A note on Hardy's inequalities with boundary singularities

Mouhamed Moustapha Fall *

Abstract

Let Ω be a smooth bounded domain in \mathbb{R}^{N} with $N \geq 1$. In this paper we study the Hardy-Poincaré inequalities with weight function singular at the boundary of Ω. In particular we give sufficient conditions so that the best constant is achieved.

Key Words: Hardy inequality, extremals, p-Laplacian.

1 Introduction

Let Ω be a domain in $\mathbb{R}^{N}, N \geq 1$, with $0 \in \partial \Omega$ and $p>1$ a real number. In this note, we are interested in finding minima to the following quotient

$$
\begin{equation*}
\mu_{\lambda, p}(\Omega):=\inf _{u \in W_{0}^{1, p}(\Omega)} \frac{\int_{\Omega}|\nabla u|^{p} d x-\lambda \int_{\Omega}|u|^{p} d x}{\int_{\Omega}|x|^{-p}|u|^{p} d x}, \tag{1.1}
\end{equation*}
$$

in terms of $\lambda \in \mathbb{R}$ and Ω. If $\lambda=0$, we have the Ω-Hardy constant

$$
\begin{equation*}
\mu_{0, p}(\Omega)=\inf _{u \in W_{0}^{1, p}(\Omega)} \frac{\int_{\Omega}|\nabla u|^{p} d x}{\int_{\Omega}|x|^{-p}|u|^{p} d x} \tag{1.2}
\end{equation*}
$$

[^0]which is the best constant in the Hardy inequality for maps supported by Ω. The existence of extremals for $\mu_{\lambda, 2}(\Omega)$ was studied in [10] while for $\mu_{0,2}(\Omega)$, one can see for instance [6], [5], [21] and [19] for $\mu_{0, N}(\Omega)$.
Given a unit vector ν of \mathbb{R}^{N}, we consider the half-space $H:=\left\{x \in \mathbb{R}^{N}: x \cdot \nu \geq 0\right\}$. For $N=1$, the following Hardy inequality is well known
\[

$$
\begin{equation*}
\left(\frac{p-1}{p}\right)^{p} \int_{0}^{\infty} t^{-p}|u|^{p} d t \leq \int_{0}^{\infty}\left|u^{\prime}\right|^{p} d t \quad \forall u \in W_{0}^{1, p}(0, \infty) \tag{1.3}
\end{equation*}
$$

\]

Moreover $\mu_{0, p}(H)=\left(\frac{p-1}{p}\right)^{p}$ is the H-Hardy constant and it is not achieved, see [15] for historical comments also.
For $N \geq 2$, it was recently proved by Nazarov [20] that the H-Hardy constant is not achieved and

$$
\begin{equation*}
\mu_{0, p}(H):=\inf _{V \in W_{0}^{1, p}\left(\mathbb{S}_{+}^{N-1}\right)} \frac{\int_{\mathbb{S}_{+}^{N-1}}\left(\left(\frac{N-p}{p}\right)^{2}|V|^{2}+\left|\nabla_{\sigma} V\right|^{2}\right)^{\frac{p}{2}} d \sigma}{\int_{\mathbb{S}_{+}^{N-1}}|V|^{p} d \sigma} \tag{1.4}
\end{equation*}
$$

where \mathbb{S}_{+}^{N-1} is an $(N-1)$-dimensional hemisphere. Notice that this problem always has a minimizer by the compact embedding $L^{p}\left(\mathbb{S}_{+}^{N-1}\right) \hookrightarrow W_{0}^{1, p}\left(\mathbb{S}_{+}^{N-1}\right)$. The quantity $\mu_{0, p}(H)$ is explicitly known only in some special cases. Indeed, $\mu_{0,2}(H)=\frac{N^{2}}{4}$ while for $p=N$ then $\mu_{N, N}(H)$ is the first Dirichlet eigenvalue of the operator $-\operatorname{div}\left(|\nabla u|^{N-2} \nabla u\right)$ in $W_{0}^{1, N}\left(\mathbb{S}_{+}^{N-1}\right)$ with the standard metric.
Problem (1.1) carries some similarities with the questions studied by Brezis and Marcus in [2], where the weight is the inverse-square of the distance from the boundary of Ω and $p=2$. We also deal with this problem in the present paper for all $p>1$ in Appendix A. We generalize here the existence result obtained by R.Musina and the author in [10] for any $p>1$ and $N \geq 1$.

Theorem 1.1 Let $p>1$ and Ω be a smooth bounded domain in $\mathbb{R}^{N}, N \geq 1$, with $0 \in \partial \Omega$. There exits $\lambda^{*}(p, \Omega) \in[-\infty,+\infty)$ such that

$$
\begin{equation*}
\mu_{\lambda, p}(\Omega)<\mu_{0, p}(H), \quad \forall \lambda>\lambda^{*}(p, \Omega) \tag{1.5}
\end{equation*}
$$

The infinimum in (1.1) is attained for any $\lambda>\lambda^{*}(p, \Omega)$.

The existence of $\lambda^{*}(p, \Omega)$ comes from the fact that

$$
\sup _{\lambda \in \mathbb{R}} \mu_{\lambda, p}(\Omega)=\mu_{0, p}(H),
$$

see Lemma 2.2. Now observe that the mapping $\lambda \mapsto \mu_{\lambda, p}$ is non-increasing. Moreover, for bounded domains Ω, letting λ_{1} be the first Dirichlet eigenvalue of the p Laplace operator $-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ in $W_{0}^{1, p}(\Omega)$, it is plain that $\mu_{\lambda_{1}, p}(\Omega)=0$. Then we define

$$
\lambda^{*}(p, \Omega):=\inf \left\{\lambda \in \mathbb{R}: \mu_{\lambda, p}(\Omega)<\mu_{0, p}(H)\right\}
$$

so that $\mu_{\lambda, p}<\mu_{0, p}(H)$ for all $\lambda>\lambda^{*}(p, \Omega)$. In particular $\lambda^{*}(p, \Omega) \leq \lambda_{1}$. On the other hand there are various bounded smooth domains Ω with $0 \in \partial \Omega$ such that $\lambda^{*}(p, \Omega) \in[-\infty, 0)$, see Proposition 2.5 and Proposition 2.6. Furthermore if $N=1$ then $\mu_{0, p}(\mathbb{R} \backslash\{0\})=\left(\frac{p-1}{p}\right)^{p}=\mu_{0, p}(H)$ thus $\lambda^{*}(p, \Omega) \geq 0$.

It is obvious that if Ω is contained in a half-ball centered at the origin then $\mu_{0, p}(\Omega)=\mu_{0, p}(H)$ thus $\lambda^{*}(p, \Omega) \geq 0$ and in addition

$$
\lambda^{*}(p, \Omega)=\inf _{u \in W_{0}^{1, p}(\Omega)} \frac{\int_{\Omega}|\nabla u|^{p} d x-\mu_{0, p}(H) \int_{\Omega}|x|^{-p}|u|^{p} d x}{\int_{\Omega}|u|^{p} d x} .
$$

We have obtained the following result.
Theorem 1.2 If Ω is contained in a half-ball centered at the origin then there exists a constant $c(N, p)>0$ such that

$$
\begin{equation*}
\lambda^{*}(p, \Omega) \geq \frac{c(N, p)}{\operatorname{diam}(\Omega)^{p}} . \tag{1.6}
\end{equation*}
$$

The constant $c(N, p)$ appearing in (1.6) has the property that $c(N, 2)$ is the first Dirichlet eigenvalue of $-\Delta$ in the unit disc of \mathbb{R}^{2}. This type of estimates was first proved by Brezis-Vàzquez in [3] when $p=2, N \geq 2$ and later on, extended to the case $1<p<N$ by Gazzola-Grunau-Mitidieri in [13] when dealing with $\mu_{0, p}\left(\mathbb{R}^{N} \backslash\{0\}\right):=$ $\left|\frac{N-p}{p}\right|^{p}$. More precisely they proved the existence of a positive constant $C(N, p)$ such that for any open subset Ω of \mathbb{R}^{N}, there holds

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p}-\mu_{0, p}\left(\mathbb{R}^{N} \backslash\{0\}\right) \int_{\Omega}|x|^{-p}|u|^{p} \geq C(N, p)\left(\frac{\omega_{N}}{|\Omega|}\right)^{\frac{p}{N}} \int_{\Omega}|u|^{p} \quad \forall u \in W_{0}^{1, p}(\Omega), \tag{1.7}
\end{equation*}
$$

where $|\Omega|$ is the measure of Ω and ω_{N} the measure of the unit ball of \mathbb{R}^{N}. The constant $C(N, p)$ was explicitly given and $C(N, 2)=c(N, 2)$ as was obtained in [3]. The main ingredients to prove (1.7) is the Schwarz symmetrization and a "dimension reduction" via the transformation $x \mapsto \frac{u}{\omega}$, where $\omega(x)=|x|^{\frac{p-N}{p}}$ satisfies

$$
\operatorname{div}\left(|\nabla \omega|^{p-2} \nabla \omega\right)+\mu_{0, p}\left(\mathbb{R}^{N} \backslash\{0\}\right)|x|^{-p} \omega^{p-1}=0 \quad \text { in } \mathbb{R}^{N} \backslash\{0\}
$$

For $p=2$, the lower bound in (1.6) was obtained in [10] by a similar transformation and using the Poincaré inequality on \mathbb{S}_{+}^{N-1}. However, in view of (1.4), such argument do not apply here when $p \neq 2$ and $p \neq N$. By analogy, to reduce the dimension, we will consider the mapping $x \mapsto \frac{u}{v}$, where $v(x):=|x|^{\frac{p-N}{p}} V\left(\frac{x}{|x|}\right)$ is a weak solution to the equation

$$
\operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right)+\mu_{0, p}(H)|x|^{-p}|v|^{p-2} v=0 \quad \text { in } \mathcal{D}^{\prime}(H)
$$

whenever V is a minimizer of (1.4). Then exploiting the strict convexity of the mapping $a \mapsto|a|^{p}$, estimate (1.6), for $p \geq 2$, follows immediately while the case $p \in(1,2)$ carries further difficulties as it can be seen in Section 2.2.

The argument to prove the attainability of $\mu_{\lambda, p}(\Omega)$ is taken from de ValeriolaWillem [7]. It allows to show that, up to a subsequence, the gradient of the PalaisSmale sequences converges point-wise almost every where. Therefore an application of the Brezis-Lieb lemma with some simples arguments yields the existence of extremals.

2 Hardy inequality with one point singularity

Let \mathcal{C} be a proper cone in $\mathbb{R}^{N}, N \geq 2$ and put $\Sigma:=\mathcal{C} \cap \mathbb{S}^{N-1}$. It was shown in [20] that the \mathcal{C}-Hardy constant is not achieved and it is given by

$$
\begin{equation*}
\mu_{0, p}(\mathcal{C})=\inf _{V \in W_{0}^{1, p}(\Sigma)} \frac{\int_{\Sigma}\left(\left(\frac{N-p}{p}\right)^{2}|V|^{2}+\left|\nabla_{\sigma} V\right|^{2}\right)^{\frac{p}{2}} d \sigma}{\int_{\Sigma}|V|^{p} d \sigma} \tag{2.1}
\end{equation*}
$$

Letting $V \in W_{0}^{1, p}(\Sigma)$ be the positive minimizer to this quotient then the function

$$
\begin{equation*}
v(x):=|x|^{\frac{p-N}{p}} V\left(\frac{x}{|x|}\right) \tag{2.2}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\int_{\mathcal{C}}|\nabla v|^{p-2} \nabla v \cdot \nabla h=\mu_{0, p}(\mathcal{C}) \int_{\mathcal{C}}|x|^{-p} v^{p-1} h \quad \forall h \in C_{c}^{1}(\mathcal{C}) \tag{2.3}
\end{equation*}
$$

Notice that $\mu_{0,2}(\mathcal{C})=\left(\frac{N-2}{2}\right)^{2}+\lambda_{1}(\Sigma)$, where $\lambda_{1}(\Sigma)$ is the first Dirichlet eigenfunction of the Laplace operator on Σ endowed with the standard metric on \mathbb{S}^{N-1}. This was obtained in [21], [19] and [10].

2.1 Existence

In this Section we show that the condition $\mu_{\lambda, p}(\Omega)<\mu_{0, p}(H)$ is sufficient to guaranty the existence of a minimizer for $\mu_{\lambda, p}(\Omega)$.
We emphasize that throughout this section, Ω can to be taken to be an open set satisfying the uniform sphere condition at $0 \in \partial \Omega$. Namely there are balls $B_{+} \subset \Omega$ and $B_{-} \subset \mathbb{R}^{N} \backslash \Omega$ such that $\partial B_{+} \cap \partial B_{-}=\{0\}$. This holds if $\partial \Omega$ is of class C^{2} at 0 , see [[16] 14.6 Appendix]. We start with the following approximate local Hardy inequality.

Lemma 2.1 Let Ω be a smooth domain in $\mathbb{R}^{N}, N \geq 1$, with $0 \in \partial \Omega$ and let $p>1$. Then for any $\varepsilon>0$ there exits $r_{\varepsilon}>0$ such that

$$
\begin{equation*}
\mu_{0, p}\left(\Omega \cap B_{r_{\varepsilon}}(0)\right) \geq \mu_{0, p}(H)-\varepsilon, \tag{2.4}
\end{equation*}
$$

where $B_{r}(0)$ is a ball of radius r centered at 0 .
Proof. If $N=1$ then (2.4) is an immediate consequence of (1.3). From now on we can assume that $N \geq 2$. We denote by $N_{\partial \Omega}$ the unit normal vector-field on $\partial \Omega$. Up to a rotation, we can assume that $N_{\partial \Omega}(0)=E_{N}$, so that the tangent plane of $\partial \Omega$ at 0 coincides with $\mathbb{R}^{N-1}=\operatorname{span}\left\{E_{1}, \ldots, E_{N-1}\right\}$. Denote by $B_{r}^{+}=\left\{y \in B_{r}(0): y^{N}>\right.$ $0\}$. For $r>0$ small, we introduce the following system of coordinates centered at 0 (see [9]) via the mapping $F: B_{r}^{+} \rightarrow \Omega$ given by

$$
F(y)=\operatorname{Exp}_{0}(\tilde{y})+y^{N} N_{\partial \Omega}\left(\operatorname{Exp}_{0}(\tilde{y})\right),
$$

where $\tilde{y}=\left(y^{1}, \ldots, y^{N-1}\right)$ and $\tilde{y} \mapsto \operatorname{Exp}_{0}(\tilde{y}) \in \partial \Omega$ is the exponential mapping of $\partial \Omega$ endowed with the metric induced by \mathbb{R}^{N}. This coordinates induces a metric on \mathbb{R}^{N} given by $g_{i j}(y)=\left\langle\partial_{i} F(y), \partial_{j} F(y)\right\rangle$ for $i, j=1, \ldots, N$. Let $u \in C_{c}^{\infty}\left(F\left(B_{r}^{+}\right)\right)$and put $v(y)=u(F(y))$ then
$\int_{F\left(B_{r}^{+}\right)}|\nabla u|^{p} d x=\int_{B_{r}^{+}}|\nabla v|_{g}^{p} \sqrt{|g|} d y, \quad \int_{F\left(B_{r}^{+}\right)}|x|^{-p}|u|^{p} d x=\int_{B_{r}^{+}}|F(y)|^{-p}|v|^{p} \sqrt{|g|} d y$,
with $|g|$ stands for the determinant of the g while $|\nabla v|_{g}^{p}=g(\nabla v, \nabla v)^{\frac{p}{2}}$. Since $|F(y)|=|y|+O\left(|y|^{2}\right)$ and $g_{i j}(y)=\delta_{i j}+O(|y|)$, we infer that

$$
\frac{\int_{B_{r}^{+}}|\nabla v|_{g}^{p} \sqrt{|g|} d y}{\int_{B_{r}^{+}}|F(y)|^{-p}|v|^{p} \sqrt{|g|} d y} \geq(1-C r) \frac{\int_{B_{r}^{+}}|\nabla v|^{p} d y}{\int_{B_{r}^{+}}|y|^{-p}|v|^{p} d y}
$$

for some constant $C>0$ depending only on Ω and p. Furthermore since $\mu_{0, p}\left(B_{r}^{+}\right) \geq$ $\mu_{0, p}(H)$, using (2.5) we conclude that

$$
\mu_{0, p}\left(F\left(B_{r}^{+}\right)\right) \geq(1-C r) \mu_{0, p}(H) .
$$

We are in position to prove (1.5) in the following
Lemma 2.2 Let Ω be a smooth domain in $\mathbb{R}^{N}, N \geq 1$, with $0 \in \partial \Omega$ and let $p>1$.
Then there exists $\lambda^{*}(p, \Omega) \in[-\infty,+\infty)$ such that

$$
\mu_{\lambda, p}(\Omega)<\mu_{0, p}(H) \quad \forall \lambda>\lambda^{*}(p, \Omega) .
$$

Proof. We first show that

$$
\begin{equation*}
\sup _{\lambda \in \mathbb{R}} \mu_{\lambda, p}(\Omega)=\mu_{0, p}(H) . \tag{2.6}
\end{equation*}
$$

Step 1: We claim that $\sup _{\lambda \in \mathbb{R}} \mu_{\lambda, p}(\Omega) \geq \mu_{0, p}(H)$.
For $r>0$ small, we let $\psi \in C^{\infty}\left(B_{r}(0)\right)$ with $0 \leq \psi \leq 1, \psi \equiv 0$ in $\mathbb{R}^{N} \backslash B_{\frac{r}{2}}(0)$ and
$\psi \equiv 1$ in $B_{\frac{r}{4}}(0)$. For a fixed $\varepsilon>0$ small, there holds

$$
\begin{aligned}
\int_{\Omega}|x|^{-p}|u|^{p} & =\int_{\Omega}|x|^{-p}|\psi u+(1-\psi) u|^{p} \\
& \leq(1+\varepsilon) \int_{\Omega}|x|^{-p}|\psi u|^{p}+c(\varepsilon) \int_{\Omega}|x|^{-p}(1-\psi)^{p}|u|^{p} \\
& \leq(1+\varepsilon) \int_{\Omega}|x|^{-p}|\psi u|^{p}+c(\varepsilon) \int_{\Omega}|u|^{p} .
\end{aligned}
$$

Now by (2.4)

$$
\left(\mu_{0, p}(H)-\varepsilon\right) \int_{\Omega}|x|^{-p}|\psi u|^{p} \leq \int_{\Omega}|\nabla(\psi u)|^{p}
$$

and hence

$$
\begin{equation*}
\left(\mu_{0, p}(H)-\varepsilon\right) \int_{\Omega}|x|^{-p}|u|^{p} \leq(1+\varepsilon) \int_{\Omega}|\nabla(\psi u)|^{p}+c(\varepsilon) \int_{\Omega}|u|^{p} . \tag{2.7}
\end{equation*}
$$

Since $|\nabla(\psi u)|^{p} \leq(\psi|\nabla u|+|u||\nabla \psi|)^{p}$ we deduce that

$$
|\nabla(\psi u)|^{p} \leq(1+\varepsilon) \psi^{p}|\nabla u|^{p}+c|u|^{p}|\nabla \psi|^{p} \leq(1+\varepsilon)|\nabla u|^{p}+c|u|^{p} .
$$

Using (2.7), we conclude that

$$
\begin{equation*}
\left(\mu_{0, p}(H)-\varepsilon\right) \int_{\Omega}|x|^{-p}|u|^{p} \leq(1+\varepsilon)^{2} \int_{\Omega}|\nabla u|^{p}+c(\varepsilon) \int_{\Omega}|u|^{p} . \tag{2.8}
\end{equation*}
$$

This implies that $\mu_{0, p}(H) \leq \sup _{\lambda \in \mathbb{R}} \mu_{\lambda, p}(\Omega)$ and the claim follows.
Step 2: We claim that $\sup _{\lambda \in \mathbb{R}} \mu_{\lambda, p}(\Omega) \leq \mu_{0, p}(H)$.
Denote by ν the unit interior normal of $\partial \Omega$. For $\delta \geq 0$ we consider the cone

$$
\mathcal{C}_{+}^{\delta}:=\left\{x \in \mathbb{R}^{N}|x \cdot \nu>\delta| x \mid\right\}
$$

and put $\Sigma_{\delta}=\mathcal{C}_{+}^{\delta} \cap \mathbb{S}^{N-1}$. For every $\eta>0$, let $V \in C_{c}^{\infty}\left(\Sigma_{0}\right)$ such that

$$
\frac{\int_{\Sigma_{0}}\left(\left(\frac{N-p}{p}\right)^{2}|V|^{2}+\left|\nabla_{\sigma} V\right|^{2}\right)^{\frac{p}{2}} d \sigma}{\int_{\Sigma_{0}}|V|^{p} d \sigma} \leq \mu_{0, p}(H)+\eta
$$

On the other hand, there exists $\delta>0$ small such that $\operatorname{supp} V \subset \Sigma_{\delta}$. From this we conclude that

$$
\begin{equation*}
\mu_{0, p}(H) \leq \mu_{0, p}\left(\mathcal{C}_{+}^{\delta}\right) \leq \mu_{0, p}(H)+\eta . \tag{2.9}
\end{equation*}
$$

Since $\partial \Omega$ is smooth at 0 , for every $\delta>0$, there exists $r_{\delta}>0$ such that $\mathcal{C}_{+}^{\delta} \cap B_{r}(0) \subset \Omega$ for all $r \in\left(0, r_{\delta}\right)$. Clearly by scale invariance, $\mu_{0, p}\left(\mathcal{C}_{+}^{\delta} \cap B_{r}(0)\right)=\mu_{0, p}\left(\mathcal{C}_{+}^{\delta}\right)$. For $\varepsilon>0$, we let $\phi \in W_{0}^{1, p}\left(\mathcal{C}_{+}^{\delta} \cap B_{r}(0)\right)$ such that

$$
\frac{\int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|\nabla \phi|^{p} d x}{\int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|x|^{-p}|\phi|^{p} d x} \leq \mu_{0, p}\left(\mathcal{C}_{+}^{\delta}\right)+\varepsilon .
$$

From this we deduce that

$$
\begin{aligned}
\mu_{\lambda, p}(\Omega) & \leq \frac{\int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|\nabla \phi|^{p} d x-\lambda \int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|\phi|^{p} d x}{\int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|x|^{-p}|\phi|^{p} d x} \\
& \leq \mu_{0}\left(\mathcal{C}_{+}^{\delta}\right)+\varepsilon+|\lambda| \frac{\int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|\phi|^{p} d x}{\int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|x|^{-p}|\phi|^{p} d x} .
\end{aligned}
$$

Since $\int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|x|^{-p}|\phi|^{p} d x \geq r^{-p} \int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|\phi|^{p} d x$, we get

$$
\mu_{\lambda, p}(\Omega) \leq \mu_{0, p}\left(\mathcal{C}_{+}^{\delta}\right)+\varepsilon+r^{p}|\lambda| .
$$

The claim follows immediately by (2.9). Therefore (2.6) is proved.
Finally as the map $\lambda \mapsto \mu_{\lambda, p}(\Omega)$ is non increasing while $\mu_{\lambda_{1}, p}(\Omega)=0<\mu_{0, p}(H)$, we can set

$$
\lambda^{*}(p, \Omega):=\inf \left\{\lambda \in \mathbb{R}: \mu_{\lambda, p}(\Omega)<\mu_{0, p}(H)\right\}
$$

so that $\lambda^{*}(p, \Omega)<\mu_{0, p}(H)$ for any $\lambda>\lambda^{*}(p, \Omega)$.

Remark 2.3 Observe that the proof of Lemma 2.2 highlights that

$$
\lim _{r \rightarrow 0} \mu_{0, p}\left(\Omega \cap B_{r}(0)\right)=\mu_{0, p}(H)=\lim _{\lambda \rightarrow-\infty} \mu_{\lambda, p}(\Omega)
$$

Proof of Theorem 1.1

Let $\lambda>\lambda^{*}(p, \Omega)$ so that $\mu_{\lambda, p}(\Omega)<\mu_{0, p}(H)$. We define the mappings F, G :
$W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ by

$$
F(u)=\int_{\Omega}|\nabla u|^{p}-\lambda \int_{\Omega}|u|^{p}
$$

and

$$
G(u)=\int_{\Omega}|x|^{p}|u|^{p}
$$

By Ekeland variational principal, there is a minimizing sequence $u_{n} \in W_{0}^{1, p}(\Omega)$ normalized so that

$$
G\left(u_{n}\right)=1, \quad \forall n \in \mathbb{N}
$$

and with the properties that

$$
\begin{gather*}
F\left(u_{n}\right) \rightarrow \mu_{\lambda, p}(\Omega) \\
J\left(u_{n}\right)=F^{\prime}\left(u_{n}\right)-\mu_{\lambda, p}(\Omega) G^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in }\left(W_{0}^{1, p}(\Omega)\right)^{\prime} \tag{2.10}
\end{gather*}
$$

Up to a subsequence, we can assume that there exists $u \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\nabla u_{n} \rightharpoonup \nabla u \text { in } L^{p}(\Omega) \tag{2.11}
\end{equation*}
$$

$u_{n} \rightarrow u$ in $L^{p}(\Omega)$ and $u_{n} \rightarrow u$ a.e. in Ω. Moreover by (2.8), we may assume that $|x|^{-1} u_{n} \rightharpoonup|x|^{-1} u$ in $L^{p}(\Omega)$. We set $\theta_{n}=u_{n}-u$ and

$$
T(s)= \begin{cases}s & \text { if }|s| \leq 1 \\ \frac{s}{|s|} & \text { if }|s|>1\end{cases}
$$

It follows that for every $r \geq 1$

$$
\begin{equation*}
\int_{\Omega}\left|T\left(\theta_{n}\right)\right|^{r} \rightarrow 0 \tag{2.12}
\end{equation*}
$$

Moreover notice that

$$
\begin{aligned}
\int_{\Omega}\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla u|^{p-2} \nabla u\right) \cdot \nabla T\left(\theta_{n}\right) & =\left\langle J\left(u_{n}\right), T\left(\theta_{n}\right)\right\rangle+\mu_{\lambda, p}(\Omega) \int_{\Omega}|x|^{-p}|u|_{n}^{p-2} u_{n} T\left(\theta_{n}\right) \\
& +\lambda \int_{\Omega}|u|_{n}^{p-2} u_{n} T\left(\theta_{n}\right)-\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla T\left(\theta_{n}\right)
\end{aligned}
$$

Therefore by $(2.10),(2.11)$ and (2.12) we infer that

$$
\int_{\Omega}\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla u|^{p-2} \nabla u\right) \cdot \nabla T\left(\theta_{n}\right) \rightarrow 0
$$

Consequently by [7]-Theorem 1.1,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\int_{\Omega}\left|\nabla u_{n}\right|^{p}-\int_{\Omega}\left|\nabla \theta_{n}\right|^{p}\right)=\int_{\Omega}|\nabla u|^{p} \tag{2.13}
\end{equation*}
$$

By Brezis-Lieb Lemma [4]

$$
\begin{equation*}
1-\lim _{n \rightarrow \infty} \int_{\Omega}|x|^{-p}\left|\theta_{n}\right|^{p}=\int_{\Omega}|x|^{-p}|u|^{p} . \tag{2.14}
\end{equation*}
$$

Fix $\varepsilon>0$ small. By (2.8) and Rellich, there exists λ_{ε} such that

$$
\left(\mu_{0, p}(H)-\varepsilon\right) \int_{\Omega}|x|^{-p}\left|\theta_{n}\right|^{p} \leq \int_{\Omega}\left|\nabla \theta_{n}\right|^{p}-\lambda_{\varepsilon} \int_{\Omega}\left|\theta_{n}\right|^{p}=\int_{\Omega}\left|\nabla \theta_{n}\right|^{p}+o(1) .
$$

Using this together with (2.13) and (2.14) we get

$$
\begin{aligned}
\mu_{\lambda, p}(\Omega) \int_{\Omega}|x|^{-p}|u|^{p} & \leq \int_{\Omega}|\nabla u|^{p}-\lambda \int_{\Omega}|u|^{p} \leq \int_{\Omega}\left|\nabla u_{n}\right|^{p}-\int_{\Omega}\left|\nabla \theta_{n}\right|^{p}-\lambda \int_{\Omega}\left|u_{n}\right|^{p}+o(1) \\
& \leq F\left(u_{n}\right)-\left(\mu_{0, p}(H)-\varepsilon\right) \int_{\Omega}|x|^{-p}\left|\theta_{n}\right|^{p}+o(1) \\
& \leq \mu_{\lambda, p}(\Omega)-\left(\mu_{0, p}(H)-\varepsilon\right)\left(1-\int_{\Omega}|x|^{-p}|u|^{p}\right)+o(1) \\
& \leq \mu_{\lambda, p}(\Omega)-\mu_{0, p}(H)+\varepsilon+\left(\mu_{0, p}(H)-\varepsilon\right) \int_{\Omega}|x|^{-p}|u|^{p}+o(1) .
\end{aligned}
$$

Send $n \rightarrow \infty$ and then $\varepsilon \rightarrow 0$ to get

$$
\left(\mu_{\lambda, p}(\Omega)-\mu_{0, p}(H)\right) \int_{\Omega}|x|^{-p}|u|^{p} \leq \mu_{\lambda, p}(\Omega)-\mu_{0, p}(H)
$$

Hence $\int_{\Omega}|x|^{-p}|u|^{p} \geq 1$ because $\mu_{\lambda, p}(\Omega)-\mu_{0, p}(H)<0$ and the proof is complete.
As a consequence of the existence theorem, we have
Corollary 2.4 Let Ω be a smooth bounded domain of $\mathbb{R}^{N}, N \geq 2$, with $0 \in \partial \Omega$. Then

$$
\mu_{0, p}\left(\mathbb{R}^{N} \backslash\{0\}\right)=\left|\frac{N-p}{p}\right|^{p}<\mu_{0, p}(\Omega) \leq \mu_{0, p}(H)
$$

Proof. By (2.6) $0<\mu_{0, p}(\Omega) \leq \mu_{0, p}(H)$. If the strict inequality holds, then there exists a positive minimizer $u \in W_{0}^{1, p}(\Omega)$ for $\mu_{0, p}(\Omega)$ by Theorem 1.1. But then $\mu_{0, p}\left(\mathbb{R}^{N} \backslash\{0\}\right)<\mu_{0, p}(\Omega)$, because otherwise a null extension of u outside Ω would achieve the Hardy constant in $\mathbb{R}^{N} \backslash\{0\}$ which is not possible.

As mentioned earlier, we shall show that there are smooth bounded domains in \mathbb{R}^{N} such that $\lambda^{*}(p, \Omega) \in[-\infty, 0)$. These domains might be taken to be convex or even flat at 0 . For that we let $\nu \in \mathbb{S}^{N-1}$ and $\delta, r, R>0$. We consider the sector

$$
\begin{equation*}
\mathcal{C}_{r, R}^{\delta}:=\left\{x \in \mathbb{R}^{N}|x \cdot \nu>-\delta| x|, r<|x|<R\} .\right. \tag{2.15}
\end{equation*}
$$

Proposition 2.5 Let $N \geq 2$ and $p>1$. Then for all $\delta \in(0,1)$, there exist $r, R>0$ such that if a domain Ω contains $\mathcal{C}_{r, R}^{\delta}$ then $\mu_{0, p}(\Omega)<\mu_{0, p}(H)$.

Proof. Consider the cone

$$
\mathcal{C}^{\delta}:=\left\{x \in \mathbb{R}^{N}|x \cdot \nu>-\delta| x \mid\right\}
$$

Notice that by Harnack inequality $\mu\left(\mathcal{C}^{\delta}\right)<\mu\left(\mathcal{C}^{\delta^{\prime}}\right)$ for any $0 \leq \delta^{\prime}<\delta<1$. Thus for any $\delta \in(0,1)$, we can find $u \in C_{c}^{\infty}\left(\mathcal{C}^{\delta}\right)$ such that

$$
\frac{\int_{\mathcal{C}^{\delta}}|\nabla u|^{p}}{\int_{\mathcal{C}^{\delta}}|x|^{-p}|u|^{p}}<\mu_{0, p}(H) .
$$

Hence we choose $r, R>0$ so that supp $u \subset \mathcal{C}_{r, R}^{\delta}$.
By Corollary 2.4, starting from exterior domains, one can also build various example of (possibly annular) domains for which $\lambda^{*}(p, \Omega)<0$. The following argument is taken in [Ghoussoub-Kang [14] Proposition 2.4]. If $U \subset \mathbb{R}^{N}, N \geq 2$, is a smooth exterior domain (the complement of a smooth bounded domain) with $0 \in \partial U$ then by scale invariance $\mu_{0, p}(U)=\mu_{0, p}\left(\mathbb{R}^{N} \backslash\{0\}\right)$. We let $B_{r}(0)$ a ball of radius r centered at the 0 and define $\Omega_{r}:=B_{r}(0) \cap U$ then clearly the map $r \mapsto \mu\left(\Omega_{r}\right)$ is decreasing with

$$
\begin{equation*}
\mu_{0, p}\left(\mathbb{R}^{N} \backslash\{0\}\right)=\inf _{r>0} \mu_{0, p}\left(\Omega_{r}\right) \quad \text { and } \quad \mu_{0, p}(H)=\sup _{r>0} \mu_{0, p}\left(\Omega_{r}\right) . \tag{2.16}
\end{equation*}
$$

We have the following result for which the proof is similar to the one given in [14] by Corollary 2.4 and Harnack inequality.

Proposition 2.6 There exists $r_{0}>0$ such that the mapping $r \mapsto \mu_{0, p}\left(\Omega_{r}\right)$ is leftcontinuous and strictly decreasing on $\left(r_{0},+\infty\right)$. In particular

$$
\mu_{0, p}\left(\mathbb{R}^{N} \backslash\{0\}\right)<\mu_{0, p}\left(\Omega_{r}\right)<\mu_{0, p}(H), \quad \forall r \in\left(r_{0},+\infty\right)
$$

2.2 Remainder term

We know that for domains Ω contained in a half-ball $\lambda^{*}(p, \Omega) \geq 0$. Our aim in this section is to obtain positive lower bound for $\lambda^{*}(p, \Omega)$ by providing a remainder term for Hard's inequality in these domains. In [13], Gazzola-Grunau-Mitidieri proved the following improved Hardy inequality for $1<p<N$:

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p}-\mu_{0, p}\left(\mathbb{R}^{N} \backslash\{0\}\right) \int_{\Omega}|x|^{-p}|u|^{p} \geq C(N, p)\left(\frac{\omega_{N}}{|\Omega|}\right)^{\frac{p}{N}} \int_{\Omega}|u|^{p}, \tag{2.17}
\end{equation*}
$$

that holds for any bonded domain Ω of \mathbb{R}^{N} and $u \in W_{0}^{1, p}(\Omega)$. Here the constant $C(N, p)>0$ is explicitly given while $C(N, 2)$ is the first Dirichlet eigenvalue of $-\Delta$ of the unit disc in \mathbb{R}^{2}.
We shall show that such type of inequality holds in the case where the singularity is placed at the boundary of the domain. To this end, we will use the function $v(x):=|x|^{\frac{p-N}{p}} V\left(\frac{x}{|x|}\right)$ defined in (2.2) to "reduce the dimension".
Throughout this section, we assume that $N \geq 2$ since the case $N=1$ was already proved by Tibodolm [22] Theorem 1.1. Indeed, he showed that
$\int_{0}^{1}\left|u^{\prime}(r)\right|^{p} d r-\mu_{0, p}(H) \int_{0}^{1} r^{-p}|u(r)|^{p} d r \geq(p-1) 2^{p} \int_{0}^{1}|u(r)|^{p} d r, \quad \forall u \in W_{0}^{1, p}(0,1)$.
We start with conic domains

$$
\mathcal{C}_{\Sigma}=\left\{x=r \sigma \in \mathbb{R}^{N} \mid r \in(0,1), \sigma \in \Sigma\right\},
$$

where Σ is a domain properly contained in \mathbb{S}^{N-1} and having a Lipschitz boundary. We will denote by V the positive minimizer of (2.1) in Σ while $v(x):=|x|^{\frac{p-N}{p}} V\left(\frac{x}{|x|}\right)$ satisfies (2.3) in the infinite cone $\left\{x=r \sigma \in \mathbb{R}^{N} \mid r \in(0,+\infty), \sigma \in \Sigma\right\}$. Finally we remember that by Harnack inequality $\frac{1}{v} \in L_{l o c}^{\infty}\left(\mathcal{C}_{\Sigma}\right)$.

Recall the following inequalities (see [17] Lemma 4.2) which will be useful in the remaining of the paper. Let $p \in[2, \infty)$ then for any $a, b \in \mathbb{R}^{N}$

$$
\begin{equation*}
|a+b|^{p} \geq|a|^{p}+\frac{1}{2^{p-1}-1}|b|^{p}+p|a|^{p-2} a \cdot b . \tag{2.18}
\end{equation*}
$$

If $p \in(1,2)$ then for any $a, b \in \mathbb{R}^{N}$

$$
\begin{equation*}
|a+b|^{p} \geq|a|^{p}+c(p) \frac{|b|^{2}}{(|a|+|b|)^{2-p}}+p|a|^{p-2} a \cdot b \tag{2.19}
\end{equation*}
$$

We first make the following observation.

Lemma 2.7 Let $u \in C_{c}^{\infty}\left(\mathcal{C}_{\Sigma}\right), u \geq 0$. Set $\psi=\frac{u}{v}$ then
If $p \geq 2$

$$
\begin{equation*}
\int_{\mathcal{C}_{\Sigma}}|\nabla u|^{p}-\mu_{0, p}\left(\mathcal{C}_{\Sigma}\right) \int_{\mathcal{C}_{\Sigma}}|x|^{-p}|u|^{p} \geq \frac{1}{2^{p-1}-1} \int_{\mathcal{C}_{\Sigma}}|v \nabla \psi|^{p} \tag{2.20}
\end{equation*}
$$

If $1<p<2$

$$
\begin{equation*}
\int_{\mathcal{C}_{\Sigma}}|\nabla u|^{p}-\mu_{0, p}\left(\mathcal{C}_{\Sigma}\right) \int_{\mathcal{C}_{\Sigma}}|x|^{-p}|u|^{p} \geq c(p) \int_{\mathcal{C}_{\Sigma}} \frac{|v \nabla \psi|^{2}}{(|v \nabla \psi|+|\psi \nabla v|)^{2-p}}, \tag{2.21}
\end{equation*}
$$

Proof. We prove only the case $p \geq 2$ as the case $p \in(1,2)$ goes similarly. Notice that $\nabla u=v \nabla \psi+\psi \nabla v$ then we use the inequality (2.18) with $a=v \nabla \psi$ and $b=\psi \nabla v$ to get

$$
\int_{\mathcal{C}_{\Sigma}}|\nabla u|^{p} \geq \int_{\mathcal{C}_{\Sigma}}|\psi \nabla v|^{p}+p \int_{\mathcal{C}_{\Sigma}}|\psi \nabla v|^{p-2} \psi \nabla v \cdot(v \nabla \psi)+\frac{1}{2^{p-1}-1} \int_{\mathcal{C}_{\Sigma}}|v \nabla \psi|^{p} .
$$

It is plain that

$$
p|\psi \nabla v|^{p-2} \psi \nabla v \cdot(v \nabla \psi)=|\nabla v|^{p-2} \nabla v \cdot\left(v \nabla \psi^{p}\right)=|\nabla v|^{p-2} \nabla v \cdot \nabla\left(v \psi^{p}\right)-|\psi \nabla v|^{p} .
$$

Inserting this in the first inequality and using (2.3) we deduce that

$$
\begin{aligned}
\int_{\mathcal{C}_{\Sigma}}|\nabla u|^{p} & \geq \frac{1}{2^{p-1}-1} \int_{\mathcal{C}_{\Sigma}}|v \nabla \psi|^{p}+\int_{\mathcal{C}_{\Sigma}}|\nabla v|^{p-2} \nabla v \cdot \nabla\left(v \psi^{p}\right) \\
& \geq \frac{1}{2^{p-1}-1} \int_{\mathcal{C}_{\Sigma}}|v \nabla \psi|^{p}+\mu_{0, p}\left(\mathcal{C}_{\Sigma}\right) \int_{\mathcal{C}_{\Sigma}}|x|^{-p} u^{p}
\end{aligned}
$$

The improvement in the case $p \geq 2$ is an immediate consequence of the above lemma.

Lemma 2.8 For all $p \geq 2$

$$
\int_{\mathcal{C}_{\Sigma}}|\nabla u|^{p}-\mu_{0, p}\left(\mathcal{C}_{\Sigma}\right) \int_{\mathcal{C}_{\Sigma}}|x|^{-p}|u|^{p} \geq \frac{\Lambda_{p}}{2^{p-1}-1} \int_{\mathcal{C}_{\Sigma}}|u|^{p}, \quad \forall u \in C_{c}^{\infty}\left(\mathcal{C}_{\Sigma}\right),
$$

where $\Lambda_{p}:=\inf _{f \in C_{c}^{1}(0,1)} \frac{\int_{0}^{1} r^{p-1}\left|f^{\prime}\right|^{p} d r}{\int_{0}^{1} r^{p-1}|f|^{p} d r}$.

Proof. Since $|\nabla| u||\leq|\nabla u|$, we may assume that $u \geq 0$. We only need to estimate the right hand side in (2.20). We use polar coordinates $x \mapsto\left(|x|, \frac{x}{|x|}\right)=(r, \sigma)$ and denote by ∂_{r} the radial direction. Then using (2.18),

$$
\begin{aligned}
\int_{\mathcal{C}_{\Sigma}}|v \nabla \psi|^{p} & =\int_{\Sigma} \int_{0}^{1} r^{p-1} V^{p}\left|\psi_{r} \partial_{r}+\nabla_{\sigma} \psi\right|^{p} \\
& \geq \int_{\Sigma} V^{p} \int_{0}^{1} r^{p-1}\left|\psi_{r}\right|^{p} \geq \Lambda_{p} \int_{\Sigma} V^{p} \int_{0}^{1} r^{p-1}|\psi|^{p} \\
& \geq \Lambda_{p} \int_{\Sigma} \int_{0}^{1} u^{p} r^{N-1}=\Lambda_{p} \int_{\mathcal{C}_{\Sigma}}|u|^{p} .
\end{aligned}
$$

The lemma readily follows from (2.20).
It is easy to see that by integration by parts $\Lambda_{p} \geq 1$ while for integer $p \in \mathbb{N}$ then Λ_{p} corresponds to the first Dirichlet eigenvalue of $-\Delta$ in the unit ball of \mathbb{R}^{p}.
We now turn to the case $p \in(1,2)$ which carries more difficulties. We shall need the following intermediate result.

Lemma 2.9 Let $p \in(1,2)$ and $u \in C_{c}^{\infty}\left(\mathcal{C}_{\Sigma}\right), u \geq 0$. Setting $\psi=\frac{u}{v}$ then there exists a constant $c=c(p, \Sigma)>0$ such that

$$
c \int_{\mathcal{C}_{\Sigma}} r|\psi \nabla v|^{p} \leq \int_{\mathcal{C}_{\Sigma}} r^{(2-p) / 2}|v \nabla \psi|^{p}
$$

Proof. Let $\tilde{\psi}:=r^{\frac{1}{p}} \psi$ and use $\tilde{\psi}^{p} v$ as a test function in the weak equation (2.3). Then by Hölder

$$
\begin{aligned}
\int_{\mathcal{C}_{\Sigma}}|\tilde{\psi} \nabla v|^{p} & \leq \mu_{0, p}\left(\mathcal{C}_{\Sigma}\right) \int_{\mathcal{C}_{\Sigma}} r^{-p} v^{p} \tilde{\psi}^{p}+p \int_{\mathcal{C}_{\Sigma}}|\tilde{\psi} \nabla v|^{p-1}|v \nabla \tilde{\psi}| \\
& \leq \mu_{0, p}\left(\mathcal{C}_{\Sigma}\right) \int_{\mathcal{C}_{\Sigma}} r^{-p} v^{p} \tilde{\psi}^{p}+p\left(\int_{\mathcal{C}_{\Sigma}}|\tilde{\psi} \nabla v|^{p}\right)^{\frac{p-1}{p}}\left(\int_{\mathcal{C}_{\Sigma}}|v \nabla \tilde{\psi}|^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

Therefore by Young's inequality, for $\varepsilon>0$ small there exists a constant $C_{\varepsilon}>0$ depending on p and Σ such that

$$
(1-\varepsilon c(p)) \int_{\mathcal{C}_{\Sigma}}|\tilde{\psi} \nabla v|^{p} \leq C_{\varepsilon} \int_{\mathcal{C}_{\Sigma}} r^{-p} v^{p} \tilde{\psi}^{p}+C_{\varepsilon} \int_{\mathcal{C}_{\Sigma}}|v \nabla \tilde{\psi}|^{p}
$$

Recall that $\tilde{\psi}=r^{\frac{1}{p}} \psi$. Then since

$$
|\nabla \tilde{\psi}|^{p} \leq c(p)\left(r^{1-p} \psi^{p}+r|\nabla \psi|^{p}\right)
$$

we conclude that there exists a constant $c=c(p, \Sigma)$ such that

$$
\begin{equation*}
c \int_{\mathcal{C}_{\Sigma}} r|\psi \nabla v|^{p} \leq \int_{\mathcal{C}_{\Sigma}} r^{1-p} v^{p} \psi^{p}+\int_{\mathcal{C}_{\Sigma}} r^{(2-p) / p}|v \nabla \psi|^{p} \tag{2.22}
\end{equation*}
$$

we have used the fact that $r \leq r^{(2-p) / p}$ for all $r \in(0,1)$. To estimate the first term in the right hand side in (2.22) we will use the 2-dimensional Hardy inequality. Through the polar coordinates $x \mapsto(r, \sigma)$

$$
\begin{aligned}
\int_{\mathcal{C}_{\Sigma}} r^{1-p} v^{p} \psi^{p} & =\int_{\Sigma} V^{p} \int_{0}^{1} r^{p-1}\left(\frac{\psi}{r}\right)^{p} r \\
& \leq \int_{\Sigma} V^{p} \int_{0}^{1}\left(\frac{\psi}{r}\right)^{p} r \\
& \leq\left|\frac{p}{p-2}\right|^{-p} \int_{\Sigma} V^{p} \int_{0}^{1}\left|\psi_{r}\right|^{p} r \\
& =\left|\frac{p}{p-2}\right|^{-p} \int_{0}^{1} \int_{\Sigma} V^{p} v^{-p}|v \nabla \psi|^{p} r=\left|\frac{p}{p-2}\right|^{-p} \int_{0}^{1} \int_{\Sigma} r^{N-p+1}|v \nabla \psi|^{p}
\end{aligned}
$$

To conclude, we notice that $r^{N-p+1}=r^{N-\frac{p}{2}} r^{(2-p) / p} \leq r^{N-1} r^{(2-p) / p}$ as $p \in(1,2)$ so that

$$
\int_{\mathcal{C}_{\Sigma}} r^{1-p} v^{p} \psi^{p} \leq\left|\frac{p}{p-2}\right|^{-p} \int_{\mathcal{C}_{\Sigma}} r^{(2-p) / p}|v \nabla \psi|^{p}
$$

Inserting this in (2.22) the lemma follows immediately.
We are now in position to prove the improved Hardy inequality for $p \in(1,2)$.
Lemma 2.10 Let $p \in(1,2)$. Then there exists a constant $c=c(p, \Sigma)>0$ such that

$$
\int_{\mathcal{C}_{\Sigma}}|\nabla u|^{p}-\mu_{0, p}\left(\mathcal{C}_{\Sigma}\right) \int_{\mathcal{C}_{\Sigma}}|x|^{-p}|u|^{p} \geq c \int_{\mathcal{C}_{\Sigma}}|u|^{p}, \quad \forall u \in C_{c}^{\infty}\left(\mathcal{C}_{\Sigma}\right)
$$

Proof. Here also we may assume that $u \geq 0$. We need to estimate the right hand
side of (2.21). Let $r=|x|$ then by Hölder and Lemma 2.9, we have

$$
\begin{aligned}
\int_{\mathcal{C}_{\Sigma}} r^{\frac{2-p}{2}}|v \nabla \psi|^{p}= & \int_{\mathcal{C}_{\Sigma}} \frac{|v \nabla \psi|^{2}}{(|v \nabla \psi|+|\psi \nabla v|)^{(2-p) p / 2}} r^{\frac{2-p}{2}}(|v \nabla \psi|+|\psi \nabla v|)^{(2-p) p / 2} \\
\leq & \left(\int_{\mathcal{C}_{\Sigma}} \frac{|v \nabla \psi|^{2}}{(|v \nabla \psi|+|\psi \nabla v|)^{2-p}}\right)^{p / 2}\left(\int_{\mathcal{C}_{\Sigma}} r \| v \nabla \psi\left|+|\psi \nabla v|^{p}\right)^{(2-p) / 2}\right. \\
\leq & \left(\int_{\mathcal{C}_{\Sigma}} \frac{|v \nabla \psi|^{2}}{(|v \nabla \psi|+|\psi \nabla v|)^{2-p}}\right)^{p / 2} \\
& \times\left(2^{p-1} \int_{\mathcal{C}_{\Sigma}} r|v \nabla \psi|^{p}+2^{p-1} \int_{\mathcal{C}_{\Sigma}} r|\psi \nabla v|^{p}\right)^{(2-p) / 2} \\
\leq & c\left(\int_{\mathcal{C}_{\Sigma}} \frac{|v \nabla \psi|^{2}}{(|v \nabla \psi|+|\psi \nabla v|)^{2-p}}\right)^{p / 2}\left(\int_{\mathcal{C}_{\Sigma}} r^{\frac{2-p}{2}}|v \nabla \psi|^{p}\right)^{(2-p) / 2}
\end{aligned}
$$

where c a positive constant depending only on p and Σ and we have used once more the fact that $r \leq r^{(2-p) / p}$ for all $r \in(0,1)$. Consequently by (2.21), we deduce that

$$
\begin{equation*}
\int_{\mathcal{C}_{\Sigma}}|\nabla u|^{p}-\mu_{0, p}\left(\mathcal{C}_{\Sigma}\right) \int_{\mathcal{C}_{\Sigma}}|x|^{-p}|u|^{p} \geq c \int_{\mathcal{C}_{\Sigma}} r^{\frac{2-p}{2}}|v \nabla \psi|^{p} \tag{2.23}
\end{equation*}
$$

To proceed we estimate

$$
\begin{aligned}
\int_{\Sigma} \int_{0}^{1} u^{p} r^{N-1} & =\int_{\Sigma} V^{p} \int_{0}^{1} r^{p-1}|\psi|^{p} \leq c(p) \int_{\Sigma} V^{p} \int_{0}^{1} r\left|\psi_{r}\right|^{p} \\
& \leq c(p) \int_{\Sigma} V^{p} \int_{0}^{1} r^{\frac{p}{2}}\left|\psi_{r}\right|^{p} \\
& \leq c(p) \int_{\mathcal{C}_{\Sigma}} r^{\frac{2-p}{2}}|v \nabla \psi|^{p} .
\end{aligned}
$$

The first inequality comes from the 2-dimensional embedding $W_{0}^{1, p} \subset L^{\frac{2 p}{2-p}} \subset L^{\frac{p}{3-p}}$, one can see [[13] page 2155] for the proof. Putting this in (2.23) we conclude that there exists a positive constant $c=c(p, \Sigma)$ such that

$$
\int_{\mathcal{C}_{\Sigma}}|\nabla u|^{p}-\mu_{0, p}\left(\mathcal{C}_{\Sigma}\right) \int_{\mathcal{C}_{\Sigma}}|x|^{-p}|u|^{p} \geq c \int_{\mathcal{C}_{\Sigma}}|u|^{p}
$$

which was the purpose of the lemma.

The main result in this section is contained in the next theorem.
Theorem 2.11 Let Ω be a domain in \mathbb{R}^{N} with $0 \in \partial \Omega$. If Ω is contained in a half-ball centered at 0 then there exists a constant $c(N, p)>0$ such that

$$
\int_{\Omega}|\nabla u|^{p}-\mu_{0, p}(H) \int_{\Omega}|x|^{-p}|u|^{p} \geq \frac{c(N, p)}{\operatorname{diam}(\Omega)^{p}} \int_{\Omega}|u|^{p} \quad \forall u \in W_{0}^{1, p}(\Omega) .
$$

Proof. Let $R=\operatorname{diam}(\Omega)$ be the diameter of Ω. Then Ω is contained in a half ball B_{R}^{+}of radius R centered at the origin. From Lemma 2.8 and Lemma 2.10 we infer that

$$
\int_{B_{R}^{+}}|\nabla u|^{p}-\mu_{0, p}(H) \int_{B_{R}^{+}}|x|^{-p}|u|^{p} \geq \frac{c(N, p)}{R^{p}} \int_{B_{R}^{+}}|u|^{p} \quad \forall u \in C_{c}^{\infty}(\Omega)
$$

by homogeneity. The theorem readily follows by density.
We do not know whether $\operatorname{diam}(\Omega)$ might be replaced with $\omega_{N}|\Omega|^{\frac{1}{N}}$ as in [13] at least when Ω is convex and $p \geq 2$. There might exists also "logarithmic" improvement as was recently obtained in [11] inside cones and $p=2$. One can see also the work of Barbatis-Filippas-Tertikas in [1] for domains containing the origin or when $|x|$ is replaced by the distance to the boundary.

A Hardy's inequality

We denote by d the distance function of Ω :

$$
d(x):=\inf \{|x-\sigma|: \sigma \in \partial \Omega\} .
$$

In this section, we study the problem of finding minima to the following quotient

$$
\begin{equation*}
\nu_{\lambda, p}(\Omega):=\inf _{u \in W_{0}^{1, p}(\Omega)} \frac{\int_{\Omega}|\nabla u|^{p} d x-\lambda \int_{\Omega}|u|^{p} d x}{\int_{\Omega} d^{-p}|u|^{p} d x} \tag{A.1}
\end{equation*}
$$

where $p>1$ and $\lambda \in \mathbb{R}$ is a varying parameter. Existence of extremals to this problem was studied in [2] when $p=2$ and in [18] with $\lambda=0$. It is known (see for instance [18]) that $\nu_{0, p}(\Omega) \leq \mathbf{c}_{p}$ for any smooth bounded domain Ω while for convex domain Ω, the Hardy constant $\nu_{0, p}(\Omega)$ is not achieved and $\nu_{0, p}(\Omega)=\left(\frac{p-1}{p}\right)^{p}=: \mathbf{c}_{p}$. The main result in this section is contained in the following

Theorem A. 1 Let Ω be a smooth bounded domain in \mathbb{R}^{N} and $p>1$, there exits $\tilde{\lambda}(p, \Omega) \in[-\infty,+\infty)$ such that

$$
\begin{equation*}
\nu_{\lambda, p}(\Omega)<\left(\frac{p-1}{p}\right)^{p}, \quad \forall \lambda>\tilde{\lambda}(p, \Omega) \tag{A.2}
\end{equation*}
$$

The infinimum in (A.1) is attained if $\lambda>\tilde{\lambda}(p, \Omega)$.
We start with the following result which is stronger than needed. It was proved in [2] for $p=2$ and in [12] when $2 \leq p<N$ as the authors were dealing with Hardy-Sobolev inequalities.

Lemma A. 2 Let Ω be a smooth bounded domain in \mathbb{R}^{N} and $p \in(1, \infty)$. Then there exists $\beta=\beta(p, \Omega)>0$ small such that

$$
\begin{equation*}
\int_{\Omega_{\beta}}|\nabla u|^{p} \geq \boldsymbol{c}_{p} \int_{\Omega_{\beta}} d^{-p}|u|^{p} \quad \forall u \in H_{0}^{1}(\Omega) \tag{A.3}
\end{equation*}
$$

where $\Omega_{\beta}:=\{x \in \Omega: d(x)<\beta\}$.
Proof. Since $|\nabla| u\left|\left|\leq|\nabla u|\right.\right.$, we may assume that $u \geq 0$. Let $u \in C_{c}^{\infty}(\Omega)$ and put $v=d^{\frac{1-p}{p}} u$. Using (2.18) and (2.19), we get

$$
\begin{equation*}
|\nabla u|^{p}-\mathbf{c}_{p} d^{-p}|u|^{p} \geq c(p) d^{p-1}|\nabla v|^{p}+\left|\frac{p-1}{p}\right|^{p-1} \nabla d \cdot \nabla\left(v^{p}\right) \quad \text { if } p \geq 2 \tag{A.4}
\end{equation*}
$$

$$
\begin{equation*}
|\nabla u|^{p}-\mathbf{c}_{p} d^{-p}|u|^{p} \geq c(p) \frac{d|\nabla v|^{2}}{\left(\mathbf{c}_{p}^{\frac{1}{p}}|v|+d|\nabla v|\right)^{2-p}}+\left|\frac{p-1}{p}\right|^{p-1} \nabla d \cdot \nabla\left(v^{p}\right) \quad \text { if } p \in(1,2) \tag{A.5}
\end{equation*}
$$

By integration by parts, we have

$$
\int_{\Omega_{\beta}} \nabla d \cdot \nabla\left(v^{p}\right)=-\int_{\Omega_{\beta}} \Delta d|v|^{p}+\int_{\partial \Omega_{\beta}}|v|^{p} \geq-c \int_{\Omega_{\beta}}|v|^{p}+\int_{\partial \Omega_{\beta}}|v|^{p}
$$

for a positive constant depending only on Ω. Multiply the identity $\operatorname{div}(d \nabla d)=$ $1+d \Delta d$ by v in integrate by parts to get
$(1+o(1)) \int_{\Omega_{\beta}}|v|^{p}=-p \int_{\Omega_{\beta}} d|v|^{p-1} \nabla d \cdot \nabla v+\int_{\partial \Omega_{\beta}} d|v|^{p} \leq c(p) \int_{\Omega_{\beta}} d|v|^{p-1}|\nabla v|+\int_{\partial \Omega_{\beta}} d|v|^{p}$.

By Hölder and Young's inequalities

$$
\begin{equation*}
(1+o(1)-c \varepsilon) \int_{\Omega_{\beta}}|v|^{p} \leq c_{\varepsilon} \int_{\Omega_{\beta}} d^{p}|\nabla v|^{p}+\int_{\partial \Omega_{\beta}} d|v|^{p} . \tag{A.6}
\end{equation*}
$$

Case $p \geq 2$. Using (A.6) we infer that

$$
(1+o(1)-c \varepsilon) \int_{\Omega_{\beta}}|v|^{p} \leq c_{\varepsilon} \beta \int_{\Omega_{\beta}} d^{p-1}|\nabla v|^{p}+\beta \int_{\partial \Omega_{\beta}}|v|^{p} .
$$

It follows from (A.4) that for $\varepsilon, \beta>0$ small

$$
\int_{\Omega_{\beta}}|\nabla u|^{p}-\mathbf{c}_{p} \int_{\Omega_{\beta}} d^{-p}|u|^{p} \geq c\left(\int_{\Omega_{\beta}} d^{p-1}|\nabla v|^{p}+\int_{\partial \Omega_{\beta}}|v|^{p}\right)
$$

as desired.
Case $p \in(1,2)$. By Hölder and Young's inequalities

$$
\begin{aligned}
\int_{\Omega_{\beta}} d^{p}|\nabla v|^{p} & =\int_{\Omega_{\beta}} \frac{d^{p}|\nabla v|^{p}}{\left(\mathbf{c}_{p}^{\frac{1}{p}}|v|+d|\nabla v|\right)^{\frac{p(2-p)}{2}}}\left(\mathbf{c}_{p}^{\frac{1}{p}}|v|+d|\nabla v|\right)^{\frac{p(2-p)}{2}} \\
& \leq c_{\varepsilon} \int_{\Omega_{\beta}} \frac{d^{2}|\nabla v|^{2}}{\left(\mathbf{c}_{p}^{\frac{1}{p}}|v|+d|\nabla v|\right)^{2-p}}+\varepsilon c \int_{\Omega_{\beta}}|v|^{p}+\varepsilon c \int_{\Omega_{\beta}} d^{p}|\nabla v|^{p}
\end{aligned}
$$

and thus

$$
(1-c \varepsilon) \int_{\Omega_{\beta}} d^{p}|\nabla v|^{p} \leq c_{\varepsilon} \int_{\Omega_{\beta}} \frac{d^{2}|\nabla v|^{2}}{\left(\mathbf{c}_{p}^{\frac{1}{p}}|v|+d|\nabla v|\right)^{2-p}}+\varepsilon c \int_{\Omega_{\beta}}|v|^{p} .
$$

Using this in (A.6) we obtain

$$
(1+o(1)-c \varepsilon) \int_{\Omega_{\beta}}|v|^{p} \leq c \beta \int_{\Omega_{\beta}} \frac{d|\nabla v|^{2}}{\left(\mathbf{c}_{p}^{\frac{1}{p}}|v|+d|\nabla v|\right)^{2-p}}+c \beta \int_{\partial \Omega_{\beta}}|v|^{p} .
$$

By (A.5), we conclude that for $\varepsilon, \beta>0$ small

$$
\int_{\Omega_{\beta}}|\nabla u|^{p}-\mathbf{c}_{p} \int_{\Omega_{\beta}} d^{-p}|u|^{p} \geq c \int_{\Omega_{\beta}} \frac{d|\nabla v|^{2}}{\left(\mathbf{c}_{p}^{\frac{1}{p}}|v|+d|\nabla v|\right)^{2-p}}+c \int_{\partial \Omega_{\beta}}|v|^{p}
$$

This ends the proof of the lemma.

Lemma A. 3 Let Ω be a bounded domain of class C^{2} in \mathbb{R}^{N}. Then there exists $\tilde{\lambda}(p, \Omega) \in[-\infty,+\infty)$ such that

$$
\nu_{\lambda, p}(\Omega)<c_{p} \quad \forall \lambda>\tilde{\lambda}(p, \Omega) .
$$

Proof. The proof will be carried out in 2 steps.
Step 1: We claim that $\sup _{\lambda \in \mathbb{R}} \nu_{\lambda, p}(\Omega) \geq \mathbf{c}_{p}$.
For $\beta>0$ we define

$$
\Omega_{\beta}:=\{x \in \Omega: d(x)<\beta\} .
$$

Let $\psi \in C^{\infty}\left(\Omega_{\beta}\right)$ with $0 \leq \psi \leq 1, \psi \equiv 0$ in $\mathbb{R}^{N} \backslash \Omega_{\frac{\beta}{2}}$ and $\psi \equiv 1$ in $\Omega_{\frac{\beta}{4}}$. For $\varepsilon>0$ small, there holds

$$
\begin{aligned}
\int_{\Omega} d^{-p}|u|^{p} & =\int_{\Omega} d^{-p}|\psi u+(1-\psi) u|^{p} \\
& \leq(1+\varepsilon) \int_{\Omega} d^{-p}|\psi u|^{p}+C \int_{\Omega} d^{-p}(1-\psi)^{p}|u|^{p} \\
& \leq(1+\varepsilon) \int_{\Omega} d^{-p}|\psi u|^{p}+C \int_{\Omega}|u|^{p} .
\end{aligned}
$$

By (A.3), we infer that

$$
\mathbf{c}_{p} \int_{\Omega} d^{-p}|\psi u|^{p} \leq \int_{\Omega}|\nabla(\psi u)|^{p}
$$

and hence

$$
\begin{equation*}
\mathbf{c}_{p} \int_{\Omega} d^{-p}|u|^{p} \leq(1+\varepsilon) \int_{\Omega}|\nabla(\psi u)|^{p}+C \int_{\Omega}|u|^{p} . \tag{A.7}
\end{equation*}
$$

Since $|\nabla(\psi u)|^{p} \leq(\psi|\nabla u|+|u||\nabla \psi|)^{p}$ we deduce that

$$
|\nabla(\psi u)|^{p} \leq(1+\varepsilon) \psi^{p}|\nabla u|^{p}+C|u|^{p}|\nabla \psi|^{p} \leq(1+\varepsilon)|\nabla u|^{p}+C|u|^{p} .
$$

Using (A.7), we conclude that

$$
\mathbf{c}_{p} \int_{\Omega} d^{-p}|u|^{p} \leq(1+\varepsilon)^{2} \int_{\Omega}|\nabla u|^{p}+C(\varepsilon, \beta) \int_{\Omega}|u|^{p} .
$$

This means that $\mathbf{c}_{p} \leq \sup _{\lambda \in \mathbb{R}} \nu_{\lambda, p}(\Omega)$.
Step 2: We claim that $\sup _{\lambda \in \mathbb{R}} \nu_{\lambda, p}(\Omega) \leq \mathbf{c}_{p}$.

Let $\beta>0$ then by (1.3) and scale invariance we have $\mu_{0, p}(0, \beta)=\mathbf{c}_{p}$. Hence for $\varepsilon>0$ there exits a function $\phi \in W_{0}^{1, p}(0, \beta)$ such that

$$
\begin{equation*}
\mathbf{c}_{p}+\varepsilon \geq \frac{\int_{0}^{\beta}\left|\phi^{\prime}\right|^{p} d s}{\int_{0}^{\beta} s^{-p} \phi^{p} d s} . \tag{A.8}
\end{equation*}
$$

Letting $u(x)=\phi(d(x))$, there exists a positive constant C depending only on Ω such that

$$
\int_{\Omega_{\beta}}|\nabla u|^{p}=\int_{0}^{\beta} \int_{\partial \Omega_{s}}\left|\phi^{\prime}(s)\right|^{p} d \sigma_{s} \leq(1+C \beta)|\partial \Omega| \int_{0}^{\beta}\left|\phi^{\prime}(s)\right|^{p} d s .
$$

Furthermore

$$
\int_{\Omega_{\beta}} d^{-p}|u|^{p}=\int_{0}^{\beta} \int_{\partial \Omega_{s}} s^{-p}|\phi(s)|^{p} d \sigma_{s} \geq(1-C \beta)|\partial \Omega| \int_{0}^{\beta}|\phi(s)|^{p} d s
$$

By (A.8) we conclude that

$$
\nu_{\lambda, p}(\Omega) \leq \frac{\int_{\Omega_{\beta}}|\nabla u|^{p} d x-\lambda \int_{\Omega_{\beta}} u^{p} d x}{\int_{\Omega_{\beta}} d^{-p}|u|^{p} d x} \leq\left(\mathbf{c}_{p}+\varepsilon\right) \frac{1+C \beta}{1-C \beta}+|\lambda| \frac{\int_{\Omega_{\beta}}|u|^{p} d x}{\int_{\Omega_{\beta}} d^{-p}|u|^{p} d x} .
$$

Since $\int_{\Omega} d^{-p}|u|^{2} d x \geq \beta^{-p} \int_{\Omega_{\beta}}|u|^{p} d x$, we get

$$
\nu_{\lambda, p}(\Omega) \leq\left(\mathbf{c}_{p}+\varepsilon\right) \frac{1+C \beta}{1-C \beta}+\beta^{p}|\lambda|,
$$

sending β to 0 we get the desired result.
Clearly the proof of Theorem A. 1 goes similarly as the one of Theorem 1.1 and we skip it.
It was shown in $[2]$ that $\tilde{\lambda}(2, \Omega) \in \mathbb{R}$ and that $\nu_{\lambda, p}(\Omega)$ is not achieved for any $\lambda \geq \tilde{\lambda}(2, \Omega)$. On the other hand by [8], there are domains for which $\tilde{\lambda}(2, \Omega)<0$, see also [18].
We point out that if Ω is convex then by [22] there exists a constant $a(N, p)>0$ (explicitly given) such that

$$
\tilde{\lambda}(p, \Omega) \geq \frac{a(N, p)}{|\Omega|^{\frac{p}{N}}} .
$$

We finish this section by showing that there are smooth bounded domains in \mathbb{R}^{N} such that $\tilde{\lambda}(p, \Omega) \in[-\infty, 0)$. We let $U \subset \mathbb{R}^{N}, N \geq 2$ with $0 \in \partial U$ be an exterior domain and set $\Omega_{r}=B_{r}(0) \cap U$.

Proposition A. 4 Assume that $p>\frac{N+1}{2}$ then there exists $r>0$ such that $\nu_{0, p}\left(\Omega_{r}\right)<$ $\left(\frac{p-1}{p}\right)^{p}$.
Proof. Clearly $\mu_{0, p}\left(\mathbb{R}^{N} \backslash\{0\}\right)=\left|\frac{N-p}{p}\right|^{p}<\left(\frac{p-1}{p}\right)^{p}$ provided $p>\frac{N+1}{2}$. Let $\varepsilon>0$ such that $\left(\frac{p-1}{p}\right)^{p}>\left|\frac{N-p}{p}\right|^{p}+\varepsilon$ so by (2.16), there exits $r>0$ such that

$$
\mu_{0, p}\left(\Omega_{r}\right)<\left|\frac{N-p}{p}\right|^{p}+\varepsilon<\left(\frac{p-1}{p}\right)^{p}
$$

The conclusion readily follows since $\nu_{0, p}\left(\Omega_{r}\right) \leq \mu_{0, p}\left(\Omega_{r}\right)$ because $0 \in \partial \Omega_{r}$.

References

[1] Barbatis G., Filippas S., Tertikas A., A unified approach to improved L^{p} Hardy inequalities with best constants. Trans. Amer. Math. Soc., 356, (2004), 2169-2196.
[2] Brezis H. and Marcus M., Hardy's inequalities revisited. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 217-237.
[3] Brezis H. and Vàzquez J. L., Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid 10 (1997), no. 2, 443-469.
[4] Brezis H. and Lieb E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
[5] Caldiroli P., Musina R., On a class of 2-dimensional singular elliptic problems. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 479-497.
[6] Caldiroli P., Musina R., Stationary states for a two-dimensional singular Schrödinger equation. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 4-B (2001), 609-633.
[7] de Valeriola S. and Willem M., On Some Quasilinear Critical Problems, Advanced Nonlinear Studies 9 (2009), 825-836.
[8] Davies E. B., The Hardy constant, Quart. J. Math. Oxford (2) 46 (1995), 417431.
[9] Fall M. M., Area-minimizing regions with small volume in Riemannian manifolds with boundary. Pacific J. Math. 244 (2010), no. 2, 235-260.
[10] Fall M. M., Musina R., Hardy-Poincaré inequalities with boundary singularities. Prépublication Département de Mathématique Université Catholique de Louvain-La-Neuve 364 (2010), http://www.uclouvain.be/38324.html.
[11] Fall M. M., Musina R., Sharp nonexistence results for a linear elliptic inequality involving Hardy and Leray potentials. Prerint SISSA (2010). Ref. 31/2010/M.
[12] Filippas S., Maz'ya V. and Tertikas A., Critical Hardy-Sobolev inequalities. Journal de Mathématiques Pures et Appliqués Volume 87, Issue 1, 2007, 37-56.
[13] Gazzola F., Grunau H. C., Mitidieri E., Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc. 356, 2004, 2149-2168.
[14] Ghoussoub N., Kang X.S., Hardy-Sobolev critical elliptic equations with boundary singularities. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 6, 767-793.
[15] Opic B. and Kufner A., "Hardy-type Inequalities", Pitman Research Notes in Math., Vol. 219, Longman 1990.
[16] Gilbarg D. and Trudinger N.S., Elliptic partial differential equations of second order. $2^{\text {nd }}$ edition, Grundlehren 224, Springer, Berlin-Heidelberg-New York-Tokyo (1983).
[17] Lindqvist P., On the equation $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{p-2} u=0$, Proc. Amer. Math. Soc., 109(1) (1990), 157164. Addendum, ibiden, 116 (2) (1992), 583-584.
[18] Marcus M., Mizel V.J., and Pinchover Y., Transactions of the American Mathematical Socity. Volume 350, Number 8, August 1998, 3237-3255.
[19] Nazarov A. I., Hardy-Sobolev Inequalities in a cone, J. Math. Sciences, 132, (2006), (4), 419-427.
[20] Nazarov A.I., Dirichlet and Neumann problems to critical Emden-Fowler type equations. J Glob Optim (2008) 40, 289-303.
[21] Pinchover Y., Tintarev K., Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy's inequality. Indiana Univ. Math. J. 54 (2005), 1061-1074.
[22] Tidblom J., A geometrical version of Hardy's inequality for $\mathrm{W}^{1, p}(\Omega)$, Proc. Amer. Math. Soc. 132 (2004) 2265-2271.

[^0]: *Université Catholique de Louvain-La-Neuve, département de mathématique. Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgique. E-mail: mouhamed.fall@uclouvain.be, mouhamed.m.fall@gmail.com.

