A note on Hardy's inequalities with boundary singularities

Mouhamed Moustapha Fall *

Abstract. Let Ω be a smooth bounded domain in \mathbb{R}^N with $N \ge 1$. In this paper we study the Hardy-Poincaré inequalities with weight function singular at the boundary of Ω . In particular we give sufficient conditions so that the best constant is achieved.

Key Words: Hardy inequality, extremals, p-Laplacian.

1 Introduction

Let Ω be a domain in \mathbb{R}^N , $N \ge 1$, with $0 \in \partial \Omega$ and p > 1 a real number. In this note, we are interested in finding minima to the following quotient

(1.1)
$$\mu_{\lambda,p}(\Omega) := \inf_{u \in W_0^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla u|^p \, dx - \lambda \int_{\Omega} |u|^p \, dx}{\int_{\Omega} |x|^{-p} |u|^p \, dx}$$

in terms of $\lambda \in \mathbb{R}$ and Ω . If $\lambda = 0$, we have the Ω -Hardy constant

(1.2)
$$\mu_{0,p}(\Omega) = \inf_{u \in W_0^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla u|^p \, dx}{\int_{\Omega} |x|^{-p} |u|^p \, dx}$$

^{*}Université Catholique de Louvain-La-Neuve, département de mathématique. Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgique. E-mail: *mouhamed.fall@uclouvain.be*, *mouhamed.m.fall@gmail.com*.

which is the best constant in the Hardy inequality for maps supported by Ω . The existence of extremals for $\mu_{\lambda,2}(\Omega)$ was studied in [10] while for $\mu_{0,2}(\Omega)$, one can see for instance [6], [5], [21] and [19] for $\mu_{0,N}(\Omega)$.

Given a unit vector ν of \mathbb{R}^N , we consider the half-space $H := \{x \in \mathbb{R}^N : x \cdot \nu \ge 0\}$. For N = 1, the following Hardy inequality is well known

(1.3)
$$\left(\frac{p-1}{p}\right)^p \int_0^\infty t^{-p} |u|^p dt \le \int_0^\infty |u'|^p dt \quad \forall u \in W_0^{1,p}(0,\infty)$$

Moreover $\mu_{0,p}(H) = \left(\frac{p-1}{p}\right)^p$ is the *H*-Hardy constant and it is not achieved, see [15] for historical comments also.

For $N \ge 2$, it was recently proved by Nazarov [20] that the *H*-Hardy constant is not achieved and

(1.4)
$$\mu_{0,p}(H) := \inf_{V \in W_0^{1,p}(\mathbb{S}_+^{N-1})} \frac{\int_{\mathbb{S}_+^{N-1}} \left(\left(\frac{N-p}{p}\right)^2 |V|^2 + |\nabla_{\sigma} V|^2 \right)^{\frac{p}{2}} d\sigma}{\int_{\mathbb{S}_+^{N-1}} |V|^p d\sigma},$$

where \mathbb{S}^{N-1}_+ is an (N-1)-dimensional hemisphere. Notice that this problem always has a minimizer by the compact embedding $L^p(\mathbb{S}^{N-1}_+) \hookrightarrow W^{1,p}_0(\mathbb{S}^{N-1}_+)$. The quantity $\mu_{0,p}(H)$ is explicitly known only in some special cases. Indeed, $\mu_{0,2}(H) = \frac{N^2}{4}$ while for p = N then $\mu_{N,N}(H)$ is the first Dirichlet eigenvalue of the operator $-\operatorname{div}(|\nabla u|^{N-2}\nabla u)$ in $W^{1,N}_0(\mathbb{S}^{N-1}_+)$ with the standard metric.

Problem (1.1) carries some similarities with the questions studied by Brezis and Marcus in [2], where the weight is the inverse-square of the distance from the boundary of Ω and p = 2. We also deal with this problem in the present paper for all p > 1in Appendix A. We generalize here the existence result obtained by R.Musina and the author in [10] for any p > 1 and $N \ge 1$.

Theorem 1.1 Let p > 1 and Ω be a smooth bounded domain in \mathbb{R}^N , $N \ge 1$, with $0 \in \partial \Omega$. There exits $\lambda^*(p, \Omega) \in [-\infty, +\infty)$ such that

(1.5)
$$\mu_{\lambda,p}(\Omega) < \mu_{0,p}(H), \quad \forall \lambda > \lambda^*(p,\Omega).$$

The infinimum in (1.1) is attained for any $\lambda > \lambda^*(p, \Omega)$.

The existence of $\lambda^*(p, \Omega)$ comes from the fact that

$$\sup_{\lambda \in \mathbb{R}} \mu_{\lambda,p}(\Omega) = \mu_{0,p}(H)$$

see Lemma 2.2. Now observe that the mapping $\lambda \mapsto \mu_{\lambda,p}$ is non-increasing. Moreover, for bounded domains Ω , letting λ_1 be the first Dirichlet eigenvalue of the *p*-Laplace operator $-\operatorname{div}(|\nabla u|^{p-2}\nabla u)$ in $W_0^{1,p}(\Omega)$, it is plain that $\mu_{\lambda_1,p}(\Omega) = 0$. Then we define

$$\lambda^*(p,\Omega) := \inf\{\lambda \in \mathbb{R} : \mu_{\lambda,p}(\Omega) < \mu_{0,p}(H)\}$$

so that $\mu_{\lambda,p} < \mu_{0,p}(H)$ for all $\lambda > \lambda^*(p,\Omega)$. In particular $\lambda^*(p,\Omega) \leq \lambda_1$. On the other hand there are various bounded smooth domains Ω with $0 \in \partial\Omega$ such that $\lambda^*(p,\Omega) \in [-\infty,0)$, see Proposition 2.5 and Proposition 2.6. Furthermore if N = 1 then $\mu_{0,p}(\mathbb{R} \setminus \{0\}) = \left(\frac{p-1}{p}\right)^p = \mu_{0,p}(H)$ thus $\lambda^*(p,\Omega) \geq 0$.

It is obvious that if Ω is contained in a half-ball centered at the origin then $\mu_{0,p}(\Omega) = \mu_{0,p}(H)$ thus $\lambda^*(p,\Omega) \ge 0$ and in addition

$$\lambda^*(p,\Omega) = \inf_{u \in W_0^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla u|^p \, dx - \mu_{0,p}(H) \int_{\Omega} |x|^{-p} |u|^p \, dx}{\int_{\Omega} |u|^p \, dx}.$$

We have obtained the following result.

Theorem 1.2 If Ω is contained in a half-ball centered at the origin then there exists a constant c(N, p) > 0 such that

(1.6)
$$\lambda^*(p,\Omega) \ge \frac{c(N,p)}{diam(\Omega)^p}.$$

The constant c(N, p) appearing in (1.6) has the property that c(N, 2) is the first Dirichlet eigenvalue of $-\Delta$ in the unit disc of \mathbb{R}^2 . This type of estimates was first proved by Brezis-Vàzquez in [3] when $p = 2, N \ge 2$ and later on, extended to the case $1 by Gazzola-Grunau-Mitidieri in [13] when dealing with <math>\mu_{0,p}(\mathbb{R}^N \setminus \{0\}) := \left|\frac{N-p}{p}\right|^p$. More precisely they proved the existence of a positive constant C(N,p)such that for any open subset Ω of \mathbb{R}^N , there holds (1.7)

$$\int_{\Omega} |\nabla u|^p - \mu_{0,p} \left(\mathbb{R}^N \setminus \{0\} \right) \int_{\Omega} |x|^{-p} |u|^p \ge C(N,p) \left(\frac{\omega_N}{|\Omega|} \right)^{\frac{p}{N}} \int_{\Omega} |u|^p \quad \forall u \in W_0^{1,p}(\Omega),$$

where $|\Omega|$ is the measure of Ω and ω_N the measure of the unit ball of \mathbb{R}^N . The constant C(N, p) was explicitly given and C(N, 2) = c(N, 2) as was obtained in [3]. The main ingredients to prove (1.7) is the Schwarz symmetrization and a "dimension reduction" via the transformation $x \mapsto \frac{u}{\omega}$, where $\omega(x) = |x|^{\frac{p-N}{p}}$ satisfies

$$\operatorname{div}(|\nabla \omega|^{p-2} \nabla \omega) + \mu_{0,p} \left(\mathbb{R}^N \setminus \{0\} \right) |x|^{-p} \omega^{p-1} = 0 \quad \text{in } \mathbb{R}^N \setminus \{0\}.$$

For p = 2, the lower bound in (1.6) was obtained in [10] by a similar transformation and using the Poincaré inequality on \mathbb{S}^{N-1}_+ . However, in view of (1.4), such argument do not apply here when $p \neq 2$ and $p \neq N$. By analogy, to reduce the dimension, we will consider the mapping $x \mapsto \frac{u}{v}$, where $v(x) := |x|^{\frac{p-N}{p}} V\left(\frac{x}{|x|}\right)$ is a weak solution to the equation

$$\operatorname{div}(|\nabla v|^{p-2}\nabla v) + \mu_{0,p}(H) |x|^{-p} |v|^{p-2} v = 0 \quad \text{in } \mathcal{D}'(H)$$

whenever V is a minimizer of (1.4). Then exploiting the strict convexity of the mapping $a \mapsto |a|^p$, estimate (1.6), for $p \ge 2$, follows immediately while the case $p \in (1,2)$ carries further difficulties as it can be seen in Section 2.2.

The argument to prove the attainability of $\mu_{\lambda,p}(\Omega)$ is taken from de Valeriola-Willem [7]. It allows to show that, up to a subsequence, the gradient of the Palais-Smale sequences converges point-wise almost every where. Therefore an application of the Brezis-Lieb lemma with some simples arguments yields the existence of extremals.

2 Hardy inequality with one point singularity

Let \mathcal{C} be a proper cone in \mathbb{R}^N , $N \geq 2$ and put $\Sigma := \mathcal{C} \cap \mathbb{S}^{N-1}$. It was shown in [20] that the \mathcal{C} -Hardy constant is not achieved and it is given by

(2.1)
$$\mu_{0,p}(\mathcal{C}) = \inf_{V \in W_0^{1,p}(\Sigma)} \frac{\int_{\Sigma} \left(\left(\frac{N-p}{p} \right)^2 |V|^2 + |\nabla_{\sigma} V|^2 \right)^{\frac{p}{2}} d\sigma}{\int_{\Sigma} |V|^p d\sigma}.$$

Letting $V \in W_0^{1,p}(\Sigma)$ be the positive minimizer to this quotient then the function

(2.2)
$$v(x) := |x|^{\frac{p-N}{p}} V\left(\frac{x}{|x|}\right)$$

satisfies

(2.3)
$$\int_{\mathcal{C}} |\nabla v|^{p-2} \nabla v \cdot \nabla h = \mu_{0,p}(\mathcal{C}) \int_{\mathcal{C}} |x|^{-p} v^{p-1} h \quad \forall h \in C_c^1(\mathcal{C}).$$

Notice that $\mu_{0,2}(\mathcal{C}) = \left(\frac{N-2}{2}\right)^2 + \lambda_1(\Sigma)$, where $\lambda_1(\Sigma)$ is the first Dirichlet eigenfunction of the Laplace operator on Σ endowed with the standard metric on \mathbb{S}^{N-1} . This was obtained in [21], [19] and [10].

2.1 Existence

In this Section we show that the condition $\mu_{\lambda,p}(\Omega) < \mu_{0,p}(H)$ is sufficient to guaranty the existence of a minimizer for $\mu_{\lambda,p}(\Omega)$.

We emphasize that throughout this section, Ω can to be taken to be an open set satisfying the uniform sphere condition at $0 \in \partial \Omega$. Namely there are balls $B_+ \subset \Omega$ and $B_- \subset \mathbb{R}^N \setminus \Omega$ such that $\partial B_+ \cap \partial B_- = \{0\}$. This holds if $\partial \Omega$ is of class C^2 at 0, see [[16] 14.6 Appendix]. We start with the following approximate local Hardy inequality.

Lemma 2.1 Let Ω be a smooth domain in \mathbb{R}^N , $N \ge 1$, with $0 \in \partial \Omega$ and let p > 1. Then for any $\varepsilon > 0$ there exits $r_{\varepsilon} > 0$ such that

(2.4)
$$\mu_{0,p}(\Omega \cap B_{r_{\varepsilon}}(0)) \ge \mu_{0,p}(H) - \varepsilon,$$

where $B_r(0)$ is a ball of radius r centered at 0.

Proof. If N = 1 then (2.4) is an immediate consequence of (1.3). From now on we can assume that $N \ge 2$. We denote by $N_{\partial\Omega}$ the unit normal vector-field on $\partial\Omega$. Up to a rotation, we can assume that $N_{\partial\Omega}(0) = E_N$, so that the tangent plane of $\partial\Omega$ at 0 coincides with $\mathbb{R}^{N-1} = \text{span}\{E_1, \ldots, E_{N-1}\}$. Denote by $B_r^+ = \{y \in B_r(0) : y^N > 0\}$. For r > 0 small, we introduce the following system of coordinates centered at 0 (see [9]) via the mapping $F : B_r^+ \to \Omega$ given by

$$F(y) = \operatorname{Exp}_{0}(\tilde{y}) + y^{N} N_{\partial \Omega} \left(\operatorname{Exp}_{0}(\tilde{y}) \right),$$

where $\tilde{y} = (y^1, \ldots, y^{N-1})$ and $\tilde{y} \mapsto \operatorname{Exp}_0(\tilde{y}) \in \partial\Omega$ is the exponential mapping of $\partial\Omega$ endowed with the metric induced by \mathbb{R}^N . This coordinates induces a metric on \mathbb{R}^N given by $g_{ij}(y) = \langle \partial_i F(y), \partial_j F(y) \rangle$ for $i, j = 1, \ldots, N$. Let $u \in C_c^{\infty}(F(B_r^+))$ and put v(y) = u(F(y)) then (2.5)

$$\int_{F(B_r^+)}^{(2.5)} |\nabla u|^p \, dx = \int_{B_r^+} |\nabla v|_g^p \sqrt{|g|} \, dy, \quad \int_{F(B_r^+)} |x|^{-p} |u|^p \, dx = \int_{B_r^+} |F(y)|^{-p} |v|^p \sqrt{|g|} \, dy,$$

with |g| stands for the determinant of the g while $|\nabla v|_g^p = g(\nabla v, \nabla v)^{\frac{p}{2}}$. Since $|F(y)| = |y| + O(|y|^2)$ and $g_{ij}(y) = \delta_{ij} + O(|y|)$, we infer that

$$\frac{\int_{B_r^+} |\nabla v|_g^p \sqrt{|g|} \, dy}{\int_{B_r^+} |F(y)|^{-p} |v|^p \sqrt{|g|} \, dy} \ge (1 - Cr) \frac{\int_{B_r^+} |\nabla v|^p \, dy}{\int_{B_r^+} |y|^{-p} |v|^p \, dy}$$

for some constant C > 0 depending only on Ω and p. Furthermore since $\mu_{0,p}(B_r^+) \ge \mu_{0,p}(H)$, using (2.5) we conclude that

$$\mu_{0,p}(F(B_r^+)) \ge (1 - Cr)\mu_{0,p}(H).$$

We are in position to prove (1.5) in the following

Lemma 2.2 Let Ω be a smooth domain in \mathbb{R}^N , $N \ge 1$, with $0 \in \partial \Omega$ and let p > 1. Then there exists $\lambda^*(p, \Omega) \in [-\infty, +\infty)$ such that

$$\mu_{\lambda,p}(\Omega) < \mu_{0,p}(H) \quad \forall \lambda > \lambda^*(p,\Omega).$$

Proof. We first show that

(2.6)
$$\sup_{\lambda \in \mathbb{R}} \mu_{\lambda,p}(\Omega) = \mu_{0,p}(H).$$

Step 1: We claim that $\sup_{\lambda \in \mathbb{R}} \mu_{\lambda,p}(\Omega) \ge \mu_{0,p}(H)$. For r > 0 small, we let $\psi \in C^{\infty}(B_r(0))$ with $0 \le \psi \le 1$, $\psi \equiv 0$ in $\mathbb{R}^N \setminus B_{\frac{r}{2}}(0)$ and $\psi \equiv 1$ in $B_{\frac{r}{4}}(0)$. For a fixed $\varepsilon > 0$ small, there holds

$$\begin{split} \int_{\Omega} |x|^{-p} |u|^p &= \int_{\Omega} |x|^{-p} |\psi u + (1-\psi)u|^p \\ &\leq (1+\varepsilon) \int_{\Omega} |x|^{-p} |\psi u|^p + c(\varepsilon) \int_{\Omega} |x|^{-p} (1-\psi)^p |u|^p \\ &\leq (1+\varepsilon) \int_{\Omega} |x|^{-p} |\psi u|^p + c(\varepsilon) \int_{\Omega} |u|^p. \end{split}$$

Now by (2.4)

$$(\mu_{0,p}(H) - \varepsilon) \int_{\Omega} |x|^{-p} |\psi u|^{p} \le \int_{\Omega} |\nabla(\psi u)|^{p}$$

and hence

(2.7)
$$(\mu_{0,p}(H) - \varepsilon) \int_{\Omega} |x|^{-p} |u|^p \le (1 + \varepsilon) \int_{\Omega} |\nabla(\psi u)|^p + c(\varepsilon) \int_{\Omega} |u|^p.$$

Since $|\nabla(\psi u)|^p \leq (\psi |\nabla u| + |u| |\nabla \psi|)^p$ we deduce that

$$|\nabla(\psi u)|^p \le (1+\varepsilon)\psi^p |\nabla u|^p + c|u|^p |\nabla \psi|^p \le (1+\varepsilon)|\nabla u|^p + c|u|^p.$$

Using (2.7), we conclude that

(2.8)
$$(\mu_{0,p}(H) - \varepsilon) \int_{\Omega} |x|^{-p} |u|^p \le (1 + \varepsilon)^2 \int_{\Omega} |\nabla u|^p + c(\varepsilon) \int_{\Omega} |u|^p.$$

This implies that $\mu_{0,p}(H) \leq \sup_{\lambda \in \mathbb{R}} \mu_{\lambda,p}(\Omega)$ and the claim follows. **Step 2**: We claim that $\sup_{\lambda \in \mathbb{R}} \mu_{\lambda,p}(\Omega) \leq \mu_{0,p}(H)$.

Denote by ν the unit interior normal of $\partial\Omega$. For $\delta \geq 0$ we consider the cone

$$\mathcal{C}^{\delta}_{+} := \left\{ x \in \mathbb{R}^{N} \mid x \cdot \nu > \delta |x| \right\}$$

and put $\Sigma_{\delta} = \mathcal{C}^{\delta}_{+} \cap \mathbb{S}^{N-1}$. For every $\eta > 0$, let $V \in C^{\infty}_{c}(\Sigma_{0})$ such that

$$\frac{\int_{\Sigma_0} \left(\left(\frac{N-p}{p}\right)^2 |V|^2 + |\nabla_{\sigma} V|^2 \right)^{\frac{p}{2}} d\sigma}{\int_{\Sigma_0} |V|^p d\sigma} \le \mu_{0,p}(H) + \eta.$$

On the other hand, there exists $\delta > 0$ small such that $supp V \subset \Sigma_{\delta}$. From this we conclude that

(2.9)
$$\mu_{0,p}(H) \le \mu_{0,p}(\mathcal{C}_+^{\delta}) \le \mu_{0,p}(H) + \eta.$$

Since $\partial\Omega$ is smooth at 0, for every $\delta > 0$, there exists $r_{\delta} > 0$ such that $\mathcal{C}^{\delta}_{+} \cap B_{r}(0) \subset \Omega$ for all $r \in (0, r_{\delta})$. Clearly by scale invariance, $\mu_{0,p}(\mathcal{C}^{\delta}_{+} \cap B_{r}(0)) = \mu_{0,p}(\mathcal{C}^{\delta}_{+})$. For $\varepsilon > 0$, we let $\phi \in W_{0}^{1,p}(\mathcal{C}^{\delta}_{+} \cap B_{r}(0))$ such that

$$\frac{\int_{\mathcal{C}^{\delta}_{+}\cap B_{r}(0)} |\nabla\phi|^{p} dx}{\int_{\mathcal{C}^{\delta}_{+}\cap B_{r}(0)} |x|^{-p} |\phi|^{p} dx} \leq \mu_{0,p}(\mathcal{C}^{\delta}_{+}) + \varepsilon.$$

From this we deduce that

$$\mu_{\lambda,p}(\Omega) \leq \frac{\int_{\mathcal{C}^{\delta}_{+}\cap B_{r}(0)} |\nabla\phi|^{p} dx - \lambda \int_{\mathcal{C}^{\delta}_{+}\cap B_{r}(0)} |\phi|^{p} dx}{\int_{\mathcal{C}^{\delta}_{+}\cap B_{r}(0)} |x|^{-p} |\phi|^{p} dx}$$
$$\leq \mu_{0}(\mathcal{C}^{\delta}_{+}) + \varepsilon + |\lambda| \frac{\int_{\mathcal{C}^{\delta}_{+}\cap B_{r}(0)} |\phi|^{p} dx}{\int_{\mathcal{C}^{\delta}_{+}\cap B_{r}(0)} |x|^{-p} |\phi|^{p} dx}.$$

Since $\int_{\mathcal{C}^{\delta}_{+}\cap B_{r}(0)} |x|^{-p} |\phi|^{p} dx \ge r^{-p} \int_{\mathcal{C}^{\delta}_{+}\cap B_{r}(0)} |\phi|^{p} dx$, we get $\mu_{\lambda,p}(\Omega) \le \mu_{0,p}(\mathcal{C}^{\delta}_{+}) + \varepsilon + r^{p} |\lambda|.$

The claim follows immediately by (2.9). Therefore (2.6) is proved. Finally as the map $\lambda \mapsto \mu_{\lambda,p}(\Omega)$ is non increasing while $\mu_{\lambda_1,p}(\Omega) = 0 < \mu_{0,p}(H)$, we can set

$$\lambda^*(p,\Omega) := \inf\{\lambda \in \mathbb{R} : \mu_{\lambda,p}(\Omega) < \mu_{0,p}(H)\}$$

so that $\lambda^*(p,\Omega) < \mu_{0,p}(H)$ for any $\lambda > \lambda^*(p,\Omega)$.

Remark 2.3 Observe that the proof of Lemma 2.2 highlights that

$$\lim_{r \to 0} \mu_{0,p}(\Omega \cap B_r(0)) = \mu_{0,p}(H) = \lim_{\lambda \to -\infty} \mu_{\lambda,p}(\Omega).$$

Proof of Theorem 1.1

Let $\lambda > \lambda^*(p,\Omega)$ so that $\mu_{\lambda,p}(\Omega) < \mu_{0,p}(H)$. We define the mappings F, G:

 $W_0^{1,p}(\Omega) \to \mathbb{R}$ by

$$F(u) = \int_{\Omega} |\nabla u|^p - \lambda \int_{\Omega} |u|^p$$

and

$$G(u) = \int_{\Omega} |x|^p |u|^p.$$

By Ekeland variational principal, there is a minimizing sequence $u_n \in W_0^{1,p}(\Omega)$ normalized so that

$$G(u_n) = 1, \quad \forall n \in \mathbb{N}$$

and with the properties that

$$F(u_n) \to \mu_{\lambda,p}(\Omega),$$

(2.10)
$$J(u_n) = F'(u_n) - \mu_{\lambda,p}(\Omega)G'(u_n) \to 0 \text{ in } (W_0^{1,p}(\Omega))'.$$

Up to a subsequence, we can assume that there exists $u \in W_0^{1,p}(\Omega)$ such that

(2.11)
$$\nabla u_n \rightharpoonup \nabla u \text{ in } L^p(\Omega),$$

 $u_n \to u$ in $L^p(\Omega)$ and $u_n \to u$ a.e. in Ω . Moreover by (2.8), we may assume that $|x|^{-1}u_n \rightharpoonup |x|^{-1}u$ in $L^p(\Omega)$. We set $\theta_n = u_n - u$ and

$$T(s) = \begin{cases} s & \text{if } |s| \le 1\\ \frac{s}{|s|} & \text{if } |s| > 1. \end{cases}$$

It follows that for every $r\geq 1$

(2.12)
$$\int_{\Omega} |T(\theta_n)|^r \to 0.$$

Moreover notice that

$$\int_{\Omega} \left(|\nabla u_n|^{p-2} \nabla u_n - |\nabla u|^{p-2} \nabla u \right) \cdot \nabla T(\theta_n) = \langle J(u_n), T(\theta_n) \rangle + \mu_{\lambda,p}(\Omega) \int_{\Omega} |x|^{-p} |u|_n^{p-2} u_n T(\theta_n) + \lambda \int_{\Omega} |u|_n^{p-2} u_n T(\theta_n) - \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla T(\theta_n).$$

Therefore by (2.10), (2.11) and (2.12) we infer that

$$\int_{\Omega} \left(|\nabla u_n|^{p-2} \nabla u_n - |\nabla u|^{p-2} \nabla u \right) \cdot \nabla T(\theta_n) \to 0.$$

Consequently by [7]-Theorem 1.1,

(2.13)
$$\lim_{n \to \infty} \left(\int_{\Omega} |\nabla u_n|^p - \int_{\Omega} |\nabla \theta_n|^p \right) = \int_{\Omega} |\nabla u|^p.$$

By Brezis-Lieb Lemma [4]

(2.14)
$$1 - \lim_{n \to \infty} \int_{\Omega} |x|^{-p} |\theta_n|^p = \int_{\Omega} |x|^{-p} |u|^p.$$

Fix $\varepsilon > 0$ small. By (2.8) and Rellich, there exists λ_{ε} such that

$$(\mu_{0,p}(H) - \varepsilon) \int_{\Omega} |x|^{-p} |\theta_n|^p \le \int_{\Omega} |\nabla \theta_n|^p - \lambda_{\varepsilon} \int_{\Omega} |\theta_n|^p = \int_{\Omega} |\nabla \theta_n|^p + o(1).$$

Using this together with (2.13) and (2.14) we get

$$\begin{split} \mu_{\lambda,p}(\Omega) \int_{\Omega} |x|^{-p} |u|^p &\leq \int_{\Omega} |\nabla u|^p - \lambda \int_{\Omega} |u|^p \leq \int_{\Omega} |\nabla u_n|^p - \int_{\Omega} |\nabla \theta_n|^p - \lambda \int_{\Omega} |u_n|^p + o(1) \\ &\leq F(u_n) - (\mu_{0,p}(H) - \varepsilon) \int_{\Omega} |x|^{-p} |\theta_n|^p + o(1) \\ &\leq \mu_{\lambda,p}(\Omega) - (\mu_{0,p}(H) - \varepsilon) \left(1 - \int_{\Omega} |x|^{-p} |u|^p\right) + o(1) \\ &\leq \mu_{\lambda,p}(\Omega) - \mu_{0,p}(H) + \varepsilon + (\mu_{0,p}(H) - \varepsilon) \int_{\Omega} |x|^{-p} |u|^p + o(1). \end{split}$$

Send $n \to \infty$ and then $\varepsilon \to 0$ to get

$$(\mu_{\lambda,p}(\Omega) - \mu_{0,p}(H)) \int_{\Omega} |x|^{-p} |u|^p \le \mu_{\lambda,p}(\Omega) - \mu_{0,p}(H)$$

Hence $\int_{\Omega} |x|^{-p} |u|^p \ge 1$ because $\mu_{\lambda,p}(\Omega) - \mu_{0,p}(H) < 0$ and the proof is complete. \Box

As a consequence of the existence theorem, we have

Corollary 2.4 Let Ω be a smooth bounded domain of \mathbb{R}^N , $N \geq 2$, with $0 \in \partial \Omega$. Then

$$\mu_{0,p}\left(\mathbb{R}^N\setminus\{0\}\right) = \left|\frac{N-p}{p}\right|^p < \mu_{0,p}(\Omega) \le \mu_{0,p}(H).$$

Proof. By (2.6) $0 < \mu_{0,p}(\Omega) \leq \mu_{0,p}(H)$. If the strict inequality holds, then there exists a positive minimizer $u \in W_0^{1,p}(\Omega)$ for $\mu_{0,p}(\Omega)$ by Theorem 1.1. But then $\mu_{0,p}(\mathbb{R}^N \setminus \{0\}) < \mu_{0,p}(\Omega)$, because otherwise a null extension of u outside Ω would achieve the Hardy constant in $\mathbb{R}^N \setminus \{0\}$ which is not possible.

As mentioned earlier, we shall show that there are smooth bounded domains in \mathbb{R}^N such that $\lambda^*(p,\Omega) \in [-\infty,0)$. These domains might be taken to be convex or even flat at 0. For that we let $\nu \in \mathbb{S}^{N-1}$ and $\delta, r, R > 0$. We consider the sector

(2.15)
$$\mathcal{C}_{r,R}^{\delta} := \left\{ x \in \mathbb{R}^N \mid x \cdot \nu > -\delta |x| \ , r < |x| < R \right\}.$$

Proposition 2.5 Let $N \ge 2$ and p > 1. Then for all $\delta \in (0, 1)$, there exist r, R > 0 such that if a domain Ω contains $\mathcal{C}_{r,R}^{\delta}$ then $\mu_{0,p}(\Omega) < \mu_{0,p}(H)$.

Proof. Consider the cone

$$\mathcal{C}^{\delta} := \left\{ x \in \mathbb{R}^N \mid x \cdot \nu > -\delta |x| \right\}$$

Notice that by Harnack inequality $\mu(\mathcal{C}^{\delta}) < \mu(\mathcal{C}^{\delta'})$ for any $0 \leq \delta' < \delta < 1$. Thus for any $\delta \in (0, 1)$, we can find $u \in C_c^{\infty}(\mathcal{C}^{\delta})$ such that

$$\frac{\int_{\mathcal{C}^{\delta}} |\nabla u|^p}{\int_{\mathcal{C}^{\delta}} |x|^{-p} |u|^p} < \mu_{0,p}(H)$$

Hence we choose r, R > 0 so that $supp \ u \subset \mathcal{C}_{r,R}^{\delta}$.

By Corollary 2.4, starting from exterior domains, one can also build various example of (possibly annular) domains for which $\lambda^*(p,\Omega) < 0$. The following argument is taken in [Ghoussoub-Kang [14] Proposition 2.4]. If $U \subset \mathbb{R}^N$, $N \ge 2$, is a smooth exterior domain (the complement of a smooth bounded domain) with $0 \in \partial U$ then by scale invariance $\mu_{0,p}(U) = \mu_{0,p}(\mathbb{R}^N \setminus \{0\})$. We let $B_r(0)$ a ball of radius r centered at the 0 and define $\Omega_r := B_r(0) \cap U$ then clearly the map $r \mapsto \mu(\Omega_r)$ is decreasing with

(2.16)
$$\mu_{0,p}\left(\mathbb{R}^N \setminus \{0\}\right) = \inf_{r>0} \mu_{0,p}(\Omega_r) \quad \text{and} \quad \mu_{0,p}(H) = \sup_{r>0} \mu_{0,p}(\Omega_r).$$

We have the following result for which the proof is similar to the one given in [14] by Corollary 2.4 and Harnack inequality.

Proposition 2.6 There exists $r_0 > 0$ such that the mapping $r \mapsto \mu_{0,p}(\Omega_r)$ is leftcontinuous and strictly decreasing on $(r_0, +\infty)$. In particular

$$\mu_{0,p}(\mathbb{R}^N \setminus \{0\}) < \mu_{0,p}(\Omega_r) < \mu_{0,p}(H), \quad \forall r \in (r_0, +\infty).$$

2.2Remainder term

We know that for domains Ω contained in a half-ball $\lambda^*(p,\Omega) \geq 0$. Our aim in this section is to obtain positive lower bound for $\lambda^*(p,\Omega)$ by providing a remainder term for Hard's inequality in these domains. In [13], Gazzola-Grunau-Mitidieri proved the following improved Hardy inequality for 1 :

(2.17)
$$\int_{\Omega} |\nabla u|^p - \mu_{0,p} \left(\mathbb{R}^N \setminus \{0\} \right) \int_{\Omega} |x|^{-p} |u|^p \ge C(N,p) \left(\frac{\omega_N}{|\Omega|} \right)^{\frac{p}{N}} \int_{\Omega} |u|^p ,$$

that holds for any bonded domain Ω of \mathbb{R}^N and $u \in W_0^{1,p}(\Omega)$. Here the constant C(N,p) > 0 is explicitly given while C(N,2) is the first Dirichlet eigenvalue of $-\Delta$ of the unit disc in \mathbb{R}^2 .

We shall show that such type of inequality holds in the case where the singularity is placed at the boundary of the domain. To this end, we will use the function $v(x) := |x|^{\frac{p-N}{p}} V\left(\frac{x}{|x|}\right)$ defined in (2.2) to "reduce the dimension".

Throughout this section, we assume that $N \ge 2$ since the case N = 1 was already proved by Tibodolm [22] Theorem 1.1. Indeed, he showed that

$$\int_0^1 |u'(r)|^p dr - \mu_{0,p}(H) \int_0^1 r^{-p} |u(r)|^p dr \ge (p-1)2^p \int_0^1 |u(r)|^p dr, \quad \forall u \in W_0^{1,p}(0,1).$$

We start with conic domains

We start with conic domains

$$\mathcal{C}_{\Sigma} = \{ x = r\sigma \in \mathbb{R}^N \mid r \in (0,1), \, \sigma \in \Sigma \},\$$

where Σ is a domain properly contained in \mathbb{S}^{N-1} and having a Lipschitz boundary. We will denote by V the positive minimizer of (2.1) in Σ while $v(x) := |x|^{\frac{p-N}{p}} V\left(\frac{x}{|x|}\right)$ satisfies (2.3) in the infinite cone $\{x = r\sigma \in \mathbb{R}^N \mid r \in (0, +\infty), \sigma \in \Sigma\}$. Finally we remember that by Harnack inequality $\frac{1}{v} \in L^{\infty}_{loc}(\mathcal{C}_{\Sigma})$.

Recall the following inequalities (see [17] Lemma 4.2) which will be useful in the remaining of the paper. Let $p \in [2, \infty)$ then for any $a, b \in \mathbb{R}^N$

(2.18)
$$|a+b|^{p} \ge |a|^{p} + \frac{1}{2^{p-1}-1}|b|^{p} + p|a|^{p-2}a \cdot b.$$

If $p \in (1,2)$ then for any $a, b \in \mathbb{R}^N$

(2.19)
$$|a+b|^{p} \ge |a|^{p} + c(p) \frac{|b|^{2}}{(|a|+|b|)^{2-p}} + p|a|^{p-2}a \cdot b.$$

We first make the following observation.

Lemma 2.7 Let $u \in C_c^{\infty}(\mathcal{C}_{\Sigma})$, $u \ge 0$. Set $\psi = \frac{u}{v}$ then If $p \ge 2$

(2.20)
$$\int_{\mathcal{C}_{\Sigma}} |\nabla u|^p - \mu_{0,p}(\mathcal{C}_{\Sigma}) \int_{\mathcal{C}_{\Sigma}} |x|^{-p} |u|^p \ge \frac{1}{2^{p-1}-1} \int_{\mathcal{C}_{\Sigma}} |v\nabla\psi|^p,$$

If 1

(2.21)
$$\int_{\mathcal{C}_{\Sigma}} |\nabla u|^p - \mu_{0,p}(\mathcal{C}_{\Sigma}) \int_{\mathcal{C}_{\Sigma}} |x|^{-p} |u|^p \ge c(p) \int_{\mathcal{C}_{\Sigma}} \frac{|v\nabla\psi|^2}{\left(|v\nabla\psi| + |\psi\nabla v|\right)^{2-p}},$$

Proof. We prove only the case $p \ge 2$ as the case $p \in (1,2)$ goes similarly. Notice that $\nabla u = v \nabla \psi + \psi \nabla v$ then we use the inequality (2.18) with $a = v \nabla \psi$ and $b = \psi \nabla v$ to get

$$\int_{\mathcal{C}_{\Sigma}} |\nabla u|^p \ge \int_{\mathcal{C}_{\Sigma}} |\psi \nabla v|^p + p \int_{\mathcal{C}_{\Sigma}} |\psi \nabla v|^{p-2} \psi \nabla v \cdot (v \nabla \psi) + \frac{1}{2^{p-1} - 1} \int_{\mathcal{C}_{\Sigma}} |v \nabla \psi|^p.$$

It is plain that

$$p|\psi\nabla v|^{p-2}\psi\nabla v\cdot(v\nabla\psi) = |\nabla v|^{p-2}\nabla v\cdot(v\nabla\psi^p) = |\nabla v|^{p-2}\nabla v\cdot\nabla(v\psi^p) - |\psi\nabla v|^p.$$

Inserting this in the first inequality and using (2.3) we deduce that

$$\int_{\mathcal{C}_{\Sigma}} |\nabla u|^{p} \geq \frac{1}{2^{p-1}-1} \int_{\mathcal{C}_{\Sigma}} |v\nabla\psi|^{p} + \int_{\mathcal{C}_{\Sigma}} |\nabla v|^{p-2} \nabla v \cdot \nabla (v\psi^{p})$$

$$\geq \frac{1}{2^{p-1}-1} \int_{\mathcal{C}_{\Sigma}} |v\nabla\psi|^{p} + \mu_{0,p}(\mathcal{C}_{\Sigma}) \int_{\mathcal{C}_{\Sigma}} |x|^{-p} u^{p}.$$

The improvement in the case $p\geq 2$ is an immediate consequence of the above lemma.

Lemma 2.8 For all $p \ge 2$

$$\int_{\mathcal{C}_{\Sigma}} |\nabla u|^p - \mu_{0,p}(\mathcal{C}_{\Sigma}) \int_{\mathcal{C}_{\Sigma}} |x|^{-p} |u|^p \ge \frac{\Lambda_p}{2^{p-1} - 1} \int_{\mathcal{C}_{\Sigma}} |u|^p, \quad \forall u \in C_c^{\infty}(\mathcal{C}_{\Sigma}),$$

where $\Lambda_p := \inf_{f \in C_c^1(0,1)} \frac{\int_0^1 r^{p-1} |f'|^p dr}{\int_0^1 r^{p-1} |f|^p dr}.$

Proof. Since $|\nabla|u|| \leq |\nabla u|$, we may assume that $u \geq 0$. We only need to estimate the right hand side in (2.20). We use polar coordinates $x \mapsto (|x|, \frac{x}{|x|}) = (r, \sigma)$ and denote by ∂_r the radial direction. Then using (2.18),

$$\begin{split} \int_{\mathcal{C}_{\Sigma}} |v\nabla\psi|^p &= \int_{\Sigma} \int_0^1 r^{p-1} V^p |\psi_r \partial_r + \nabla_{\sigma}\psi|^p \\ &\geq \int_{\Sigma} V^p \int_0^1 r^{p-1} |\psi_r|^p \ge \Lambda_p \int_{\Sigma} V^p \int_0^1 r^{p-1} |\psi|^p \\ &\ge \Lambda_p \int_{\Sigma} \int_0^1 u^p r^{N-1} = \Lambda_p \int_{\mathcal{C}_{\Sigma}} |u|^p. \end{split}$$

The lemma readily follows from (2.20).

It is easy to see that by integration by parts $\Lambda_p \geq 1$ while for integer $p \in \mathbb{N}$ then Λ_p corresponds to the first Dirichlet eigenvalue of $-\Delta$ in the unit ball of \mathbb{R}^p . We now turn to the case $p \in (1, 2)$ which carries more difficulties. We shall need the following intermediate result.

Lemma 2.9 Let $p \in (1,2)$ and $u \in C_c^{\infty}(\mathcal{C}_{\Sigma})$, $u \ge 0$. Setting $\psi = \frac{u}{v}$ then there exists a constant $c = c(p, \Sigma) > 0$ such that

$$c \int_{\mathcal{C}_{\Sigma}} r |\psi \nabla v|^p \le \int_{\mathcal{C}_{\Sigma}} r^{(2-p)/2} |v \nabla \psi|^p.$$

Proof. Let $\tilde{\psi} := r^{\frac{1}{p}}\psi$ and use $\tilde{\psi}^p v$ as a test function in the weak equation (2.3). Then by Hölder

$$\begin{split} \int_{\mathcal{C}_{\Sigma}} |\tilde{\psi}\nabla v|^{p} &\leq \mu_{0,p}(\mathcal{C}_{\Sigma}) \int_{\mathcal{C}_{\Sigma}} r^{-p} v^{p} \tilde{\psi}^{p} + p \int_{\mathcal{C}_{\Sigma}} |\tilde{\psi}\nabla v|^{p-1} |v\nabla\tilde{\psi}| \\ &\leq \mu_{0,p}(\mathcal{C}_{\Sigma}) \int_{\mathcal{C}_{\Sigma}} r^{-p} v^{p} \tilde{\psi}^{p} + p \left(\int_{\mathcal{C}_{\Sigma}} |\tilde{\psi}\nabla v|^{p} \right)^{\frac{p-1}{p}} \left(\int_{\mathcal{C}_{\Sigma}} |v\nabla\tilde{\psi}|^{p} \right)^{\frac{1}{p}}. \end{split}$$

Therefore by Young's inequality, for $\varepsilon > 0$ small there exists a constant $C_{\varepsilon} > 0$ depending on p and Σ such that

$$(1 - \varepsilon c(p)) \int_{\mathcal{C}_{\Sigma}} |\tilde{\psi} \nabla v|^p \le C_{\varepsilon} \int_{\mathcal{C}_{\Sigma}} r^{-p} v^p \tilde{\psi}^p + C_{\varepsilon} \int_{\mathcal{C}_{\Sigma}} |v \nabla \tilde{\psi}|^p.$$

Recall that $\tilde{\psi} = r^{\frac{1}{p}}\psi$. Then since

$$|\nabla \tilde{\psi}|^p \le c(p) \left(r^{1-p} \psi^p + r |\nabla \psi|^p \right),$$

we conclude that there exists a constant $c = c(p, \Sigma)$ such that

(2.22)
$$c\int_{\mathcal{C}_{\Sigma}} r|\psi\nabla v|^{p} \leq \int_{\mathcal{C}_{\Sigma}} r^{1-p} v^{p} \psi^{p} + \int_{\mathcal{C}_{\Sigma}} r^{(2-p)/p} |v\nabla\psi|^{p},$$

we have used the fact that $r \leq r^{(2-p)/p}$ for all $r \in (0,1)$. To estimate the first term in the right hand side in (2.22) we will use the 2-dimensional Hardy inequality. Through the polar coordinates $x \mapsto (r, \sigma)$

$$\begin{split} \int_{\mathcal{C}_{\Sigma}} r^{1-p} v^p \psi^p &= \int_{\Sigma} V^p \int_0^1 r^{p-1} \left(\frac{\psi}{r}\right)^p r \\ &\leq \int_{\Sigma} V^p \int_0^1 \left(\frac{\psi}{r}\right)^p r \\ &\leq \left|\frac{p}{p-2}\right|^{-p} \int_{\Sigma} V^p \int_0^1 |\psi_r|^p r \\ &= \left|\frac{p}{p-2}\right|^{-p} \int_0^1 \int_{\Sigma} V^p v^{-p} |v \nabla \psi|^p r = \left|\frac{p}{p-2}\right|^{-p} \int_0^1 \int_{\Sigma} r^{N-p+1} |v \nabla \psi|^p. \end{split}$$

To conclude, we notice that $r^{N-p+1} = r^{N-\frac{p}{2}}r^{(2-p)/p} \leq r^{N-1}r^{(2-p)/p}$ as $p \in (1,2)$ so that

$$\int_{\mathcal{C}_{\Sigma}} r^{1-p} v^p \psi^p \le \left| \frac{p}{p-2} \right|^{-p} \int_{\mathcal{C}_{\Sigma}} r^{(2-p)/p} |v \nabla \psi|^p.$$

Inserting this in (2.22) the lemma follows immediately.

We are now in position to prove the improved Hardy inequality for $p \in (1, 2)$.

Lemma 2.10 Let $p \in (1,2)$. Then there exists a constant $c = c(p, \Sigma) > 0$ such that

$$\int_{\mathcal{C}_{\Sigma}} |\nabla u|^p - \mu_{0,p}(\mathcal{C}_{\Sigma}) \int_{\mathcal{C}_{\Sigma}} |x|^{-p} |u|^p \ge c \int_{\mathcal{C}_{\Sigma}} |u|^p, \quad \forall u \in C_c^{\infty}(\mathcal{C}_{\Sigma}).$$

Proof. Here also we may assume that $u \ge 0$. We need to estimate the right hand

side of (2.21). Let r = |x| then by Hölder and Lemma 2.9, we have

$$\begin{split} \int_{\mathcal{C}_{\Sigma}} r^{\frac{2-p}{2}} |v\nabla\psi|^{p} &= \int_{\mathcal{C}_{\Sigma}} \frac{|v\nabla\psi|^{2}}{\left(|v\nabla\psi| + |\psi\nabla v|\right)^{(2-p)p/2}} r^{\frac{2-p}{2}} \left(|v\nabla\psi| + |\psi\nabla v|\right)^{(2-p)p/2} \\ &\leq \left(\int_{\mathcal{C}_{\Sigma}} \frac{|v\nabla\psi|^{2}}{\left(|v\nabla\psi| + |\psi\nabla v|\right)^{2-p}}\right)^{p/2} \left(\int_{\mathcal{C}_{\Sigma}} r \left||v\nabla\psi| + |\psi\nabla v|\right|^{p}\right)^{(2-p)/2} \\ &\leq \left(\int_{\mathcal{C}_{\Sigma}} \frac{|v\nabla\psi|^{2}}{\left(|v\nabla\psi| + |\psi\nabla v|\right)^{2-p}}\right)^{p/2} \\ &\times \left(2^{p-1} \int_{\mathcal{C}_{\Sigma}} r |v\nabla\psi|^{p} + 2^{p-1} \int_{\mathcal{C}_{\Sigma}} r |\psi\nabla v|^{p}\right)^{(2-p)/2} \\ &\leq c \left(\int_{\mathcal{C}_{\Sigma}} \frac{|v\nabla\psi|^{2}}{\left(|v\nabla\psi| + |\psi\nabla v|\right)^{2-p}}\right)^{p/2} \left(\int_{\mathcal{C}_{\Sigma}} r^{\frac{2-p}{2}} |v\nabla\psi|^{p}\right)^{(2-p)/2}, \end{split}$$

where c a positive constant depending only on p and Σ and we have used once more the fact that $r \leq r^{(2-p)/p}$ for all $r \in (0,1)$. Consequently by (2.21), we deduce that

(2.23)
$$\int_{\mathcal{C}_{\Sigma}} |\nabla u|^p - \mu_{0,p}(\mathcal{C}_{\Sigma}) \int_{\mathcal{C}_{\Sigma}} |x|^{-p} |u|^p \ge c \int_{\mathcal{C}_{\Sigma}} r^{\frac{2-p}{2}} |v\nabla\psi|^p.$$

To proceed we estimate

$$\begin{split} \int_{\Sigma} \int_0^1 u^p r^{N-1} &= \int_{\Sigma} V^p \int_0^1 r^{p-1} |\psi|^p \le c(p) \int_{\Sigma} V^p \int_0^1 r |\psi_r|^p \\ &\le c(p) \int_{\Sigma} V^p \int_0^1 r^{\frac{p}{2}} |\psi_r|^p \\ &\le c(p) \int_{\mathcal{C}_{\Sigma}} r^{\frac{2-p}{2}} |v \nabla \psi|^p. \end{split}$$

The first inequality comes from the 2-dimensional embedding $W_0^{1,p} \subset L^{\frac{2p}{2-p}} \subset L^{\frac{p}{3-p}}$, one can see [[13] page 2155] for the proof. Putting this in (2.23) we conclude that there exists a positive constant $c = c(p, \Sigma)$ such that

$$\int_{\mathcal{C}_{\Sigma}} |\nabla u|^p - \mu_{0,p}(\mathcal{C}_{\Sigma}) \int_{\mathcal{C}_{\Sigma}} |x|^{-p} |u|^p \ge c \int_{\mathcal{C}_{\Sigma}} |u|^p$$

which was the purpose of the lemma.

The main result in this section is contained in the next theorem.

Theorem 2.11 Let Ω be a domain in \mathbb{R}^N with $0 \in \partial \Omega$. If Ω is contained in a half-ball centered at 0 then there exists a constant c(N,p) > 0 such that

$$\int_{\Omega} |\nabla u|^p - \mu_{0,p}(H) \int_{\Omega} |x|^{-p} |u|^p \ge \frac{c(N,p)}{diam(\Omega)^p} \int_{\Omega} |u|^p \qquad \forall u \in W_0^{1,p}(\Omega).$$

Proof. Let $R = \operatorname{diam}(\Omega)$ be the diameter of Ω . Then Ω is contained in a half ball B_R^+ of radius R centered at the origin. From Lemma 2.8 and Lemma 2.10 we infer that

$$\int_{B_{R}^{+}} |\nabla u|^{p} - \mu_{0,p}(H) \int_{B_{R}^{+}} |x|^{-p} |u|^{p} \ge \frac{c(N,p)}{R^{p}} \int_{B_{R}^{+}} |u|^{p} \quad \forall u \in C_{c}^{\infty}(\Omega)$$

by homogeneity. The theorem readily follows by density.

We do not know whether diam(Ω) might be replaced with $\omega_N |\Omega|^{\frac{1}{N}}$ as in [13] at least when Ω is convex and $p \geq 2$. There might exists also "logarithmic" improvement as was recently obtained in [11] inside cones and p = 2. One can see also the work of Barbatis-Filippas-Tertikas in [1] for domains containing the origin or when |x| is replaced by the distance to the boundary.

A Hardy's inequality

We denote by d the distance function of Ω :

$$d(x) := \inf\{|x - \sigma| : \sigma \in \partial\Omega\}.$$

In this section, we study the problem of finding minima to the following quotient

(A.1)
$$\nu_{\lambda,p}(\Omega) := \inf_{u \in W_0^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla u|^p \, dx - \lambda \int_{\Omega} |u|^p \, dx}{\int_{\Omega} d^{-p} |u|^p \, dx}$$

where p > 1 and $\lambda \in \mathbb{R}$ is a varying parameter. Existence of extremals to this problem was studied in [2] when p = 2 and in [18] with $\lambda = 0$. It is known (see for instance [18]) that $\nu_{0,p}(\Omega) \leq \mathbf{c}_p$ for any smooth bounded domain Ω while for convex domain Ω , the Hardy constant $\nu_{0,p}(\Omega)$ is not achieved and $\nu_{0,p}(\Omega) = \left(\frac{p-1}{p}\right)^p =: \mathbf{c}_p$. The main result in this section is contained in the following **Theorem A.1** Let Ω be a smooth bounded domain in \mathbb{R}^N and p > 1, there exits $\tilde{\lambda}(p,\Omega) \in [-\infty, +\infty)$ such that

(A.2)
$$\nu_{\lambda,p}(\Omega) < \left(\frac{p-1}{p}\right)^p, \quad \forall \lambda > \tilde{\lambda}(p,\Omega).$$

The infinimum in (A.1) is attained if $\lambda > \tilde{\lambda}(p, \Omega)$.

We start with the following result which is stronger than needed. It was proved in [2] for p = 2 and in [12] when $2 \le p < N$ as the authors were dealing with Hardy-Sobolev inequalities.

Lemma A.2 Let Ω be a smooth bounded domain in \mathbb{R}^N and $p \in (1, \infty)$. Then there exists $\beta = \beta(p, \Omega) > 0$ small such that

(A.3)
$$\int_{\Omega_{\beta}} |\nabla u|^{p} \ge c_{p} \int_{\Omega_{\beta}} d^{-p} |u|^{p} \quad \forall u \in H_{0}^{1}(\Omega),$$

where $\Omega_{\beta} := \{ x \in \Omega : d(x) < \beta \}.$

Proof. Since $|\nabla|u|| \leq |\nabla u|$, we may assume that $u \geq 0$. Let $u \in C_c^{\infty}(\Omega)$ and put $v = d^{\frac{1-p}{p}}u$. Using (2.18) and (2.19), we get

(A.4)
$$|\nabla u|^p - \mathbf{c}_p d^{-p} |u|^p \ge c(p) d^{p-1} |\nabla v|^p + \left| \frac{p-1}{p} \right|^{p-1} \nabla d \cdot \nabla (v^p) \quad \text{if } p \ge 2,$$

$$|\nabla u|^p - \mathbf{c}_p d^{-p} |u|^p \ge c(p) \frac{d|\nabla v|^2}{\left(\mathbf{c}_p^{\frac{1}{p}} |v| + d|\nabla v|\right)^{2-p}} + \left|\frac{p-1}{p}\right|^{p-1} \nabla d \cdot \nabla (v^p) \quad \text{if } p \in (1,2).$$

By integration by parts, we have

$$\int_{\Omega_{\beta}} \nabla d \cdot \nabla (v^p) = -\int_{\Omega_{\beta}} \Delta d |v|^p + \int_{\partial \Omega_{\beta}} |v|^p \ge -c \int_{\Omega_{\beta}} |v|^p + \int_{\partial \Omega_{\beta}} |v|^p,$$

for a positive constant depending only on Ω . Multiply the identity $\operatorname{div}(d\nabla d) = 1 + d\Delta d$ by v in integrate by parts to get

$$(1+o(1))\int_{\Omega_{\beta}}|v|^{p} = -p\int_{\Omega_{\beta}}d|v|^{p-1}\nabla d\cdot\nabla v + \int_{\partial\Omega_{\beta}}d|v|^{p} \le c(p)\int_{\Omega_{\beta}}d|v|^{p-1}|\nabla v| + \int_{\partial\Omega_{\beta}}d|v|^{p}$$

By Hölder and Young's inequalities

(A.6)
$$(1+o(1)-c\varepsilon)\int_{\Omega_{\beta}}|v|^{p} \leq c_{\varepsilon}\int_{\Omega_{\beta}}d^{p}|\nabla v|^{p} + \int_{\partial\Omega_{\beta}}d|v|^{p}.$$

Case $p \ge 2$. Using (A.6) we infer that

$$(1+o(1)-c\varepsilon)\int_{\Omega_{\beta}}|v|^{p}\leq c_{\varepsilon}\beta\int_{\Omega_{\beta}}d^{p-1}|\nabla v|^{p}+\beta\int_{\partial\Omega_{\beta}}|v|^{p}.$$

It follows from (A.4) that for $\varepsilon, \beta > 0$ small

$$\int_{\Omega_{\beta}} |\nabla u|^{p} - \mathbf{c}_{p} \int_{\Omega_{\beta}} d^{-p} |u|^{p} \ge c \left(\int_{\Omega_{\beta}} d^{p-1} |\nabla v|^{p} + \int_{\partial\Omega_{\beta}} |v|^{p} \right)$$

as desired.

Case $p \in (1, 2)$. By Hölder and Young's inequalities

$$\begin{split} \int_{\Omega_{\beta}} d^{p} |\nabla v|^{p} &= \int_{\Omega_{\beta}} \frac{d^{p} |\nabla v|^{p}}{\left(\mathbf{c}_{p}^{\frac{1}{p}} |v| + d |\nabla v|\right)^{\frac{p(2-p)}{2}}} \left(\mathbf{c}_{p}^{\frac{1}{p}} |v| + d |\nabla v|\right)^{\frac{p(2-p)}{2}} \\ &\leq c_{\varepsilon} \int_{\Omega_{\beta}} \frac{d^{2} |\nabla v|^{2}}{\left(\mathbf{c}_{p}^{\frac{1}{p}} |v| + d |\nabla v|\right)^{2-p}} + \varepsilon c \int_{\Omega_{\beta}} |v|^{p} + \varepsilon c \int_{\Omega_{\beta}} d^{p} |\nabla v|^{p} \end{split}$$

and thus

$$(1-c\varepsilon)\int_{\Omega_{\beta}}d^{p}|\nabla v|^{p} \leq c_{\varepsilon}\int_{\Omega_{\beta}}\frac{d^{2}|\nabla v|^{2}}{\left(\mathbf{c}_{p}^{\frac{1}{p}}|v|+d|\nabla v|\right)^{2-p}} + \varepsilon c\int_{\Omega_{\beta}}|v|^{p}.$$

Using this in (A.6) we obtain

$$(1+o(1)-c\varepsilon)\int_{\Omega_{\beta}}|v|^{p}\leq c\beta\int_{\Omega_{\beta}}\frac{d|\nabla v|^{2}}{\left(\mathbf{c}_{p}^{\frac{1}{p}}|v|+d|\nabla v|\right)^{2-p}}+c\beta\int_{\partial\Omega_{\beta}}|v|^{p}.$$

By (A.5), we conclude that for $\varepsilon, \beta > 0$ small

$$\int_{\Omega_{\beta}} |\nabla u|^{p} - \mathbf{c}_{p} \int_{\Omega_{\beta}} d^{-p} |u|^{p} \ge c \int_{\Omega_{\beta}} \frac{d|\nabla v|^{2}}{\left(\mathbf{c}_{p}^{\frac{1}{p}} |v| + d|\nabla v|\right)^{2-p}} + c \int_{\partial\Omega_{\beta}} |v|^{p}.$$

This ends the proof of the lemma.

Lemma A.3 Let Ω be a bounded domain of class C^2 in \mathbb{R}^N . Then there exists $\tilde{\lambda}(p,\Omega) \in [-\infty, +\infty)$ such that

$$\nu_{\lambda,p}(\Omega) < \boldsymbol{c}_p \quad \forall \lambda > \tilde{\lambda}(p,\Omega).$$

Proof. The proof will be carried out in 2 steps. **Step 1**: We claim that $\sup_{\lambda \in \mathbb{R}} \nu_{\lambda,p}(\Omega) \ge \mathbf{c}_p$. For $\beta > 0$ we define

$$\Omega_{\beta} := \{ x \in \Omega : d(x) < \beta \}.$$

Let $\psi \in C^{\infty}(\Omega_{\beta})$ with $0 \leq \psi \leq 1$, $\psi \equiv 0$ in $\mathbb{R}^{N} \setminus \Omega_{\frac{\beta}{2}}$ and $\psi \equiv 1$ in $\Omega_{\frac{\beta}{4}}$. For $\varepsilon > 0$ small, there holds

$$\begin{split} \int_{\Omega} d^{-p} |u|^p &= \int_{\Omega} d^{-p} |\psi u + (1-\psi)u|^p \\ &\leq (1+\varepsilon) \int_{\Omega} d^{-p} |\psi u|^p + C \int_{\Omega} d^{-p} (1-\psi)^p |u|^p \\ &\leq (1+\varepsilon) \int_{\Omega} d^{-p} |\psi u|^p + C \int_{\Omega} |u|^p. \end{split}$$

By (A.3), we infer that

$$\mathbf{c}_p \int_{\Omega} d^{-p} |\psi u|^p \le \int_{\Omega} |\nabla(\psi u)|^p$$

and hence

(A.7)
$$\mathbf{c}_p \int_{\Omega} d^{-p} |u|^p \le (1+\varepsilon) \int_{\Omega} |\nabla(\psi u)|^p + C \int_{\Omega} |u|^p.$$

Since $|\nabla(\psi u)|^p \leq (\psi |\nabla u| + |u| |\nabla \psi|)^p$ we deduce that

$$|\nabla(\psi u)|^p \le (1+\varepsilon)\psi^p |\nabla u|^p + C|u|^p |\nabla \psi|^p \le (1+\varepsilon)|\nabla u|^p + C|u|^p.$$

Using (A.7), we conclude that

$$\mathbf{c}_p \int_{\Omega} d^{-p} |u|^p \le (1+\varepsilon)^2 \int_{\Omega} |\nabla u|^p + C(\varepsilon,\beta) \int_{\Omega} |u|^p.$$

This means that $\mathbf{c}_p \leq \sup_{\lambda \in \mathbb{R}} \nu_{\lambda,p}(\Omega)$. **Step 2**: We claim that $\sup_{\lambda \in \mathbb{R}} \nu_{\lambda,p}(\Omega) \leq \mathbf{c}_p$. Let $\beta > 0$ then by (1.3) and scale invariance we have $\mu_{0,p}(0,\beta) = \mathbf{c}_p$. Hence for $\varepsilon > 0$ there exits a function $\phi \in W_0^{1,p}(0,\beta)$ such that

(A.8)
$$\mathbf{c}_p + \varepsilon \ge \frac{\int_0^\beta |\phi'|^p \, ds}{\int_0^\beta s^{-p} \phi^p \, ds}.$$

Letting $u(x) = \phi(d(x))$, there exists a positive constant C depending only on Ω such that

$$\int_{\Omega_{\beta}} |\nabla u|^{p} = \int_{0}^{\beta} \int_{\partial \Omega_{s}} |\phi'(s)|^{p} \, d\sigma_{s} \leq (1 + C\beta) \, |\partial \Omega| \int_{0}^{\beta} |\phi'(s)|^{p} \, ds.$$

Furthermore

$$\int_{\Omega_{\beta}} d^{-p} |u|^p = \int_0^{\beta} \int_{\partial\Omega_s} s^{-p} |\phi(s)|^p \, d\sigma_s \ge (1 - C\beta) \, |\partial\Omega| \int_0^{\beta} |\phi(s)|^p \, ds$$

By (A.8) we conclude that

$$\nu_{\lambda,p}(\Omega) \leq \frac{\int_{\Omega_{\beta}} |\nabla u|^p \, dx - \lambda \int_{\Omega_{\beta}} u^p \, dx}{\int_{\Omega_{\beta}} d^{-p} |u|^p \, dx} \leq (\mathbf{c}_p + \varepsilon) \frac{1 + C\beta}{1 - C\beta} + |\lambda| \frac{\int_{\Omega_{\beta}} |u|^p \, dx}{\int_{\Omega_{\beta}} d^{-p} |u|^p \, dx}.$$

Since $\int_{\Omega} d^{-p} |u|^2 dx \ge \beta^{-p} \int_{\Omega_{\beta}} |u|^p dx$, we get

$$\nu_{\lambda,p}(\Omega) \le (\mathbf{c}_p + \varepsilon) \frac{1 + C\beta}{1 - C\beta} + \beta^p |\lambda|,$$

sending β to 0 we get the desired result.

Clearly the proof of Theorem A.1 goes similarly as the one of Theorem 1.1 and we skip it.

It was shown in [2] that $\tilde{\lambda}(2,\Omega) \in \mathbb{R}$ and that $\nu_{\lambda,p}(\Omega)$ is not achieved for any $\lambda \geq \tilde{\lambda}(2,\Omega)$. On the other hand by [8], there are domains for which $\tilde{\lambda}(2,\Omega) < 0$, see also [18].

We point out that if Ω is convex then by [22] there exists a constant a(N, p) > 0(explicitly given) such that

$$\tilde{\lambda}(p,\Omega) \ge \frac{a(N,p)}{|\Omega|^{\frac{p}{N}}}.$$

We finish this section by showing that there are smooth bounded domains in \mathbb{R}^N such that $\tilde{\lambda}(p,\Omega) \in [-\infty,0)$. We let $U \subset \mathbb{R}^N$, $N \ge 2$ with $0 \in \partial U$ be an exterior domain and set $\Omega_r = B_r(0) \cap U$.

Proposition A.4 Assume that $p > \frac{N+1}{2}$ then there exists r > 0 such that $\nu_{0,p}(\Omega_r) < \left(\frac{p-1}{p}\right)^p$.

Proof. Clearly $\mu_{0,p}(\mathbb{R}^N \setminus \{0\}) = \left|\frac{N-p}{p}\right|^p < \left(\frac{p-1}{p}\right)^p$ provided $p > \frac{N+1}{2}$. Let $\varepsilon > 0$ such that $\left(\frac{p-1}{p}\right)^p > \left|\frac{N-p}{p}\right|^p + \varepsilon$ so by (2.16), there exits r > 0 such that

$$\mu_{0,p}(\Omega_r) < \left|\frac{N-p}{p}\right|^p + \varepsilon < \left(\frac{p-1}{p}\right)^p.$$

The conclusion readily follows since $\nu_{0,p}(\Omega_r) \leq \mu_{0,p}(\Omega_r)$ because $0 \in \partial \Omega_r$.

References

- [1] Barbatis G., Filippas S., Tertikas A., A unified approach to improved L^p Hardy inequalities with best constants. Trans. Amer. Math. Soc., 356, (2004), 2169-2196.
- [2] Brezis H. and Marcus M., Hardy's inequalities revisited. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 217-237.
- [3] Brezis H. and Vàzquez J. L., Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid 10 (1997), no. 2, 443-469.
- [4] Brezis H. and Lieb E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
- [5] Caldiroli P., Musina R., On a class of 2-dimensional singular elliptic problems. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 479-497.
- [6] Caldiroli P., Musina R., Stationary states for a two-dimensional singular Schrödinger equation. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 4-B (2001), 609-633.
- [7] de Valeriola S. and Willem M., On Some Quasilinear Critical Problems, Advanced Nonlinear Studies 9 (2009), 825-836.

- [8] Davies E. B., The Hardy constant, Quart. J. Math. Oxford (2) 46 (1995), 417-431.
- [9] Fall M. M., Area-minimizing regions with small volume in Riemannian manifolds with boundary. Pacific J. Math. 244 (2010), no. 2, 235-260.
- [10] Fall M. M., Musina R., Hardy-Poincaré inequalities with boundary singularities. Prépublication Département de Mathématique Université Catholique de Louvain-La-Neuve 364 (2010), http://www.uclouvain.be/38324.html.
- [11] Fall M. M., Musina R., Sharp nonexistence results for a linear elliptic inequality involving Hardy and Leray potentials. Prevint SISSA (2010). Ref. 31/2010/M.
- [12] Filippas S., Maz'ya V. and Tertikas A., Critical Hardy–Sobolev inequalities. Journal de Mathématiques Pures et Appliqués Volume 87, Issue 1, 2007, 37-56.
- [13] Gazzola F., Grunau H. C., Mitidieri E., Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc. 356, 2004, 2149-2168.
- [14] Ghoussoub N., Kang X.S., Hardy-Sobolev critical elliptic equations with boundary singularities. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 6, 767–793.
- [15] Opic B. and Kufner A., "Hardy-type Inequalities", Pitman Research Notes in Math., Vol. 219, Longman 1990.
- [16] Gilbarg D. and Trudinger N.S., Elliptic partial differential equations of second order. 2nd edition, Grundlehren 224, Springer, Berlin-Heidelberg-New York-Tokyo (1983).
- [17] Lindqvist P., On the equation $\operatorname{div}(|\nabla u|^{p-2}\nabla u) + \lambda |u|^{p-2}u = 0$, Proc. Amer. Math. Soc., 109(1) (1990), 157164. Addendum, ibiden, 116 (2) (1992), 583-584.
- [18] Marcus M., Mizel V.J., and Pinchover Y., Transactions of the American Mathematical Socity. Volume 350, Number 8, August 1998, 3237-3255.
- [19] Nazarov A. I., Hardy-Sobolev Inequalities in a cone, J. Math. Sciences, 132, (2006), (4), 419-427.

- [20] Nazarov A.I., Dirichlet and Neumann problems to critical Emden-Fowler type equations. J Glob Optim (2008) 40, 289-303.
- [21] Pinchover Y., Tintarev K., Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy's inequality. Indiana Univ. Math. J. 54 (2005), 1061-1074.
- [22] Tidblom J., A geometrical version of Hardy's inequality for $\mathring{W}^{1,p}(\Omega)$, Proc. Amer. Math. Soc. 132 (2004) 2265-2271.