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WEIGHTED HARDY INEQUALITY WITH HIGHER
DIMENSIONAL SINGULARITY ON THE BOUNDARY

MOUHAMED MOUSTAPHA FALL AND FETHI MAHMOUDI

Abstract. Let Q be a smooth bounded domain in RY with N > 3 and let & be a closed smooth
submanifold of 9 of dimension 1 < k < N — 2. In this paper we study the weighted Hardy
inequality with weight function singular on Y. In particular we provide necessary and sufficient

conditions for existence of minimizers.
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1. INTRODUCTION

Let Q be a smooth bounded domain of RY , N > 2 and let ¥} be a smooth closed
submanifold of 02 with dimension 0 < k < N — 1. Here X is a single point and
Yn_1 = 0. For \ € R, consider the problem of finding minimizers for the quotient:

/ |Vul|?p dx — / 2wy da
(9, 3) : inf

uEHO(Q / 2|u|2q dr ’
Q

where d(x) := dist(x,Xy) is the distance function to X and where the weights p, g

(1)

and 7 satisfy
pg€C*®Q), pg>0 Q>0 nQ\%, nelip@) (2

and
q_ _
HéakX];_l’ n=0 on Xy . (3)
We put
Iy = do , 1<k<N-1 and Ip=oo. (4)

s V1= (a(0)/p(0))
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It was shown by Brezis and Marcus in [4] that there exists A\* such that if A > \*
then py(Q,Xn-_1) < i and it is attained while for A < A*, ux(Q,Xn_1) = i and it
is not achieved for every A < A*. The critical case A\ = A* was studied by Brezis,
Marcus and Shafrir in [5], where they proved that py- (€2, Xny_1) admits a minimizer
if and only if Iy_; < oo. The case where k = 0 (X is reduced to a point on the
boundary) was treated by the first author in [10] and the same conclusions hold
true.

Here we obtain the following

Theorem 1.1. Let Q) be a smooth bounded domain of RN, N > 3 and let ¥, C 09 be
a closed submanifold of dimension k € [1, N —2]. Assume that the weight functions
p,q and n satisfy (2) and (3). Then, there exists \* = X*(p,q,n,Q, L) such that

N — k)?
M)\(Qv Ek) = %7 VA< A*v

(N — k)
4 )
The infinimum (S, Xg) is attained if A > X* and it is not attained when \ < \*.

,U)\(Q, 2k) < YA > A%
Concerning the critical case we get

Theorem 1.2. Let \* be given by Theorem 1.1 and consider Iy, defined in (4). Then
= (Q, Xg) is achieved if and only if I, < co.

By choosing p = ¢ = 1 and 1 = 62, we obtain the following consequence of the
above theorems.

Corollary 1.3. Let Q be a smooth bounded domain of RN, N > 3 and ¥, C 99 be
a closed submanifold of dimension k € {1,--- ,N —2}. For A € R, put

/ \Vul|? do — )\/ lul? dx
I/)\(Q,Ek) = inf y {

u€H(Q) / 5_2]u\2 dx ’
Q
Then, there exists A = \(Q2, X) such that
— k)2 _
(2, 3) = (NTIC), VA <A,
N —k)? <
(2, X)) < (N = k) VA > A\

4 9
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Moreover vy(Q2,X1,) is attained if and only if X > X.

The proof of the above theorems are mainly based on the construction of appro-
priate sharp H!'-subsolution and H!-supersolutions for the corresponding operator

N — k)?
Ly:=—-A— %qﬂ + A6 2p
(with p = 1). These super-sub-solutions are perturbations of an approximate “vir-
(N—k)?

tual” ground-state for the Hardy constant near Y. For that we will consider

the projection distance function 6 defined near ¥y, as

5(@) = \/Idist?(z, )2 + |z — 72,

where T is the orthogonal projection of z on 92 and distag(', Yk) is the geodesic
distance to X on 02 endowed with the induced metric. While the distances § and
§ are equivalent, Ad and A¢ differ and § does not, in general, provide the right
approximate solution for k < N — 2. Letting dyq = dist(, 92), we have

5(2) = \/Idist?(F, o) + don(x)2.
Our approximate virtual ground-state near > reads then as

> dpo(z) 82 (x). (5)

In some appropriate Fermi coordinates y = (y',12,...,yN"* yN kL . yN) =

(7,7) € RN with § = (y', 92, ...,yV %) € RN7F (see next section for precise defini-
tion), the function in (5) then becomes

1y E=N
y—=ry gl

which is the ”virtual” ground-state for the Hardy constant M in the flat case
¥, = R¥ and Q = RY. We refer to Section 2 for more details about the constructions
of the super-sub-solutions.

The proof of the existence part in Theorem 1.2 is inspired from [5]. It amounts to
obtain a uniform control of a specific minimizing sequence for py«(£2, ) near Xy,
via the H'-super-solution constructed.

We mention that the existence and non-existence of extremals for (1) and related
problems were studied in [1, 6, 7, 8, 11, 12, 13, 17, 18, 19] and some references

therein. We would like to mention that some of the results in this paper might of
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interest in the study of semilinear equations with a Hardy potential singular at a
submanifold of the boundary. We refer to [9, 2, 3|, where existence and nonexistence
for semilinear problems were studied via the method of super/sub-solutions.

2. PRELIMINARIES AND NOTATIONS

In this section we collect some notations and conventions we are going to use
throughout the paper.

Let U be an open subset of RN, N > 3, with boundary M := 0l a smooth closed
hypersurface of RY. Assume that M contains a smooth closed submanifold ¥, of
dimension 1 < k < N — 2. In the following, for z € R, we let d(z) be the distance
function of M and §(z) the distance function of X;. We denote by N the unit
normal vector field of M pointed into .

Given P € X, the tangent space TpM of M at P splits as

TpM =TpX), © NpXy,

where TpY is the tangent space of ¥ and NpX; stands for the normal space of
TpY at P. We assume that the basis of these subspaces are spanned respectively
by (Ea)a:N—k+1,~~,N and (E,-)Z.:27...7N_k. We will assume that Ny (P) = Ej.

A neighborhood of P in ¥ can be parameterized via the map

N
_ _ pY
g L) =Exppt( > y*Ea),
a=N—-k+1
= _ () N—k+1 N Sk . .
where, § = (y ,--+,y") and where Expy* is the exponential map at P in

¥ endowed with the metric induced by M. Next we extend (E;);=2,.. n— to an
orthonormal frame (X;);=2.. n—k in a neighborhood of P. We can therefore define
the parameterization of a neighborhood of P in M via the mapping

N—k
=2

N=F) and Expgl is the exponential map at () in M endowed

with Zj = (y27"' 'Y
with the metric induced by RYY. We now have a parameterization of a neighborhood

of P in RY defined via the above Fermi coordinates by the map

y= 99— FuW"' 9,9 = hu@,9) + v Nr(hi (5, 9)).
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Next we denote by g the metric induced by F' /Ct whose components are defined by

9a5(Y) = (OaF i (y), 05 F ja(1)).

Then we have the following expansions (see for instance [14])

gn(y) =1
915(1/):0, for 3=2,---,N (6)
9ap(y) = 00+ O(|y|), fora,f=2,---,N,

where §j = (y', %) and O(r™) is a smooth function in the variable y which is uniformly
bounded by a constant (depending only M and ) times r™.

In concordance to the above coordinates, we will consider the “half’-geodesic
neighborhood contained in 4 around ¥, of radius p

Up(Ep) :={x el 6(z) <p}, (7)

with & is the projection distance function given by

5(@) = \/|distM (@, S + o — TP,

where T is the orthogonal projection of z on M and distM(-, Yx) is the geodesic
distance to X on M with the induced metric. Observe that

3(Fra(y) =13l, (8)

where § = (y!,9). We also define o(T) to be the orthogonal projection of T on ¥
within M. Letting

5(Z) = distM (T, 2p),

one has

T = Exp/\?f)(g V4) or equivalently (%) = ExpX (-5 V5).

o\x T

6(x) = \/62(z) + d2(z). (9)

In addition it can be easily checked via the implicit function theorem that there
exists a positive constant Sy = Fo(Sg, Q) such that § € C®(Ug, (X1)).

Next we observe that
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It is clear that for p sufficiently small, there exists a finite number of Lipschitz

open sets (T3)1<i<n, such that
TiNT; =0 fori#j and U,(Sk) = UT

We may assume that each T; is chosen, using the above coordinates, so that

where the D;’s are Lipschitz disjoint open sets of R¥ such that

No

U700 = 5.

i=1

In the above setting we have

Lemma 2.1. As é — 0, the following expansions hold
(1) 02 =382(1 + 0(9)),

(2) V5 - Vd_g
(3) [Vé] =1+ 0(5),
(1) A§ = k=1 o),

where O(r™) is a function for which there exists a constant C = C(M,Xy) such
that

0(™)| < Cr™.

Proof.
(1) Let P € S With an abuse of notation, we write z(y) = Fi(y) and we set

9(y) = 5 (y).

The function ¥ is smooth in a small neighborhood of the origin in RY and

Taylor expansion yields
Iy) = 90,97+ V00,9 + 3 L v20(0,9)(5.91 + O(Ig1°)

:év%@@mm+mwn» (10)
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Here we have used the fact that z(0,7) € X so that §(z(0,7)) = 0. We

write
N—k
2 N[~ ~T1 i, 1
il=1
with
5%
Ai = /4=
! Oyt oyl /5=0

N IR TN
= @(@(55 () 8yi)> /4=0
0% 1., 0z 0x° 0 , o 0%
= 855 )(x)ayia—yl/g:wr@@ )(w)m/gﬂ-

Now using the fact that

O0x?® o

8—y1/§=0 = gi1s = 05 and @(52)(1’5)/920 =0,
we obtain

. . 82 1
At I _ i,,8 : Y _
iay'y Y'Y griges (397)(@)/5=0
= g%

where we have used the fact that the matrix ( 8:0?;68 (% 52)(3;) /g:o) . is

the matrix of the orthogonal projection onto the normal space of Tyr ;) Xy

Hence using (10), we get
& (z(y)) = 51 + O(g1*).

This together with (8) prove the first expansion.
(2) Thanks to (8) and (6), we infer that

\V R Vd(z(y)) = ag(x(y)) o y_l _ d(z(y))

awyt o ax(y))
as desired.
(3) We observe that

2 O ww) =g ™ () PN 2L
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where (go‘ﬁ)a,5:17___,N is the inverse of the matrix (gag)a,=1,..,n. Therefore
using (8) and (6), we get the result.

(4) Finally using the expansion of the Laplace-Beltrami operator A, see Lemma
3.3 in [16], applied to (8), we get the last estimate.

O
In the following of — only — this section, q : i/ — R be such that
qeC?*U), and ¢<1 onX. (11)
Let M, a € R, we consider the function
Watq(2) = Xa(3(2)) M d(x) b(2)*, (12)
where
Xo(t) = (—log(t))* O0<t<1
and

az) = /<;—2N + N;k\/l—q(a(:i))—i-g(x).

In the above setting, the following useful result holds.

Lemma 2.2. As § — 0, we have

— _M -2 _ Va -2
AWa,M,q = 1 q5 Wa,M,q 2a OéX_l(5) 1) Wa,M,q
h+2M
e —1) X 5(8) 5 Warg + = Warrg + O(108(8)| 57 Wayara,
() — (N=k)? = 5 _
where () = 5 (1 —q(o(T)) + 5(m)> and h = Ad. Here the lower order term
satisfies
O(r)| < Crl,

where C'is a positive constant only depending on a, M, ¥, U and ||q||c2w-

Proof. We put s = (lek)Q. Let w = 5(3;)0‘(”0) then the following formula can be

easily verified

Aw = w(A log(w) + |Vlog(w)|2>. (13)
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Since
log(w) = alog(3),
we get
Alog(w) = Aalog(d) + 2Va - V(log(d)) + aAlog(s). (14)
We have
1 1
Aa=AVa=Va <§A10g(d) + Z\Vlog(&)P) : (15)
¥ log(d) = 2 _ —sV(q ONO') +sVo
o o
and using the formula (13), we obtain
- Aa  |Val?
Al = — -
—sA(qoo) +sAs  s2V(qoo)|? + s2|Vi|? ,V(goo)- Vo
= = — = + 2s — .
& a? a?

Putting the above in (15), we deduce that

. 2 2 2152 _ 942 Ui
Ag — 1~<—3A(qoa)+3A5—18|v(qoa)| —|—S|V(§| 25°V(go o) V(S).
2/ a 2 &
(16)
Using Lemma 2.1 and the fact that ¢ is in C%(U), together with (16) we get
Ao = 0(52). (17)
On the other hand
1Va s s Vo
Va=VVa=s—==-—=V +5—~=
VST a1 e g
so that ~
~ s - 5|Vé|? <1
Va-Vi=—-—=V(qoo)-Vi+ - =0(0" 2
S=Vlaon) Vit 3 06

and from which we deduce that

S

Vo - Vieg(d) = %Va Vs =0(52). (18)

By Lemma 2.1 we have that

aAlog(d) = a N_57];_2 (14 0(9)).
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Taking back the above estimate together with (18) and (17) in (14), we get

N k—

Alog(w) = 5 214+ 0()) + O log(B)|5~ 3. (19)

We also have 3
V (log(w)) = V(alog(d)) = a%d + log(d)Va
and thus

o? alo
lewW=§+L£@

Putting this together with (19) in (13), we conclude that

Aw N—-k—-2 a? < <3

2 ~ ~
V6 - Va + | log(8)2|Val? = ;"—2 +O(|log(3)|52).

Now we define the function
v(z) = d(z) w(z),

where we recall that d is the distance function to the boundary of U. It is clear that
Av = wAd + dAw + 2Vd - Vw. (21)
Notice that B
~ Vé
Vw =wVlog(w) =w | log(d)Va + 047

and so
Vd - Vw = w <1og(5)w Va+ %w : vS) . (22)
Recall the second assertion of Lemma 2.1 that we rewrite as
Vd. V5= g (23)
Therefore
Vd-Va=Vd- <—%V(qoa)+ g\v/—f) - 2\%% 2\F Vd-V(goo). (24)
Notice that if x is in a neighborhood of some point P € ¥} one has

Vd- V(go0)(w) = 5 ra(0(®) = 5 alf"(m) =
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This with (24) and (23) in (22) give
Vd-Vu = w <0(S—%|1og(3)|)d+%d>

= v <0(5—3\1og(5)\) +(;12> (25)

From (20), (21) and (25) (recalling the expression of a above), we get immediately

N — 2 Sk
Av = <a k+‘i‘—>v+0(|1og(5)|5—%)v+ﬁv

FZE d
— 2 x ~., <_3
_ @M% +O(|log(5)|5_§)> v+ %v, (26)

where h = Ad. Here we have used the fact that |¢(z) — ¢(o(Z))| < Co(x) for x in a
neighborhood of Y.
Recall that

Wantq(@) = Xa(0(z)) M@ p(z),  with  X,(5(z)) := (—log(3(z)))",
where M and a are two real numbers. We have

AWarrg = Xa(0) A(M?0) +2VX,(5) - V(M) + My AX,(6)

and thus
AWarrg = Xa(0)eM? Av 4 X, (0)A(eM¥) v + 2X,(5) Vo - V(eMd) @)
+2VX,(6) - (v V(eM) + eMiTy) 4 My AX,(5).
We shall estimate term by term the above expression.
First we have form (26)
~ _— 2 ~ ~
Ko@)ttt 0 =~ L w4 B, + 00100(0) 575 Wanry. (29)
It is plain that
X, (6) A(eM)y v = O(1) Wa,M.q- (29)

It is clear that

< 5
Vv=wVd+dVw=wVd+d <log(6) Va—i—a%) w. (30)
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From which and (23) we get

X, (0) Vo V(M) = MX,(6)eMlw {|Vd|2 +d <1og(3) Vd-Va+ %VS : w) }
wi

— M X.(8) M w14 0(log(d)] —%)d+0(5—1)d}
M
= Wang {F \log } (31)
Observe that 3
Vs

V(X,(0)) = —a 7Xa_l(S).
This with (30) and (23) imply that

- 1
VX,(0) (vV(eMd) + eMdVv> = —% X_1 Waarg +O(|10g(8)|672) Waarg.
(32)
By Lemma 2.1, we have

A(X,(0)) = %Xa_l(S){z k- N+o@) + 2Dy 6.

Therefore we obtain

eMIYA(X,(0)) = 5L“2{2 +k=N+00) X 1 Wanrg + %xd Warrg (33)

Collecting (28), (29), (31), (32) and (33) in the expression (27), we get as 0 — 0

AVVa,M,q = _M (5 Wan—2a\/_X ()(5 Wan

4
o h+2M _3
+ ala—1)X_2(0)¢ 2Wa7M7q+TWa,M7q+O(“0g( )‘6 ) a,M,q-

The conclusion of the lemma follows at once from the first assertion of Lemma 2.1.

O

2.1. Construction of a subsolution. For A € R and € Lip({) with n = 0 on
Yk, we define the operator

N — k)?
ﬁA::—A—i( 1 )

where ¢ is as in (11). We have the following lemma

g6 2+ And 2, (34)
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Lemma 2.3. There exist two positive constants My, By such that for all € (0, Bo)
the function Ve := W_q py.q + Wo.Moq—e (see (12)) satisfies

L\Ve<0 inlUg, forall e€l0,1). (35)
Moreover V. € HY(Ug) for any € € (0,1) and in addition

Vo

2
1
— dx >C ——do.
/2/15 6? =k V1 —q(o)

Proof. Let 8; be a positive small real number so that d is smooth in Ug,. We

(36)

choose

My = max |h(x)| + 1.
z€UB,

Using this and Lemma 2.2, for some S € (0, 1), we have
LWt 0t < (—25—2 X_o + Cllog(d)| 65 + |>\|775‘2> Woineq inlUs (37)

Using the fact that the function 7 vanishes on ¥ (this implies in particular that
In| < C§ in Up), we have

LAW-1,0109) €~ 2 X2 Worngyg = —0 2 X3 Wonsq inUs,

for § sufficiently small. Again by Lemma 2.2, and similar arguments as above, we
have

3 3 .
L3 Wortyge < Cl1og(8) 6% Woaty g« < Cllog(8)| 6% Woatyq  inUs,  (38)
for any e € [0,1). Therefore we get
Ly (W_1,Mo,q + Wo,Moq—e) <0 in Ug,

if 8 is small. This proves (35).

The proof of the fact that W, € H'(Ug), for any a < —% and Woap,q-c €
H 1(2/{5), for ¢ > 0 can be easily checked using polar coordinates (by assuming
without any loss of generality that My = 0 and ¢ = 1), we therefore skip it.

We now prove the last statement of the theorem. Using Lemma 2.1, we have
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2

2 %%
/V—gdaz > / O’QJO’qu
us 0 u, 0
> C d?(z)6(x)?*®) =2 dg
Uz (Zk)
No ~
> CY / d? ()0 ()@ =2 dy:
=1 T;
No

Py _ .
(y")? (g1 Jac(FRY)| (y) dy

+
No
> CZ/ : (y')? g N H OV @) 1=V gy,
i1 /BY F(0.8)xD;

Here we used the fact that |Jac(F})|(y) > C. Observe that
]gj\_\/m >C >0 as |y —0.

Using polar coordinates, the above integral becomes

V2 No yl 2 8 -
Ddr > CY / / <_> a6 / P LWV =RV @) g
us 0 =1 /D SR |9 0

Ny Ti
. Z/ / L1 (N=k)/1=a(F71 () |Jac(fP")(y) dy.
i=17Di /0

We therefore obtain

2 B
/ V—O dx C / / P I N =k)V1-4(9) qp qo
Ug Y J0

v

v

C L
— (0.
Xk V 1- Q(J)

This concludes the proof of the lemma.
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2.2. Construction of a supersolution. In this subsection we provide a superso-
lution for the operator £ defined in (34). We prove

Lemma 2.4. There exist constants 5y > 0, My < 0, My > 0 (the constant My is as
in Lemma 2.3) such that for all € (0, o) the function U := Wo rry.q—W-1,0M0,g > 0
in Ug and satisfies

L \Us >0 inUsg. (39)

Moreover U € HY(Ug) provided

do < +o0. (40)

1
= V1 —q(o)

Proof. We consider 3 as in the beginning of the proof of Lemma 2.3 and we define

1
M, = —= max |h(z)| — 1. (41)
2 :(:EZ/I51

Since
U(z) = (M) — MAD X (5(x)))d(x)d (2)*),

it follows that U > 0 in Ug for B > 0 sufficiently small. By (41) and Lemma 2.2, we
get

LoaWort.q > (—O|1og(5)|5—%’ — IA672) Wo,ar, .
Using (37) we have
La(-W_1a1q) > (25—2)(_2 — C|log(8)] 673 — |>\|775‘2> W1 0y q-
Taking the sum of the two above inequalities, we obtain
L U >0 in Ug,

which holds true because |n| < C¢ in Ug. Hence we get readily (39).
Our next task is to prove that U € H*(Ug) provided (40) holds, to do so it is enough
to show that Wo ar, 4 € H(Us) provided (40) holds.
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We argue as in the proof of Lemma 2.3. We have

’VWO,Ml,q,2 = ¢ d2(x)5(x)2a(x)—2dx

Z/IB Z,{B
No ~ B
< O [ PRI el )y
i=1 Y By (0.8)xD;

~2a(FRi — i
(y")? 1912 FM D=2 | Jac(FR)|(y) dy

IA

Q
|'M
S—

=1 /BY*(0,8)xD;

< 0 / (v')? [yl NIV Jg =T gy,

i—1 /BY *(0,8)xD;
Here we used the fact that |Jac(F};)|(y) < C. Note that
VIl <C as [gl 0.

Using polar coordinates, it follows that

al N -
/ IV Wo ., gl cy / / (y_> o / = N =RV 177 @) gy q
U i—=1 Y Di 5f7k71 |y 0

IN

<

No 1
C dy.
; /D N )R

Racalling that |Jac(fP")|(y) =1+ O(]y|), we deduce that

[Jac(f)[(y) dy

No 1 No 1
dy C - -
ZZ:; /Dz \/1_Q(fpi(g)) Vo= ZZ:; /Dz \/1_Q(fpi(g))
1
C —do.
. V1 —q(o)

Therefore

\VWon 4>dz < C

1
—do
Z/{5 Ek V 1 - q(U)

and the lemma follows at once. O
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3. EXISTENCE OF \*
We start with the following local improved Hardy inequality.

Lemma 3.1. Let Q be a smooth domain and assume that Q0 contains a smooth
closed submanifold ¥y, of dimension 1 < k < N — 2. Assume that p,q and n satisfy
(2) and (3). Then there exist constants By > 0 and ¢ > 0 depending only on
0, Xk, q,n and p such that for all B € (0,5y) the inequality
2 (N — k) Jul? Jul?
/Qﬁp|Vu| dm_T/ﬂﬁqé—zd:EZC ngd:E
holds for all u € HE(Qp).

Proof. We use the notations in Section 2 with & = Q and M = 912.
Fix 81 > 0 small and

1
My = —= max (|h(z)] + |Vp- Vd]) — 1. (42)
2 (EGle

Since % € CY(Q), there exists C' > 0 such that

p(z)  plo(2)) 2 Vi
‘q(w) q(a(i))‘ < Cé(z) vz €y, (43)

for small 8 > 0. Hence by (3) there exits a constant C’ > 0 such that
p(z) > q(z) — C'6(z) V€ Qp. (44)
Consider W%Mz,l (in Lemma 2.2 with ¢ = 1). For all 5 > 0 small, we set
w(z) = W%Mz’l(x), Vo € Qg. (45)
Notice that div(pVw) = pAw + Vp - V. By Lemma 2.2, we have
_div(pVa) (N — k)?
w - 4
This together with (44) yields
_div(pVa) (N — k)?
w - 4

pd~% 4+ L572X 5(6) + O(| log()[67%) in Q.

@672 + %05—2)(_2(5) +0(|log(8)[6~2) in Qg
with ¢y = minm p > 0. Therefore
1

_div(pNVZD) > (N — k)2

w 4 g6 > + c672X_5(0) in Qg (46)
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for some positive constant ¢ depending only on €2, ¥, ¢, and p.
Let u € C(Qp) and put ¢ = L. Then one has |Vul> = [@Vy|* + [vV@|? +
V(?) - V. Therefore |Vul?p = [wV)|?p + pVib - V(wip?). Integrating by parts,

we get
/ |Vul*pdx = / |wV|?p dx —1—/ <_M~Vw)> u? d.
Q2 Q2 Q2 w

Putting (46) in the above equality, we get the result. U
We next prove the following result

Lemma 3.2. Let Q) be a smooth bounded domain and assume that 0 contains a
smooth closed submanifold ¥ of dimension 1 < k < N — 2. Assume that (2) and
(3) hold. Then there exists \* = \*(Q, X, p,q,n) € R such that

N — k)?
M)\(Qv Ek) = (T)v VA <A
N —k)?
/’L)\(Qa 2/6) < %7 VA > A"
Proof. We devide the proof in two steps
Step 1: We claim that:
(N — k)

sup px (€2, 5x) <

AR 4 (47)

Indeed, we know that vo(RY,R¥) = (N_k)Q, see [15] for instance. Given 7 > 0, we
let u, € C°(RY) be such that

N — k)2
/ rwﬁdys(ﬂﬂ) / 19122 d. (48)
RN 4 RN
+ +

By (3), we can let o9 € ¥, be such that
q(o0) = p(o0).
Now, given r > 0, we let p, > 0 such that for all z € B(og, p,) N2
p(x) < (1 +r)q(o0), q(x) = (1=r)qloo) and n(z)<r. (49)

We choose Fermi coordinates near g € ¥, given by the map F3§ (as in Section 2)
and we choose £y > 0 small such that, for all € € (0,¢g),

Aeprr = Fg5(eSupp(ur)) C Bloo, pr) N
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and we define the following test function

v(z) = E%UT (E_I(Fgg)_l(x)) , T €N

Clearly, for every ¢ € (0,g0), we have that v € C2°(f2) and thus by a change of
variable, (49) and Lemma 2.1, we have

/p\Vv\zdx—l—)\/é_zndea:
Q Q

A Eg) <
/ q(z) 672 v? da
0
(1 —i—r)/ Vo[? da
< < r|Al
B (1 _ T) / 5—2 1)2 dx (1 - ’f’)q(O'(])
As,p,r,‘r
(1+r)/ |Vo|? dz
< Acopyryr r|Al
- (1—cr) / 6 2v?dx (1 =7)g(o0)
As,p,r,r
(e [ g0l Vi) dy
< RY Lo ’
1—r

(=) [ g a2 VIl dy
+

where ¢° is the scaled metric with components g, 5(y) = e 2(0aF53 (ey), 05 F58 (ey))
for a, = 1,...,N and where we have used the fact that S(ng%(sy)) = |eg|? for
every ¢ in the support of u.. Since the scaled metric g° expands a ¢ = I + O(e) on
the support of u,, we deduce that

/ Ve[ dy
L4 1 N
A€, Xg) < ol Ry -

1—crl—ce o 1—r
[ o ay
RN

+
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where ¢ is a positive constant depending only on Q,p,q,n and Xx. Hence by (48)

we conclude

pa(€2,3) <

1+7r 1+ce (]\7—1{:)2+ Lo
T .
l—crl—ce 4 1—7r

Taking the limit in e, then in r and then in 7, the claim follows.
Step 2: We claim that there exists A € R such that ps (€, X) >
Thanks to Lemma 3.1, the proof uses a standard argument of cut-off function and

(N—k)?
-

integration by parts (see [4]) and we can obtain

/5_2u2qd:17 g/ |Vu|2pd:17—|—0/ 0 2ulnde Yu e C(Q),
Q Q Q
for some constant C' > 0. We skip the details. The claim now follows by choosing

A=-C

Finally, noticing that p) (92, X) is decreasing in A, we can set

EAY:
A" = sup {)\ ER : pun(Q,3) = M} (50)

so that px(Q,Xk) < M for all A > A*. 0

4. NON-EXISTENCE RESULT

Lemma 4.1. Let Q be a smooth bounded domain of RN, N > 3, and let ¥, be a
smooth closed submanifold of OQ of dimension k with 1 < k < N — 2. Then, there
exist bounded smooth domains QF such that Q7 € Q C Q™ and

00T NN =00 NN =X.
Proof. Consider the maps
1
T g () == dyo(z) + 5 6% (z),

where dpq is the distance function to 9. For some 3; > 0 small, ¢ are smooth in
13, and since |[VgT| > C > 0 on X, by the implicit function theorem, the sets

{xGQQZQiZO}
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are smooth (N — 1)-dimensional submanifolds of RY, for some # > 0 small. In
addition, by construction, they can be taken to be part of the boundaries of smooth
bounded domains QF with QT € © ¢ Q~ and such that

0T NN =00 NIA =3,.
The prove then follows at once. U
Now, we prove the following non-existence result.

Theorem 4.2. Let Q be a smooth bounded domain of RV and let ¥j, be a smooth

closed submanifold of 02 of dimension k with 1 < k < N —2 and let A > 0. Assume

that p,q and n satisfy (2) and (3). Suppose that u € H(Q)NC(Q) is a non-negative

function satisfying

(N —k)?
4

1 — L do= = 0.
ffzk l_p(o)/q(g)da 400 then u =0

—div(pVu) — @0 2u > —o2u  in Q. (51)

Proof. We first assume that p = 1. Let Q7 be the set given by Lemma 4.1. We
will use the notations in Section 2 with & = QT and M = 9Q". For 8 > 0 small we
define

QE ={zeQ": §@x)<p}
We suppose by contradiction that u does not vanish identically near ¥ and satisfies

(51) so that u > 0 in Q3 by the maximum principle, for some § > 0 small.
Consider the subsolution V; defined in Lemma 2.3 which satisfies

LyV- <0 inQy, Vee(0,1). (52)

Notice that GQE N O+ C Q thus, for § > 0 small, we can choose R > 0 (independent
on ¢) so that

RV.<RVy<u onﬁﬁgﬂfﬁ Ve € (0,1).

Again by Lemma 2.3, setting v. = RV. — u, it turns out that vJ = max(v.,0) €
H&(Qg) because V; = 0 on 89; \(‘993r N Q+. Moreover by (51) and (52),

Lyve <0 inQf, Vee(0,1).
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Multiplying the above inequality by v7 and integrating by parts yields

N —k)?
/ Vol |2 da — %/ 6 2qlv P dx + /\/ nd 2ot > dx < 0.
5 5 Q5

But then Lemma 3.1 implies that v7 = 0 in QE provided S small enough because
|n| < C6 near ¥j. Therefore u > RV for every € € (0,1). In particular u > RVj.
Hence we obtain from Lemma 2.3 that

Vo

/ u? 9 2 1
00 > — >R / > ————do
af 0° of 0 Jo V/1—4q(0)

which leads to a contradiction. We deduce that v =0 in QE Thus by the maximum
principle © = 0 in .
For the general case p # 1, we argue as in [5] by setting

i = \/pu. (53)

This function satisfies

_ )2 2
YN Mg(;—?ﬂ > _)\ﬂa—%j + —% + Vel 4 in Q.
4 p P 2p 4p?

Hence since p € C?(Q) and p > 0 in Q, we get the same conclusions as in the case
p =1 and ¢ replaced by ¢q/p. ]

5. EXISTENCE OF MINIMIZERS FOR (€2, X§)

Theorem 5.1. Let Q be a smooth bounded domain of RN and let ¥ be a smooth
closed submanifold of 02 of dimension k with 1 < k < N —2. Assume that p,q and
n satisfy (2) and (3). Then px(Q, i) is achieved for every A < A*.

Proof. The proof follows the same argument of [4] by taking into account the fact
that 7 = 0 on X so we skip it. U
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Next, we prove the existence of minimizers in the critical case A = A,.

Theorem 5.2. Let Q be a smooth bounded domain of RV and let ¥j, be a smooth

closed submanifold of OQ) of dimension k with 1 < k < N — 2. Assume that p,q
1
and n satisfy (2) and (3). If/ do < 0o then py = px«(2,Xk) is
s V1= p(o)/q(o)

achieved.

Proof. We first consider the case p = 1.
Let A, be a sequence of real numbers decreasing to A*. By Theorem 5.1, there exits
uy, minimizers for py, = py, (2, Xx) so that

—Au, — ,u,\né_zqun = -\ %nu, in Q. (54)

We may assume that u,, > 0 in Q. We may also assume that || Vu,|[12q) = 1. Hence
u, — uin H}(Q) and u, — u in L*(Q) and pointwise. Let Q= D  be the set given
by Lemma 4.1. We will use the notations in Section 2 with &/ = 2~ and M = 90Q~.
It will be understood that ¢ is extended to a function in C?(Q~). For 8 > 0 small
we define
Qy ={zeQ: 4(z) <p}
We have that
Auy +bp(x)uy, =0 in Q,

with |b,| < C'in Q \Q—g for all integer n. Thus by standard elliptic regularity theory,
2

u, < C in Q \Q—; (55)
2

We consider the supersolution U in Lemma 2.4. We shall show that there exits a
constant C' > 0 such that for all n € N

u, <CU  in Q. (56)
Notice that 2N 9Q,; C Q7 thus by (55), we can choose C' > 0 so that for any n
Uy, < CU onQﬂaQE.

Again by Lemma 2.4, setting v, = u,, — C' U, it turns out that v’ = max(v,,0) €
H&(Qg) because u, =0 on 92N Q. Hence we have

L, vn < =Clpxs — pn)qU = C(X" = Ap)nU <0 in Q5 N Q.
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Multiplying the above inequality by v, and integrating by parts yields

/ (Vo 2 de — py, / 6 2q|v|? dx + )\n/ n62|vf > dx < 0.
Qs Qs Qs

Hence Lemma 3.1 implies that

.

Since A, is bounded, we can choose 3 > 0 small (independent of n) such that v;” =0
on Qg (recall that [n| < C¢). Thus we obtain (56).

Now since u, — u in L?(Q), we get by the dominated convergence theorem and
(56), that

62X olul|? dx + )m/ né 2t 2 dx < 0.
_ 0
8 8

6 up — 67w in LA(Q).

Since u,, satisfies

1:/ |Vun|2:,u,\n/ 5_2qui+/\n/ 5_2771@,
Q Q Q

taking the limit, we have 1 = py» fQ 5 2qu? 4+ \* fQ 0 2nu?. Hence u # 0 and it is a
minimizer for py~ = M.
For the general case p # 1, we can use the same transformation as in (53). So (56)

holds and the same argument as a above carries over. U

6. PROOF OF THEOREM 1.1 AND THEOREM 1.2

Proof of Theorem 1.1: Combining Lemma 3.2 and Theorem 5.1, it remains only
to check the case A < A*. But this is an easy consequence of the definition of \* and
of ux(Q,Xg), see [[4], Section 3. 0

Proof of Theorem 1.2: Existence is proved in Theorem 5.2 for I < oco. Since the
absolute value of any minimizer for u)(Q2,X) is also a minimizer, we can apply
Theorem 4.2 to infer that py«(€2, Xx) is never achieved as soon as I = co. O
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