case N = 1, A1 is empty, and thus (3.9) follows. We now assume that N ≥ 2, and we put
Bt := {ỹ ∈ R

N−1 : |ỹ|2 ≥ 2t− t2} for t ∈ (0, 1). By Fubini’s theorem, we have

∫

A1

|y − x

R
|−N (|y|2 − 2y1)

−sdy =

∫ 1

0

∫

Bt

(|ỹ|2 + (t− x1
R
)2)−

N
2 (|ỹ|2 + t2 − 2t)−sdỹdt

= ωN−2

∫ 1

0

∫ ∞

√
2t−t2

τN−2(τ2 + (t− x1
R
)2)−

N
2 (τ2 − [2t− t2])−sdτdt

= ωN−2

∫ 1

0
(2t− t2)−

1
2
−s

∫ ∞

1
σN−2

(

σ2 +
(t− x1

R )2

2t− t2

)−N
2
(σ2 − 1)−sdσdt

≤ ωN−2

∫ 1

0
t−

1
2
−s

∫ ∞

0
(ρ+ 1)

N−3
2

(

ρ+ 1 +
(t− x1

R )2

2t

)−N
2
ρ−sdρdt

≤ ωN−2

∫ 1

0
t−

1
2
−s

(

1 +
(t− x1

R )2

2t

)− 1
2

∫ ∞

0
(ρ+ 1)−1ρ−sdρdt

≤ C

∫ 1

0
t−

1
2
−s

(

1 +
(t− x1

R )2

2t

)− 1
2
dt,(3.11)
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whereas

(

1 +
(t− x1

R )2

2t

)− 1
2 ≤

√
2t
(

2t+ (t− x1
R

)2
)− 1

2 ≤ min
{

1,

√
2tR

x1

}

for t ∈ (0, 1),

since x1
R ≤ 1 by assumption. Inserting this in (3.11) yields

∫

A1

|y− x

R
|−N (|y|2−2y1)

−sdy ≤ C
(

√
2R

x1

∫

x21
2R2

0
t−s ds+

∫ 1

x21
2R2

t−
1
2
−s dt

)

≤ C











1 +R2s−1 if s 6= 1

2
;

1 + logR2 if s =
1

2
.

Combining the last inequality with (3.10), we deduce (3.9), as required. Thus the proof of (3.2) is
finished.
To show (3.3), we may assume without loss that x = (x1, 0, . . . , 0) with 0 ≤ x1 ≤ 1. Moreover,
we let C > 0 denote constants depending on N, s, ‖f‖L∞(RN

+ ) and ‖u‖L∞(RN
+ ) but not on x. By

Corollary 2.9, we have

u(x) =

∫

RN\B+
1

Γ+
1 (x, y)u(y) dy + v(x) with v(x) =

∫

B+
1

G+
1 (x, y)f(y) dy.

By Lemma 2.10, it suffices to show (3.3) for v in place of u. For this we estimate, similarly as in
(3.8),

0 ≤ v(x) ≤ C

∫

RN
+ \B+

1

Γ+
1 (x, y)dy ≤ C(2x1 − x21)

s

∫

RN
+ \B+

1

|x− y|−N (|y|2 − 2y1)
−sdy

≤ Cxs1

∫

RN
+ \B+

1

|y − x|−N (|y|2 − 2y1)
−sdy.(3.12)

Replacing x
R with x = (x1, 0, . . . , 0) in (3.9), we also have, as x1 → 0+,

(3.13)

∫

RN
+ \B+

1

|y − x|−N (|y|2 − 2y1)
−sdy =































O(1) if 0 < s <
1

2
;

O(x1−2s
1 ) if

1

2
< s < 1;

O(log
1

x21
) if s =

1

2
.

Combining (3.12) and (3.13) yields constants C > 0, α ∈ (0, 1) such that (3.3) holds for v in place
of u, and this finishes the proof. ✷

4 Proof of the monotonicity result

In this section we complete the proof of Theorem 1.1. We know from Theorem 3.1 that every
bounded solution u of (1.1) obeys the integral representation

u(x) =

∫

RN
+

G+
∞(x, y)f(u(y)) dy for all x ∈ R

N
+ ,

where G+
∞ is the half-space Green function given by (3.1). We note the following simple estimate.
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Lemma 4.1 Let L > 0. Then there exists a constant C = C(N, s, L) > 0 such that for every
x, y ∈ R

N
+ with x1, y1 ≤ L we have

(4.1) G+
∞(x, y) ≤ C























min
{

|x− y|2s−N , |x− y|−N
}

if N > 2s;

1 if N = 1 < 2s;

1 + log
L

|x− y| if N = 1 = 2s.

Proof. In the case N > 2s we have
∫∞
0

zs−1

(z+1)N/2 dz <∞, which immediately implies that G+
∞(x, y) ≤

C|x − y|2s−N for all x, y ∈ R
N
+ with a constant C > 0 depending only on N and s. Moreover, for

t > 0 we have
∫ t

0

zs−1

(z + 1)N/2
dz <

ts

s

and

∫ t

0

zs−1

(z + 1)N/2
dz ≤















ts−N/2

s−N/2
if N < 2s;

1

s
+ logmax{1, t} if N = 2s.

For x, y ∈ R
N
+ with x1, y1 ≤ L we have also ψ∞(x, y) ≤ L2

|x−y|2 and therefore

∫ ψ∞(x,y)

0

zs−1

(z + 1)N/2
dz ≤ C|x− y|−2s

as well as
∫ ψ∞(x,y)

0

zs−1

(z + 1)N/2
dz ≤ C







|x− y|N−2s if N < 2s,

1 + ln
L

|x− y| if N < 2s

with a constant C > 0 depending only on N, s, L. This readily implies the assertion. ✷

We need some notation. For λ ≥ 0, we consider the set

Σλ = {x ∈ R
N : 0 < x1 < λ} ⊂ R

N
+ .

From Lemma 4.1 we easily deduce the following.

Corollary 4.2 As λ→ 0, sup
x∈Σλ

∫

Σλ
G+

∞(x, y) dy → 0.

We also consider the reflection x 7→ xλ := (2λ− x1, x2, . . . , xN ) at the hyperplane {x1 = λ}.
We need the following fact which also follows from Lemma 4.1 in a straightforward way.

Corollary 4.3 If (λn)n ⊂ (0,∞) and (zn)n ⊂ R
N
+ are sequences with

λn → λ > 0 and zn → z ∈ R
N
+ as n→ ∞,

then
∫

Σλn

G+
∞(zn, yλn) dy →

∫

Σλ

G+
∞(z, yλ) dy as n→ ∞.
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In the sequel we also consider Jλ := {x ∈ RN+ : x1 ≥ 2λ}. We need the following “reflection
inequalities” for the Green function.

Lemma 4.4 We have

(4.2)
G+

∞(xλ, yλ) > G+
∞(x, yλ) and

G+
∞(xλ, yλ)−G+

∞(x, y) > G+
∞(x, yλ)−G+

∞(xλ, y)

}

for all x, y ∈ Σλ

and

(4.3) G+
∞(xλ, y)−G+

∞(x, y) > 0 for x ∈ Σλ, y ∈ Jλ.

Proof. We note that G(x, y) = H(s(x, y), t(x, y)), where

H : (0,∞) × [0,∞) → R, H(r, t) = rs−
N
2

∫ t
r

0

zs−1

(z + 1)N/2
dz.

and
r(x, y) = |x− y|2, t(x, y) = 4x1y1 for x, y ∈ R

N
+ .

By [4, Lemma 2] we have

(4.4) ∂rH(r, t) < 0, ∂tH(r, t) > 0 and ∂r∂tH(r, t) < 0 for r, t > 0.

Hence

(4.5) H(r1, t1) > H(r2, t2) if r1 < r2, t1 > t2,

and

H(r1, t4)−H(r1, t1) =

∫ t4

t1

∂tH(r1, t) dt >

∫ t4

t1

∂tH(r2, t) dt >

∫ max{t2,t3}

min{t2,t3}
∂tH(r2, t) dt

= |H(r2, t2)−H(r2, t3)| if 0 < r1 < r2, 0 < t1 < t2, t3 < t4.(4.6)

Now fix λ > 0. Then for x, y ∈ Σλ we have

(4.7) r(x, y) = r(xλ, yλ) < r(x, yλ) = r(xλ, y)

and

(4.8) t(xλ, yλ) > max{t(xλ, y), t(x, yλ)} ≥ min{t(xλ, y), t(x, yλ)} > t(x, y).

The inequalities given in Lemma 4.4 now follow from (4.5), (4.6), (4.7) and (4.8). ✷

We now fix a solution u of (1.1), and we let Cu > 0 be a Lipschitz constant for f on
[

0, ‖u‖L∞(RN )

]

,
so that

|f(t)− f(r)| ≤ Cu|t− r| for all r, t ∈
[

0, ‖u‖L∞(RN )

]

.

Inequality (4.3) and the nonnegativity of f imply that

(4.9)

∫

Jλ

[G+
∞(xλ, y)−G+

∞(x, y)] f(u(y)) dy ≥ 0 for λ > 0 and x ∈ Σλ.
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We claim that the following reflection inequality holds for every λ > 0:

(Cλ) u(x) ≤ u(xλ) for all x ∈ Σλ.

As a first step, we prove

Lemma 4.5 There exists λ0 > 0 such that (Cλ) holds for λ ∈ [0, λ0].

Proof. By Corollary 4.2, we may fix λ0 > 0 such that

(4.10)

∫

Σ2λ0

G+
∞(x, y) dy < C−1

u for every x ∈ Σλ0 ,

For fixed λ ∈ [0, λ0], we consider the difference function

v : Σλ → R, v(x) = u(xλ)− u(x)

and the set
W := {x ∈ Σλ : v(x) < 0}.

For x ∈W we estimate, using Lemma 4.4 and (4.9),

0 > v(x) =

∫

RN
+

[G+
∞(xλ, y)−G+

∞(x, y)]f(u(y)) dy =

∫

Σλ

. . . dy +

∫

RN
+ \Σλ

. . . dy

=

∫

Σλ

(

[G+
∞(xλ, y)−G+

∞(x, y)]f(u(y)) + [G+
∞(xλ, yλ)−G+

∞(x, yλ)] f(u(yλ))
)

dy

+

∫

Jλ

[G(xλ, y)−G+
∞(x, y)]f(u(y)) dy ≥

∫

Σλ

[G+
∞(xλ, yλ)−G+

∞(x, yλ)][f(u(yλ))− f(u(y))] dy

≥
∫

W
[G+

∞(xλ, yλ)−G+
∞(x, yλ)][f(u(yλ))− f(u(y))] dy ≥

∫

W
G+

∞(xλ, yλ)[f(u(yλ))− f(u(y))] dy

≥ Cu

∫

W
G+

∞(xλ, yλ)v(y) dy ≥ −Cu‖v‖L∞(W )

∫

W
G+

∞(xλ, yλ) dy ≥ −Cu‖v‖L∞(W )

∫

Σ2λ0

G+
∞(xλ, y) dy

Combining this with (4.10) we infer ‖v‖L∞(W ) ≤ C‖v‖L∞(W ) with some constant C ∈ (0, 1), hence
v ≡ 0 on W and therefore W = ∅ by definition. We therefore conclude that (Cλ) holds. ✷

Next we put
λ∗ := sup{λ > 0 : (Cλ′) holds for all λ′ ≤ λ}.

Then λ∗ ≥ λ0. Using the continuity of u, it is easy to see that (Cλ∗) holds. We suppose by
contradiction that

(4.11) λ∗ <∞

Then there exists a sequence of numbers λn > λ∗, n ∈ N and points xn ∈ Σλn such that

(4.12) u(xn) > u((xn)λn) for all n
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and

(4.13) λn → λ∗ as n→ ∞.

We may further assume that

(4.14) u(xn)− u((xn)λn) >
1

2
sup
x∈Σλn

(

u(x)− u(xλn)
)

.

In the following we write x = (x1, x̂) for x ∈ R
N with x̂ ∈ R

N−1. For n ∈ N we define the translated
functions

un : RN → R, un(y) = u(y1, x̂
n + ŷ)

and
vn : Σλn → R, vn(y) = un(y

λn)− u(y).

Then (4.12) is rewritten as

(4.15) vn(x
n
1 , 0) = un(2λn − xn1 , 0)− un(x

n
1 , 0) < 0 for all n.

We also consider the sets
Wn := {x ∈ Σλn : vn(x) < 0}.

We let Λ := 2maxn λn < ∞. For abbreviation, we also put zn = (xn1 , 0) ∈ Σλn for n ∈ N.
Using (4.14) and arguing similarly as in the proof of Lemma 4.5, we find

(4.16) −‖vn‖L∞(Wn) ≥ 2vn(z
n) ≥ 2

∫

Wn

(

G+
∞((zn)λn , yλn)−G+

∞(zn, yλn)
)

[f(un(y
λn))−f(un(y))] dy

We now pass to a subsequence such that xn1 → t ∈ [0, λ∗]. Moreover, we note that the sequence
(un)n is uniformly equicontinuous on compact subsets of RN . Indeed, this follows from Lemma 6.1
below and the boundary estimate (3.3) which holds uniformly for un, n ∈ N in place of u. Hence
we may pass to a subsequence such that un → ū in C0

loc(R
N )∩L∞(RN ) and ū ≡ 0 on R

N \RN+ . We
distinguish three cases.
Case 1: t = λ∗, i.e. zn → (λ∗, 0). In this case (4.16) implies that

−‖vn‖L∞(Wn) ≥ 2Cu

∫

Wn

(

G+
∞((zn)λn , yλn)−G+

∞(zn, yλn)
)

vn(y) dy

≥ −2Cu‖vn‖L∞(Wn)

∫

Σλn

(

G+
∞((zn)λn , yλn)−G+

∞(zn, yλn)
)

dy

= −o(1)‖vn‖L∞(Wn),(4.17)

where in the last step we used Corollary 4.3 and the fact that also (zn)λn → (λ∗, 0). Hence
‖vn‖L∞(Wn) = 0 for n large, contrary to (4.15).
Case 2: t < λ∗ and ū 6≡ 0.
We have

∫

RN

un(x)(−∆)sϕ(x) dx =

∫

RN
+

f(un(x))ϕ(x) dx for all ϕ ∈ C2
c (R

N
+ ).
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It thus follows from the dominated convergence theorem that
∫

RN

ū(x)(−∆)sϕ(x) dx =

∫

RN
+

f(ū(x))ϕ(x) dx for all ϕ ∈ C2
c (R

N
+ ).

Hence, by Theorem 3.1, ū is represented as

ū(x) =

∫

RN
+

G+
∞(x, y)f(ū(y)) dy for all x ∈ R

N
+ .

Since u 6≡ 0 and f(t) > 0 for t > 0, it then follows that ū and f ◦ ū are strictly positive on R
N
+ .

Moreover, by the locally uniform convergence un → ū, we have

ū(x) ≤ ū(xλ∗) for all x ∈ Σλ∗.

Indeed this inequality is strict, since we have a strict inequality in (4.9) for ū in place of u and
λ = λ∗, so that

ū(xλ∗)− ū(x) =

∫

RN
+

[G+
∞(xλ∗ , y)−G+

∞(x, y)]f(ū(y)) dy =

∫

Σλ∗

. . . dy +

∫

RN
+ \Σλ∗

. . . dy

=

∫

Σλ∗

(

[G+
∞(xλ∗ , y)−G+

∞(x, y)]f(ū(y)) + [G+
∞(xλ∗ , yλ∗)−G+

∞(x, yλ∗)] f(ū(yλ∗))
)

dy

+

∫

Jλ∗

[G+
∞(xλ∗ , y)−G+

∞(x, y)]f(ū(y)) dy

>

∫

Σλ∗

[G+
∞(xλ∗ , yλ∗)−G+

∞(x, yλ∗)]f(ū(yλ∗))− f(ū(y))] dy ≥ 0 for x ∈ Σλ∗ .(4.18)

On the other hand, also by the locally uniform convergence and (4.15), we have

ū(2λ∗ − t, 0)− ū(t, 0) = lim
n→∞

(

un((z
n)λn)− u(zn)

)

≤ 0.

This is a contradiction.
Case 3: ū ≡ 0. We use (4.16) and Lemma 4.4 to estimate, for r > 0,

−‖vn‖L∞(Wn) ≥2

∫

Wn

G+
∞((zn)λn , yλn)[f(un(y

λn))− f(un(y))] dy

=2

∫

Wn∩Br(0)
G+

∞((zn)λn , yλn)[f(un(y
λn))− f(un(y))] dy

+ 2

∫

Wn\Br(0)
G+

∞((zn)λn , yλn)[f(un(y
λn))− f(un(y))] dy,(4.19)

where
∫

Wn\Br(0)
G+

∞((zn)λn , yλn)[f(u(yλn))− f(u(y))] dy ≥ Cu

∫

Wn\Br(0)
G+

∞((zn)λn , yλn)vn(u(y)) dy

≥ −Cu‖vn‖L∞(Wn)

∫

ΣΛ\Br(0)
G+

∞((zn)λn , y) dy(4.20)
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Since ((zn)λn)n ⊂ ΣΛ is a bounded sequence, Lemma 4.1 implies that

sup
n∈N

∫

ΣΛ\Br(0)
G+

∞((zn)λn , y) dy → 0 as r → ∞.

Hence we may fix r > 0 such that

(4.21)

∫

ΣΛ\Br(0)
G+

∞((zn)λn , y) dy <
1

4Cu
for all n ∈ N.

Moreover, assumption (1.4) and the locally uniform convergence un → 0 imply that there exists a
sequence of numbers εn > 0, εn → 0 such that

f(un(y
λn))− f(un(y)) ≥ εnvn(y) for y ∈Wn ∩Br(0),

so that
∫

Wn∩Br(0)
G+

∞((zn)λn , yλn)[f(un(y
λn))− f(un(y))] dy ≥ −εn‖vn‖L∞(Wn)

∫

Br(0)
G+

∞((zn)λn , yλn) dy

≥ −Cεn‖vn‖L∞(Wn)(4.22)

with some constant C = C(r) > 0. Combining (4.19), (4.20), (4.21) and (4.22), we get

‖vn‖L∞(Wn) ≤
(1

2
+ 2Cεn

)

‖vn‖L∞(Wn),

so we conclude that ‖vn‖L∞(Wn) = 0 for large n, contradicting again (4.15). We have thus proved
that property (Cλ) holds for all λ > 0, which implies that u is increasing in x1. It thus remains
to show that u is strictly increasing in x1 if u 6≡ 0. This however follows since we can now derive
inequality (4.18) for u in place of ū and all λ > 0 in place of λ∗. The proof of Theorem 1.1 is thus
finished.

5 Proof of the Liouville Theorem in the half-space

This section is devoted to the proof of Theorem 1.2. Let s ∈ (0, 1) and assume that q > 1 if
N ≤ 1 + 2s and 1 < q < N−1+2s

N−1−2s if N > 1 + 2s. Suppose by contradiction that there exists
a bounded solution u 6≡ 0 of (1.5). Theorem 1.1 implies that u is strictly increasing in x1. In
particular, we may define

ũ ∈ L∞(RN−1), ũ(x′) = lim
x1→∞

ũ(x1, x
′) for x′ ∈ R

N−1.

Here and in the following, we write x = (x1, x
′) ∈ R

N with x′ ∈ R
N−1. Note that ũ > 0 on R

N−1.
For τ > 0, define uτ ∈ L∞(RN ) ∩C(RN ) by uτ (x) = u(x+ τe1). Then

(5.1) uτ → u∞ pointwise on R
N with u∞ ∈ L∞(RN ) defined by u∞(x) = ũ(x′).
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Moreover, we have (−∆)suτ = uqτ in Hτ := {x ∈ RN : x1 > −τ}. Hence (5.1) implies that
(−∆)su∞ = uq∞ in R

N in distributional sense. Indeed, let ϕ ∈ C2
c (R

N ). Then

∫

RN

uq∞(x)ϕ(x) dx = lim
τ→∞

∫

Hτ

uqτ (x)ϕ(x) dx = lim
τ→∞

∫

RN

uτ (x)[(−∆)sϕ](x) dx

=

∫

RN

u∞(x)[(−∆)sϕ](x) dx

by Lebesgue’s theorem and the estimate (1.3). It then follows from the regularity results in [42]
and [14] that also (−∆)su∞ = uq∞ in classical sense in R

N . Moreover, u∞ > 0 in R
N since

ũ > 0 in R
N−1. In case N = 1, u∞ is a positive constant on R which contradicts the equation

(−∆)su∞ = uq∞. In case N ≥ 2, we deduce that

(5.2) (−∆)sũ = ũq in R
N−1.

Indeed,

ũq(x′) = u∞
q(x) = (−∆)su∞(x) = aN,s

∫

RN

u∞(x+ z) + u∞(x− z)− 2u∞(x)

|z|N+2s
dz

= aN,s

∫

RN

ũ(x′ + z′) + ũ(x′ − z′)− 2ũ(x′)

(|z′|2 + z21)
N
2
+s

dz

= aN,s

∫

RN−1

ũ(x′ + z′) + ũ(x′ − z′)− 2ũ(x′)
|z′|N−1+2s

[ 1

|z′|

∫

R

[

1 +
( z1
|z′|

)2]−N
2
−s
dz1

]

dz′

=
aN,s
aN−1,s

[(−∆)sũ](x′)
∫

R

(1 + λ2)−
N
2
−s dλ = [(−∆)sũ](x′) for x′ ∈ R

N−1,

since
∫

R

(1 + λ2)−
N
2
−s dλ = B(

1

2
,
N − 1

2
+ s) =

√
πΓ(N−1

2 + s)

Γ(N2 + s)
=
aN−1,s

aN,s
.

However, since ũ > 0, this is impossible by Theorem 1.3 applied to N − 1 ≥ 1 in place of N . The
proof is finished.

6 Appendix: Interior Hölder estimates for distributional solutions

to the equation (−∆)su = f

In the proof of Theorem 1.1 in Section 4 we used the following lemma on local Hölder regularity.
Since the proofs available in the literature are only concerned with the case N > 2s and additional
assumptions (see for instance [42, Proposition 2.1.9]), we will give a proof for the convenience of the
reader. The proof is similar to arguments in [31, page 263].

Lemma 6.1 Let f ∈ L∞(B1), and let u ∈ L1
s ∩ L∞

loc(B1) such that (−∆)su = f in B1. Then for
r ∈ (0, 1) and every α ∈ (0,min(1, 2s)) there exists a constant Cs,N,r,α > 0 such that

(6.1) ‖u‖C0,α(Br) ≤ Cs,N,r,α
(

‖u‖L∞(Br) + ‖f‖L∞(B1)

)

.
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Proof. Let η ∈ C∞
c (RN ) be such that η = 1 on Br, η = 0 on RN \ B1 and 0 ≤ η ≤ 1 on RN .

Consider the Riesz potential, see [5] and [7],

Φ(x, y) =















CN,s|x− y|2s−N for N > 2s,
1

π
log

1

|x| for 1 = N = 2s,

−C1,s|x− y|2s−N for N = 1 < 2s,

with a positive normalization constant CN,s. Then the function v(x) =
∫

RN Φ(x, y)(ηf)(y)dy satis-
fies

(6.2) (−∆)sv(x) = η(x)f(x) for all x ∈ R
N .

The following inequalities hold for all a, b > 0, α ∈ (0, 1) and m ∈ R with m+ α > 0:

(6.3) |b−m − a−m| ≤ |m|
m+ α

|b− a|αmax(a−(m+α), b−(m+α))

(6.4) | log b− log a| ≤ 1

α
|b− a|αmax(a−α, b−α).

These estimates were proved in [31, page 263] in the case m ≥ 1, and a slight change of their
argument yields the more general case considered here. We thus get, for every x, y, z ∈ R

N ,

∣

∣|x− z|−m − |y − z|−m
∣

∣ ≤ |m|
m+ α

|x− y|α
(

|x− z|−(m+α) + |y − z|−(m+α)
)

and
∣

∣log |x− z| − log |y − z|
∣

∣ ≤ 1

α
|x− y|α

(

|x− z|−α + |y − z|−α
)

.

In the case N ≥ 2s we therefore have, for α ∈ (0,min(2s, 1)) and x, y ∈ Br,

|v(x)− v(y)| ≤ Cs,α|x− y|α
∫

RN

|x− y|2s−N−αη(y)|f(y)|dy

≤ Cs,α|x− y|α‖f‖L∞(B1)

∫

B(x,2)
|x− y|2s−N−αdy

≤ Cs,α‖f‖L∞(B1)|x− y|α.(6.5)

Moreover, in the case N = 1 < 2s we have, for α ∈ (0,min(2s, 1)) and x, y ∈ Br,

(6.6) |v(x) − v(y)| ≤ Cs,α|x− y|α‖f‖L∞(B1)

∫

B1

|x− y|2s−1−αdy ≤ Cs,α‖f‖L∞(Ω)|x− y|α.

Hence combing (6.5) and (6.6), we conclude that

(6.7) ‖v‖C0,α(Br) ≤ Cs,N‖f‖L∞(B1),
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for every α ∈ (0,min(1, 2s)).
Next we note that the function w := u− v satisfies (−∆)sw = 0 in Br by (6.2). Therefore, thanks
to [7, Lemma 3.2], we get, for every r′ ∈ (0, r),

‖∇w‖L∞(B′

r)
≤ CN,s,r′‖w‖L∞(B1) ≤ CN,s,r′(‖u‖L∞(Br) + ‖v‖L∞(Br)).

From this, together with (6.7), we conclude that

‖u‖C0,α(Br′ )
= ‖w + v‖C0,α(Br′ )

≤ Cs,N,r′
(

‖u‖L∞(Br) + ‖f‖L∞(B1)

)

,

for every α ∈ (0,min(1, 2s)).
✷
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[36] P. Poláčik, P. Quittner and Ph. Souplet: Singularity and decay estimates in superlinear prob-

lems via Liouville-type theorems, I: Elliptic equations and systems. Duke Math. J. 139 (2007),
555–579.

[37] P. Quittner and Ph. Souplet: A priori estimates and existence for elliptic systems via bootstrap

in weighted Lebesgue spaces. Arch. Ration. Mech. Anal. 174 (2004), 49–81.

[38] X. Ros-Oton and J. Serra: The Dirichlet Problem for the fractional Laplacian: Regularity up
to the boundary, submitted, available online at http://arxiv.org/abs/1207.5985.

[39] W. Reichel and T. Weth: A priori bounds and a Liouville theorem on a half-space for higher-

order elliptic Dirichlet problems Math. Z. 261 (2009), no. 4, 805-827.

[40] W. Reichel and T. Weth: Existence of solutions to nonlinear, subcritical higher-order elliptic

Dirichlet problems J. Differential Equations 248 (2010) 1866–1878.

[41] J. Serrin: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43 (1971),
304–318.

[42] L. Silvestre: Regularity of the obstacle problem for a fractional power of the Laplace operator.

Comm. Pure Appl. Math., 60(1):67-112, 2007.

[43] B. Sirakov: Existence results and a priori bounds for higher order elliptic equations, preprint.
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