WEIGHTED HARDY INEQUALITY WITH HIGHER DIMENSIONAL SINGULARITY ON THE BOUNDARY

MOUHAMED MOUSTAPHA FALL AND FETHI MAHMOUDI

Abstract

Let Ω be a smooth bounded domain in \mathbb{R}^{N} with $N \geq 3$ and let Σ_{k} be a closed smooth submanifold of $\partial \Omega$ of dimension $1 \leq k \leq N-2$. In this paper we study the weighted Hardy inequality with weight function singular on Σ_{k}. In particular we provide necessary and sufficient conditions for existence of minimizers.

Key Words: Hardy inequality, extremals, existence, non-existence, Fermi coordinates.

1. Introduction

Let Ω be a smooth bounded domain of $\mathbb{R}^{N}, N \geq 2$ and let Σ_{k} be a smooth closed submanifold of $\partial \Omega$ with dimension $0 \leq k \leq N-1$. Here Σ_{0} is a single point and $\Sigma_{N-1}=\partial \Omega$. For $\lambda \in \mathbb{R}$, consider the problem of finding minimizers for the quotient:

$$
\begin{equation*}
\mu_{\lambda}\left(\Omega, \Sigma_{k}\right):=\inf _{u \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega}|\nabla u|^{2} p d x-\lambda \int_{\Omega} \delta^{-2}|u|^{2} \eta d x}{\int_{\Omega} \delta^{-2}|u|^{2} q d x} \tag{1}
\end{equation*}
$$

where $\delta(x):=\operatorname{dist}\left(x, \Sigma_{k}\right)$ is the distance function to Σ_{k} and where the weights p, q and η satisfy

$$
\begin{equation*}
p, q \in C^{2}(\bar{\Omega}), \quad p, q>0 \quad \text { in } \bar{\Omega}, \quad \eta>0 \quad \text { in } \bar{\Omega} \backslash \Sigma_{k}, \quad \eta \in \operatorname{Lip}(\bar{\Omega}) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{\Sigma_{k}} \frac{q}{p}=1, \quad \eta=0 \quad \text { on } \Sigma_{k} \tag{3}
\end{equation*}
$$

We put

$$
\begin{equation*}
I_{k}=\int_{\Sigma_{k}} \frac{d \sigma}{\sqrt{1-(q(\sigma) / p(\sigma))}}, \quad 1 \leq k \leq N-1 \quad \text { and } \quad I_{0}=\infty . \tag{4}
\end{equation*}
$$

It was shown by Brezis and Marcus in [4] that there exists λ^{*} such that if $\lambda>\lambda^{*}$ then $\mu_{\lambda}\left(\Omega, \Sigma_{N-1}\right)<\frac{1}{4}$ and it is attained while for $\lambda \leq \lambda^{*}, \mu_{\lambda}\left(\Omega, \Sigma_{N-1}\right)=\frac{1}{4}$ and it is not achieved for every $\lambda<\lambda^{*}$. The critical case $\lambda=\lambda^{*}$ was studied by Brezis, Marcus and Shafrir in [5], where they proved that $\mu_{\lambda^{*}}\left(\Omega, \Sigma_{N-1}\right)$ admits a minimizer if and only if $I_{N-1}<\infty$. The case where $k=0$ (Σ_{0} is reduced to a point on the boundary) was treated by the first author in [10] and the same conclusions hold true.
Here we obtain the following
Theorem 1.1. Let Ω be a smooth bounded domain of $\mathbb{R}^{N}, N \geq 3$ and let $\Sigma_{k} \subset \partial \Omega$ be a closed submanifold of dimension $k \in[1, N-2]$. Assume that the weight functions p, q and η satisfy (2) and (3). Then, there exists $\lambda^{*}=\lambda^{*}\left(p, q, \eta, \Omega, \Sigma_{k}\right)$ such that

$$
\begin{array}{ll}
\mu_{\lambda}\left(\Omega, \Sigma_{k}\right)=\frac{(N-k)^{2}}{4}, & \forall \lambda \leq \lambda^{*} \\
\mu_{\lambda}\left(\Omega, \Sigma_{k}\right)<\frac{(N-k)^{2}}{4}, & \forall \lambda>\lambda^{*}
\end{array}
$$

The infinimum $\mu_{\lambda}\left(\Omega, \Sigma_{k}\right)$ is attained if $\lambda>\lambda^{*}$ and it is not attained when $\lambda<\lambda^{*}$.
Concerning the critical case we get
Theorem 1.2. Let λ^{*} be given by Theorem 1.1 and consider I_{k} defined in (4). Then $\mu_{\lambda^{*}}\left(\Omega, \Sigma_{k}\right)$ is achieved if and only if $I_{k}<\infty$.

By choosing $p=q \equiv 1$ and $\eta=\delta^{2}$, we obtain the following consequence of the above theorems.

Corollary 1.3. Let Ω be a smooth bounded domain of $\mathbb{R}^{N}, N \geq 3$ and $\Sigma_{k} \subset \partial \Omega$ be a closed submanifold of dimension $k \in\{1, \cdots, N-2\}$. For $\lambda \in \mathbb{R}$, put

$$
\nu_{\lambda}\left(\Omega, \Sigma_{k}\right)=\inf _{u \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega}|\nabla u|^{2} d x-\lambda \int_{\Omega}|u|^{2} d x}{\int_{\Omega} \delta^{-2}|u|^{2} d x},
$$

Then, there exists $\bar{\lambda}=\bar{\lambda}\left(\Omega, \Sigma_{k}\right)$ such that

$$
\begin{array}{ll}
\nu_{\lambda}\left(\Omega, \Sigma_{k}\right)=\frac{(N-k)^{2}}{4}, & \forall \lambda \leq \bar{\lambda} \\
\nu_{\lambda}\left(\Omega, \Sigma_{k}\right)<\frac{(N-k)^{2}}{4}, & \forall \lambda>\bar{\lambda}
\end{array}
$$

Moreover $\nu_{\lambda}\left(\Omega, \Sigma_{k}\right)$ is attained if and only if $\lambda>\bar{\lambda}$.
The proof of the above theorems are mainly based on the construction of appropriate sharp H^{1}-subsolution and H^{1}-supersolutions for the corresponding operator

$$
\mathcal{L}_{\lambda}:=-\Delta-\frac{(N-k)^{2}}{4} q \delta^{-2}+\lambda \delta^{-2} \eta
$$

(with $p \equiv 1$). These super-sub-solutions are perturbations of an approximate "virtual" ground-state for the Hardy constant $\frac{(N-k)^{2}}{4}$ near Σ_{k}. For that we will consider the projection distance function $\tilde{\delta}$ defined near Σ_{k} as

$$
\tilde{\delta}(x):=\sqrt{\left|\operatorname{dist}^{\partial \Omega}\left(\bar{x}, \Sigma_{k}\right)\right|^{2}+|x-\bar{x}|^{2}},
$$

where \bar{x} is the orthogonal projection of x on $\partial \Omega$ and dist ${ }^{\partial \Omega}\left(\cdot, \Sigma_{\mathrm{k}}\right)$ is the geodesic distance to Σ_{k} on $\partial \Omega$ endowed with the induced metric. While the distances δ and $\tilde{\delta}$ are equivalent, $\Delta \delta$ and $\Delta \tilde{\delta}$ differ and δ does not, in general, provide the right approximate solution for $k \leq N-2$. Letting $d_{\partial \Omega}=\operatorname{dist}(\cdot, \partial \Omega)$, we have

$$
\tilde{\delta}(x):=\sqrt{\left|\operatorname{dist}^{\partial \Omega}\left(\bar{x}, \Sigma_{k}\right)\right|^{2}+d_{\partial \Omega}(x)^{2}} .
$$

Our approximate virtual ground-state near Σ_{k} reads then as

$$
\begin{equation*}
x \mapsto d_{\partial \Omega}(x) \tilde{\delta}^{\frac{k-N}{2}}(x) . \tag{5}
\end{equation*}
$$

In some appropriate Fermi coordinates $y=\left(y^{1}, y^{2}, \ldots, y^{N-k}, y^{N-k+1}, \ldots, y^{N}\right)=$ $(\tilde{y}, \bar{y}) \in \mathbb{R}^{N}$ with $\tilde{y}=\left(y^{1}, y^{2}, \ldots, y^{N-k}\right) \in \mathbb{R}^{N-k}$ (see next section for precise definition), the function in (5) then becomes

$$
y \mapsto y^{1}|\tilde{y}|^{\frac{k-N}{2}}
$$

which is the "virtual" ground-state for the Hardy constant $\frac{(N-k)^{2}}{4}$ in the flat case $\Sigma_{k}=\mathbb{R}^{k}$ and $\Omega=\mathbb{R}^{N}$. We refer to Section 2 for more details about the constructions of the super-sub-solutions.
The proof of the existence part in Theorem 1.2 is inspired from [5]. It amounts to obtain a uniform control of a specific minimizing sequence for $\mu_{\lambda^{*}}\left(\Omega, \Sigma_{k}\right)$ near Σ_{k} via the H^{1}-super-solution constructed.
We mention that the existence and non-existence of extremals for (1) and related problems were studied in $[1,6,7,8,11,12,13,17,18,19]$ and some references therein. We would like to mention that some of the results in this paper might of
interest in the study of semilinear equations with a Hardy potential singular at a submanifold of the boundary. We refer to [9, 2, 3], where existence and nonexistence for semilinear problems were studied via the method of super/sub-solutions.

2. Preliminaries and Notations

In this section we collect some notations and conventions we are going to use throughout the paper.

Let \mathcal{U} be an open subset of $\mathbb{R}^{N}, N \geq 3$, with boundary $\mathcal{M}:=\partial \mathcal{U}$ a smooth closed hypersurface of \mathbb{R}^{N}. Assume that \mathcal{M} contains a smooth closed submanifold Σ_{k} of dimension $1 \leq k \leq N-2$. In the following, for $x \in \mathbb{R}^{N}$, we let $d(x)$ be the distance function of \mathcal{M} and $\delta(x)$ the distance function of Σ_{k}. We denote by $N_{\mathcal{M}}$ the unit normal vector field of \mathcal{M} pointed into \mathcal{U}.
Given $P \in \Sigma_{k}$, the tangent space $T_{P} \mathcal{M}$ of \mathcal{M} at P splits as

$$
T_{P} \mathcal{M}=T_{P} \Sigma_{k} \oplus N_{P} \Sigma_{k},
$$

where $T_{P} \Sigma_{k}$ is the tangent space of Σ_{k} and $N_{P} \Sigma_{k}$ stands for the normal space of $T_{P} \Sigma_{k}$ at P. We assume that the basis of these subspaces are spanned respectively by $\left(E_{a}\right)_{a=N-k+1, \cdots, N}$ and $\left(E_{i}\right)_{i=2, \cdots, N-k}$. We will assume that $N_{\mathcal{M}}(P)=E_{1}$.

A neighborhood of P in Σ_{k} can be parameterized via the map

$$
\bar{y} \mapsto f^{P}(\bar{y})=\operatorname{Exp}_{P}^{\Sigma_{k}}\left(\sum_{a=N-k+1}^{N} y^{a} E_{a}\right),
$$

where, $\bar{y}=\left(y^{N-k+1}, \cdots, y^{N}\right)$ and where $\operatorname{Exp}_{P}^{\Sigma_{k}}$ is the exponential map at P in Σ_{k} endowed with the metric induced by \mathcal{M}. Next we extend $\left(E_{i}\right)_{i=2, \cdots, N-k}$ to an orthonormal frame $\left(X_{i}\right)_{i=2, \cdots, N-k}$ in a neighborhood of P. We can therefore define the parameterization of a neighborhood of P in \mathcal{M} via the mapping

$$
(\breve{y}, \bar{y}) \mapsto h_{\mathcal{M}}^{P}(\breve{y}, \bar{y}):=\operatorname{Exp}_{f^{P}(\bar{y})}^{\mathcal{M}}\left(\sum_{i=2}^{N-k} y^{i} X_{i}\right),
$$

with $\breve{y}=\left(y^{2}, \cdots, y^{N-k}\right)$ and $\operatorname{Exp}_{Q}^{\mathcal{M}}$ is the exponential map at Q in \mathcal{M} endowed with the metric induced by \mathbb{R}^{N}. We now have a parameterization of a neighborhood of P in \mathbb{R}^{N} defined via the above Fermi coordinates by the map

$$
y=\left(y^{1}, \breve{y}, \bar{y}\right) \mapsto F_{\mathcal{M}}^{P}\left(y^{1}, \breve{y}, \bar{y}\right)=h_{\mathcal{M}}^{P}(\breve{y}, \bar{y})+y^{1} N_{\mathcal{M}}\left(h_{\mathcal{M}}^{P}(\breve{y}, \bar{y})\right) .
$$

Next we denote by g the metric induced by $F_{\mathcal{M}}^{P}$ whose components are defined by

$$
g_{\alpha \beta}(y)=\left\langle\partial_{\alpha} F_{\mathcal{M}}^{P}(y), \partial_{\beta} F_{\mathcal{M}}^{P}(y)\right\rangle .
$$

Then we have the following expansions (see for instance [14])

$$
\begin{array}{ll}
g_{11}(y)=1 & \\
g_{1 \beta}(y)=0, & \text { for } \beta=2, \cdots, N \tag{6}\\
g_{\alpha \beta}(y)=\delta_{\alpha \beta}+\mathcal{O}(|\tilde{y}|), & \text { for } \alpha, \beta=2, \cdots, N
\end{array}
$$

where $\tilde{y}=\left(y^{1}, \breve{y}\right)$ and $\mathcal{O}\left(r^{m}\right)$ is a smooth function in the variable y which is uniformly bounded by a constant (depending only \mathcal{M} and Σ_{k}) times r^{m}.

In concordance to the above coordinates, we will consider the "half"-geodesic neighborhood contained in \mathcal{U} around Σ_{k} of radius ρ

$$
\begin{equation*}
\mathcal{U}_{\rho}\left(\Sigma_{k}\right):=\{x \in \mathcal{U}: \quad \tilde{\delta}(x)<\rho\} \tag{7}
\end{equation*}
$$

with $\tilde{\delta}$ is the projection distance function given by

$$
\tilde{\delta}(x):=\sqrt{\left|\operatorname{dist}^{\mathcal{M}}\left(\bar{x}, \Sigma_{k}\right)\right|^{2}+|x-\bar{x}|^{2}}
$$

where \bar{x} is the orthogonal projection of x on \mathcal{M} and dist ${ }^{\mathcal{M}}\left(\cdot, \Sigma_{\mathrm{k}}\right)$ is the geodesic distance to Σ_{k} on \mathcal{M} with the induced metric. Observe that

$$
\begin{equation*}
\tilde{\delta}\left(F_{\mathcal{M}}^{P}(y)\right)=|\tilde{y}| \tag{8}
\end{equation*}
$$

where $\tilde{y}=\left(y^{1}, \breve{y}\right)$. We also define $\sigma(\bar{x})$ to be the orthogonal projection of \bar{x} on Σ_{k} within \mathcal{M}. Letting

$$
\hat{\delta}(\bar{x}):=\operatorname{dist}^{\mathcal{M}}\left(\bar{x}, \Sigma_{k}\right),
$$

one has

$$
\bar{x}=\operatorname{Exp}_{\sigma(\bar{x})}^{\mathcal{M}}(\hat{\delta} \nabla \hat{\delta}) \quad \text { or equivalently } \quad \sigma(\bar{x})=\operatorname{Exp}_{\bar{x}}^{\mathcal{M}}(-\hat{\delta} \nabla \hat{\delta})
$$

Next we observe that

$$
\begin{equation*}
\tilde{\delta}(x)=\sqrt{\hat{\delta}^{2}(\bar{x})+d^{2}(x)} . \tag{9}
\end{equation*}
$$

In addition it can be easily checked via the implicit function theorem that there exists a positive constant $\beta_{0}=\beta_{0}\left(\Sigma_{k}, \Omega\right)$ such that $\tilde{\delta} \in C^{\infty}\left(\mathcal{U}_{\beta_{0}}\left(\Sigma_{k}\right)\right)$.

It is clear that for ρ sufficiently small, there exists a finite number of Lipschitz open sets $\left(T_{i}\right)_{1 \leq i \leq N_{0}}$ such that

$$
T_{i} \cap T_{j}=\emptyset \quad \text { for } i \neq j \quad \text { and } \quad \mathcal{U}_{\rho}\left(\Sigma_{k}\right)=\bigcup_{i=1}^{N_{0}} \overline{T_{i}}
$$

We may assume that each T_{i} is chosen, using the above coordinates, so that

$$
T_{i}=F_{\mathcal{M}}^{p_{i}}\left(B_{+}^{N-k}(0, \rho) \times D_{i}\right) \quad \text { with } \quad p_{i} \in \Sigma_{k}
$$

where the D_{i} 's are Lipschitz disjoint open sets of \mathbb{R}^{k} such that

$$
\bigcup_{i=1}^{N_{0}} \overline{f^{p_{i}}\left(D_{i}\right)}=\Sigma_{k}
$$

In the above setting we have
Lemma 2.1. As $\tilde{\delta} \rightarrow 0$, the following expansions hold
(1) $\delta^{2}=\tilde{\delta}^{2}(1+O(\tilde{\delta}))$,
(2) $\nabla \tilde{\delta} \cdot \nabla d=\frac{d}{\tilde{\delta}}$,
(3) $|\nabla \tilde{\delta}|=1+O(\tilde{\delta})$,
(4) $\Delta \tilde{\delta}=\frac{N-k-1}{\tilde{\delta}}+O(1)$,
where $O\left(r^{m}\right)$ is a function for which there exists a constant $C=C\left(\mathcal{M}, \Sigma_{k}\right)$ such that

$$
\left|O\left(r^{m}\right)\right| \leq C r^{m}
$$

Proof.
(1) Let $P \in \Sigma_{k}$. With an abuse of notation, we write $x(y)=F_{\mathcal{M}}^{P}(y)$ and we set

$$
\vartheta(y):=\frac{1}{2} \delta^{2}(x(y))
$$

The function ϑ is smooth in a small neighborhood of the origin in \mathbb{R}^{N} and Taylor expansion yields

$$
\begin{align*}
\vartheta(y) & =\vartheta(0, \bar{y}) \tilde{y}+\nabla \vartheta(0, \bar{y})[\tilde{y}]+\frac{1}{2} \nabla^{2} \vartheta(0, \bar{y})[\tilde{y}, \tilde{y}]+\mathcal{O}\left(\|\tilde{y}\|^{3}\right) \\
& =\frac{1}{2} \nabla^{2} \vartheta(0, \bar{y})[\tilde{y}, \tilde{y}]+\mathcal{O}\left(\|\tilde{y}\|^{3}\right) \tag{10}
\end{align*}
$$

Here we have used the fact that $x(0, \bar{y}) \in \Sigma_{k}$ so that $\delta(x(0, \bar{y}))=0$. We write

$$
\nabla^{2} \vartheta(0, \bar{y})[\tilde{y}, \tilde{y}]=\sum_{i, l=1}^{N-k} \Lambda_{i l} y^{i} y^{l}
$$

with

$$
\begin{aligned}
\Lambda_{i l} & :=\frac{\partial^{2} \vartheta}{\partial y^{i} \partial y^{l}} / \tilde{y}=0 \\
& =\frac{\partial}{\partial y^{l}}\left(\frac{\partial}{\partial x^{j}}\left(\frac{1}{2} \delta^{2}(x) \frac{\partial x^{j}}{\partial y^{i}}\right)\right) / \tilde{y}=0 \\
& =\frac{\partial^{2}}{\partial x^{i} \partial x^{s}}\left(\frac{1}{2} \delta^{2}\right)(x) \frac{\partial x^{j}}{\partial y^{i}} \frac{\partial x^{s}}{\partial y^{l}} / \tilde{y}=0+\frac{\partial}{\partial x^{j}}\left(\delta^{2}\right)(x) \frac{\partial^{2} x^{s}}{\partial y^{i} \partial y^{l}} / \tilde{y}=0
\end{aligned}
$$

Now using the fact that

$$
\frac{\partial x^{s}}{\partial y^{l}} / \tilde{y}=0=g_{l s}=\delta_{l s} \quad \text { and } \quad \frac{\partial}{\partial x^{j}}\left(\delta^{2}\right)(x) / \tilde{y}=0=0
$$

we obtain

$$
\begin{aligned}
\Lambda_{i l} y^{i} y^{l} & =y^{i} y^{s} \frac{\partial^{2}}{\partial x^{i} \partial x^{s}}\left(\frac{1}{2} \delta^{2}\right)(x) / \tilde{y}=0 \\
& =|\tilde{y}|^{2}
\end{aligned}
$$

where we have used the fact that the matrix $\left(\frac{\partial^{2}}{\partial x^{i} \partial x^{s}}\left(\frac{1}{2} \delta^{2}\right)(x) / \tilde{y}=0\right)_{1<i, s \leq N}$ is the matrix of the orthogonal projection onto the normal space of $\bar{T}_{f}^{P}(\bar{y})$ 源. Hence using (10), we get

$$
\delta^{2}(x(y))=|\tilde{y}|^{2}+\mathcal{O}\left(|\tilde{y}|^{3}\right)
$$

This together with (8) prove the first expansion.
(2) Thanks to (8) and (6), we infer that

$$
\nabla \tilde{\delta} \cdot \nabla d(x(y))=\frac{\partial \tilde{\delta}(x(y))}{\partial y^{1}}=\frac{y^{1}}{|\tilde{y}|}=\frac{d(x(y))}{\tilde{\delta}(x(y))}
$$

as desired.
(3) We observe that

$$
\frac{\partial \tilde{\delta}}{\partial x^{\tau}} \frac{\partial \tilde{\delta}}{\partial x^{\tau}}(x(y))=g^{\tau \alpha}(y) g^{\tau \beta}(y) \frac{\partial \tilde{\delta}(x(y))}{\partial y^{\alpha}} \frac{\partial \tilde{\delta}(x(y))}{\partial y^{\beta}}
$$

where $\left(g^{\alpha \beta}\right)_{\alpha, \beta=1, \ldots, N}$ is the inverse of the matrix $\left(g_{\alpha \beta}\right)_{\alpha, \beta=1, \ldots, N}$. Therefore using (8) and (6), we get the result.
(4) Finally using the expansion of the Laplace-Beltrami operator Δ_{g}, see Lemma 3.3 in [16], applied to (8), we get the last estimate.

In the following of - only - this section, $q: \overline{\mathcal{U}} \rightarrow \mathbb{R}$ be such that

$$
\begin{equation*}
q \in C^{2}(\overline{\mathcal{U}}), \quad \text { and } \quad q \leq 1 \quad \text { on } \Sigma_{k} \tag{11}
\end{equation*}
$$

Let $M, a \in \mathbb{R}$, we consider the function

$$
\begin{equation*}
W_{a, M, q}(x)=X_{a}(\tilde{\delta}(x)) e^{M d(x)} d(x) \tilde{\delta}(x)^{\alpha(x)}, \tag{12}
\end{equation*}
$$

where

$$
X_{a}(t)=(-\log (t))^{a} \quad 0<t<1
$$

and

$$
\alpha(x)=\frac{k-N}{2}+\frac{N-k}{2} \sqrt{1-q(\sigma(\bar{x}))+\tilde{\delta}(x)} .
$$

In the above setting, the following useful result holds.
Lemma 2.2. As $\delta \rightarrow 0$, we have

$$
\begin{aligned}
\Delta W_{a, M, q} & =-\frac{(N-k)^{2}}{4} q \delta^{-2} W_{a, M, q}-2 a \sqrt{\tilde{\alpha}} X_{-1}(\delta) \delta^{-2} W_{a, M, q} \\
& +a(a-1) X_{-2}(\delta) \delta^{-2} W_{a, M, q}+\frac{h+2 M}{d} W_{a, M, q}+O\left(|\log (\delta)| \delta^{-\frac{3}{2}}\right) W_{a, M, q},
\end{aligned}
$$

where $\tilde{\alpha}(x)=\frac{(N-k)^{2}}{4}(1-q(\sigma(\bar{x}))+\tilde{\delta}(x))$ and $h=\Delta d$. Here the lower order term satisfies

$$
|O(r)| \leq C|r|,
$$

where C is a positive constant only depending on $a, M, \Sigma_{k}, \mathcal{U}$ and $\|q\|_{C^{2}(\mathcal{U})}$.
Proof. We put $s=\frac{(N-k)^{2}}{4}$. Let $w=\tilde{\delta}(x)^{\alpha(x)}$ then the following formula can be easily verified

$$
\begin{equation*}
\Delta w=w\left(\Delta \log (w)+|\nabla \log (w)|^{2}\right) \tag{13}
\end{equation*}
$$

WEIGHTED HARDY INEQUALITY WITH HIGHER DIMENSIONAL SINGULARITY ON THE BOUNDARY9

Since

$$
\log (w)=\alpha \log (\tilde{\delta})
$$

we get

$$
\begin{equation*}
\Delta \log (w)=\Delta \alpha \log (\tilde{\delta})+2 \nabla \alpha \cdot \nabla(\log (\tilde{\delta}))+\alpha \Delta \log (\tilde{\delta}) \tag{14}
\end{equation*}
$$

We have

$$
\begin{gather*}
\Delta \alpha=\Delta \sqrt{\tilde{\alpha}}=\sqrt{\tilde{\alpha}}\left(\frac{1}{2} \Delta \log (\tilde{\alpha})+\frac{1}{4}|\nabla \log (\tilde{\alpha})|^{2}\right) \tag{15}\\
\nabla \log (\tilde{\alpha})=\frac{\nabla \tilde{\alpha}}{\tilde{\alpha}}=\frac{-s \nabla(q \circ \sigma)+s \nabla \tilde{\delta}}{\tilde{\alpha}}
\end{gather*}
$$

and using the formula (13), we obtain

$$
\begin{aligned}
\Delta \log (\tilde{\alpha}) & =\frac{\Delta \tilde{\alpha}}{\tilde{\alpha}}-\frac{|\nabla \tilde{\alpha}|^{2}}{\tilde{\alpha}^{2}} \\
& =\frac{-s \Delta(q \circ \sigma)+s \Delta \tilde{\delta}}{\tilde{\alpha}}-\frac{s^{2}|\nabla(q \circ \sigma)|^{2}+s^{2}|\nabla \tilde{\delta}|^{2}}{\tilde{\alpha}^{2}}+2 s^{2} \frac{\nabla(q \circ \sigma) \cdot \nabla \tilde{\delta}}{\tilde{\alpha}^{2}}
\end{aligned}
$$

Putting the above in (15), we deduce that

$$
\begin{equation*}
\Delta \alpha=\frac{1}{2 \sqrt{\tilde{\alpha}}}\left(-s \Delta(q \circ \sigma)+s \Delta \tilde{\delta}-\frac{1}{2} \frac{s^{2}|\nabla(q \circ \sigma)|^{2}+s^{2}|\nabla \tilde{\delta}|^{2}-2 s^{2} \nabla(q \circ \sigma) \cdot \nabla \tilde{\delta}}{\tilde{\alpha}}\right) \tag{16}
\end{equation*}
$$

Using Lemma 2.1 and the fact that q is in $C^{2}(\overline{\mathcal{U}})$, together with (16) we get

$$
\begin{equation*}
\Delta \alpha=O\left(\tilde{\delta}^{-\frac{3}{2}}\right) \tag{17}
\end{equation*}
$$

On the other hand

$$
\nabla \alpha=\nabla \sqrt{\tilde{\alpha}}=\frac{1}{2} \frac{\nabla \tilde{\alpha}}{\sqrt{\tilde{\alpha}}}=-\frac{s}{2 \sqrt{\tilde{\alpha}}} \nabla(q \circ \sigma)+\frac{s}{2} \frac{\nabla \tilde{\delta}}{\sqrt{\tilde{\alpha}}}
$$

so that

$$
\nabla \alpha \cdot \nabla \tilde{\delta}=-\frac{s}{2 \sqrt{\tilde{\alpha}}} \nabla(q \circ \sigma) \cdot \nabla \tilde{\delta}+\frac{s}{2} \frac{|\nabla \tilde{\delta}|^{2}}{\sqrt{\tilde{\alpha}}}=O\left(\tilde{\delta}^{-\frac{1}{2}}\right)
$$

and from which we deduce that

$$
\begin{equation*}
\nabla \alpha \cdot \nabla \log (\tilde{\delta})=\frac{1}{\tilde{\delta}} \nabla \alpha \cdot \nabla \tilde{\delta}=O\left(\tilde{\delta}^{-\frac{3}{2}}\right) \tag{18}
\end{equation*}
$$

By Lemma 2.1 we have that

$$
\alpha \Delta \log (\tilde{\delta})=\alpha \frac{N-k-2}{\tilde{\delta}^{2}}(1+O(\tilde{\delta}))
$$

Taking back the above estimate together with (18) and (17) in (14), we get

$$
\begin{equation*}
\Delta \log (w)=\alpha \frac{N-k-2}{\tilde{\delta}^{2}}(1+O(\tilde{\delta}))+O\left(|\log (\tilde{\delta})| \tilde{\delta}^{-\frac{3}{2}}\right) \tag{19}
\end{equation*}
$$

We also have

$$
\nabla(\log (w))=\nabla(\alpha \log (\tilde{\delta}))=\alpha \frac{\nabla \tilde{\delta}}{\tilde{\delta}}+\log (\tilde{\delta}) \nabla \alpha
$$

and thus

$$
|\nabla(\log (w))|^{2}=\frac{\alpha^{2}}{\tilde{\delta}^{2}}+\frac{2 \alpha \log (\tilde{\delta})}{\tilde{\delta}} \nabla \tilde{\delta} \cdot \nabla \alpha+|\log (\tilde{\delta})|^{2}|\nabla \alpha|^{2}=\frac{\alpha^{2}}{\tilde{\delta}^{2}}+O\left(|\log (\tilde{\delta})| \tilde{\delta}^{-\frac{3}{2}}\right)
$$

Putting this together with (19) in (13), we conclude that

$$
\begin{equation*}
\frac{\Delta w}{w}=\alpha \frac{N-k-2}{\tilde{\delta}^{2}}+\frac{\alpha^{2}}{\tilde{\delta}^{2}}+O\left(|\log (\tilde{\delta})| \tilde{\delta}^{-\frac{3}{2}}\right) . \tag{20}
\end{equation*}
$$

Now we define the function

$$
v(x):=d(x) w(x)
$$

where we recall that d is the distance function to the boundary of \mathcal{U}. It is clear that

$$
\begin{equation*}
\Delta v=w \Delta d+d \Delta w+2 \nabla d \cdot \nabla w \tag{21}
\end{equation*}
$$

Notice that

$$
\nabla w=w \nabla \log (w)=w\left(\log (\tilde{\delta}) \nabla \alpha+\alpha \frac{\nabla \tilde{\delta}}{\tilde{\delta}}\right)
$$

and so

$$
\begin{equation*}
\nabla d \cdot \nabla w=w\left(\log (\tilde{\delta}) \nabla d \cdot \nabla \alpha+\frac{\alpha}{\tilde{\delta}} \nabla d \cdot \nabla \tilde{\delta}\right) \tag{22}
\end{equation*}
$$

Recall the second assertion of Lemma 2.1 that we rewrite as

$$
\begin{equation*}
\nabla d \cdot \nabla \tilde{\delta}=\frac{d}{\tilde{\delta}} \tag{23}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\nabla d \cdot \nabla \alpha=\nabla d \cdot\left(-\frac{s}{2 \sqrt{\tilde{\alpha}}} \nabla(q \circ \sigma)+\frac{s}{2} \frac{\nabla \tilde{\delta}}{\sqrt{\tilde{\alpha}}}\right)=\frac{s}{2 \sqrt{\tilde{\alpha}}} \frac{d}{\tilde{\delta}}-\frac{s}{2 \sqrt{\tilde{\alpha}}} \nabla d \cdot \nabla(q \circ \sigma) . \tag{24}
\end{equation*}
$$

Notice that if x is in a neighborhood of some point $P \in \Sigma_{k}$ one has

$$
\nabla d \cdot \nabla(q \circ \sigma)(x)=\frac{\partial}{\partial y^{1}} q(\sigma(\bar{x}))=\frac{\partial}{\partial y^{1}} q\left(f^{P}(\bar{y})\right)=0 .
$$

WEIGHTED HARDY INEQUALITY WITH HIGHER DIMENSIONAL SINGULARITY ON THE BOUNDARY1 This with (24) and (23) in (22) give

$$
\begin{align*}
\nabla d \cdot \nabla w & =w\left(O\left(\tilde{\delta}^{-\frac{3}{2}}|\log (\tilde{\delta})|\right) d+\frac{\alpha}{\tilde{\delta}^{2}} d\right) \\
& =v\left(O\left(\tilde{\delta}^{-\frac{3}{2}}|\log (\tilde{\delta})|\right)+\frac{\alpha}{\tilde{\delta}^{2}}\right) \tag{25}
\end{align*}
$$

From (20), (21) and (25) (recalling the expression of α above), we get immediately

$$
\begin{align*}
\Delta v & =\left(\alpha \frac{N-k}{\tilde{\delta}^{2}}+\frac{\alpha^{2}}{\tilde{\delta}^{2}}\right) v+O\left(|\log (\tilde{\delta})| \tilde{\delta}^{-\frac{3}{2}}\right) v+\frac{h}{d} v \\
& =\left(-\frac{(N-k)^{2}}{4} \frac{q(x)}{\tilde{\delta}^{2}}+O\left(|\log (\tilde{\delta})| \tilde{\delta}^{-\frac{3}{2}}\right)\right) v+\frac{h}{d} v, \tag{26}
\end{align*}
$$

where $h=\Delta d$. Here we have used the fact that $|q(x)-q(\sigma(\bar{x}))| \leq C \tilde{\delta}(x)$ for x in a neighborhood of Σ_{k}.
Recall that

$$
W_{a, M, q}(x)=X_{a}(\tilde{\delta}(x)) e^{M d(x)} v(x), \quad \text { with } \quad X_{a}(\tilde{\delta}(x)):=(-\log (\tilde{\delta}(x)))^{a}
$$

where M and a are two real numbers. We have

$$
\Delta W_{a, M, q}=X_{a}(\tilde{\delta}) \Delta\left(e^{M d} v\right)+2 \nabla X_{a}(\tilde{\delta}) \cdot \nabla\left(e^{M d} v\right)+e^{M d} v \Delta X_{a}(\tilde{\delta})
$$

and thus

$$
\begin{align*}
\Delta W_{a, M, q}= & X_{a}(\tilde{\delta}) e^{M d} \Delta v+X_{a}(\tilde{\delta}) \Delta\left(e^{M d}\right) v+2 X_{a}(\tilde{\delta}) \nabla v \cdot \nabla\left(e^{M d}\right) \\
& +2 \nabla X_{a}(\tilde{\delta}) \cdot\left(v \nabla\left(e^{M d}\right)+e^{M d} \nabla v\right)+e^{M d} v \Delta X_{a}(\tilde{\delta}) \tag{27}
\end{align*}
$$

We shall estimate term by term the above expression.
First we have form (26)

$$
\begin{equation*}
X_{a}(\tilde{\delta}) e^{M d} \Delta v=-\frac{(N-k)^{2}}{4} \frac{q}{\tilde{\delta}^{2}} W_{a, M, q}+\frac{h}{d} W_{a, M, q}+O\left(|\log (\tilde{\delta})| \tilde{\delta}^{-\frac{3}{2}}\right) W_{a, M, q} \tag{28}
\end{equation*}
$$

It is plain that

$$
\begin{equation*}
X_{a}(\tilde{\delta}) \Delta\left(e^{M d}\right) v=O(1) W_{a, M, q} \tag{29}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
\nabla v=w \nabla d+d \nabla w=w \nabla d+d\left(\log (\tilde{\delta}) \nabla \alpha+\alpha \frac{\nabla \tilde{\delta}}{\tilde{\delta}}\right) w \tag{30}
\end{equation*}
$$

From which and (23) we get

$$
\begin{align*}
X_{a}(\tilde{\delta}) \nabla v \cdot \nabla\left(e^{M d}\right) & =M X_{a}(\tilde{\delta}) e^{M d} w\left\{|\nabla d|^{2}+d\left(\log (\tilde{\delta}) \nabla d \cdot \nabla \alpha+\frac{\alpha}{\tilde{\delta}} \nabla \tilde{\delta} \cdot \nabla d\right)\right\} \\
& =M X_{a}(\tilde{\delta}) e^{M d} w\left\{1+O\left(|\log (\tilde{\delta})| \tilde{\delta}^{-\frac{1}{2}}\right) d+O\left(\tilde{\delta}^{-1}\right) d\right\} \\
& =W_{a, M, q}\left\{\frac{M}{d}+O\left(|\log (\tilde{\delta})| \tilde{\delta}^{-1}\right)\right\} \tag{31}
\end{align*}
$$

Observe that

$$
\nabla\left(X_{a}(\tilde{\delta})\right)=-a \frac{\nabla \tilde{\delta}}{\tilde{\delta}} X_{a-1}(\tilde{\delta})
$$

This with (30) and (23) imply that

$$
\begin{equation*}
\nabla X_{a}(\tilde{\delta}) \cdot\left(v \nabla\left(e^{M d}\right)+e^{M d} \nabla v\right)=-\frac{a(\alpha+1)}{\tilde{\delta}^{2}} X_{-1} W_{a, M, q}+O\left(|\log (\tilde{\delta})| \tilde{\delta}^{-\frac{3}{2}}\right) W_{a, M, q} \tag{32}
\end{equation*}
$$

By Lemma 2.1, we have

$$
\Delta\left(X_{a}(\tilde{\delta})\right)=\frac{a}{\tilde{\delta}^{2}} X_{a-1}(\tilde{\delta})\{2+k-N+O(\tilde{\delta})\}+\frac{a(a-1)}{\tilde{\delta}^{2}} X_{a-2}(\tilde{\delta})
$$

Therefore we obtain

$$
\begin{equation*}
e^{M d} v \Delta\left(X_{a}(\tilde{\delta})\right)=\frac{a}{\tilde{\delta}^{2}}\{2+k-N+O(\tilde{\delta})\} X_{-1} W_{a, M, q}+\frac{a(a-1)}{\tilde{\delta}^{2}} X_{-2} W_{a, M, q} \tag{33}
\end{equation*}
$$

Collecting (28), (29), (31), (32) and (33) in the expression (27), we get as $\tilde{\delta} \rightarrow 0$

$$
\begin{aligned}
\Delta W_{a, M, q} & =-\frac{(N-k)^{2}}{4} q \tilde{\delta}^{-2} W_{a, M, q}-2 a \sqrt{\tilde{\alpha}} X_{-1}(\tilde{\delta}) \tilde{\delta}^{-2} W_{a, M, q} \\
& +a(a-1) X_{-2}(\tilde{\delta}) \tilde{\delta}^{-2} W_{a, M, q}+\frac{h+2 M}{d} W_{a, M, q}+O\left(|\log (\tilde{\delta})| \tilde{\delta}^{-\frac{3}{2}}\right) W_{a, M, q}
\end{aligned}
$$

The conclusion of the lemma follows at once from the first assertion of Lemma 2.1.
2.1. Construction of a subsolution. For $\lambda \in \mathbb{R}$ and $\eta \in \operatorname{Lip}(\overline{\mathcal{U}})$ with $\eta=0$ on Σ_{k}, we define the operator

$$
\begin{equation*}
\mathcal{L}_{\lambda}:=-\Delta-\frac{(N-k)^{2}}{4} q \delta^{-2}+\lambda \eta \delta^{-2} \tag{34}
\end{equation*}
$$

where q is as in (11). We have the following lemma

Lemma 2.3. There exist two positive constants M_{0}, β_{0} such that for all $\beta \in\left(0, \beta_{0}\right)$ the function $V_{\varepsilon}:=W_{-1, M_{0}, q}+W_{0, M_{0}, q-\varepsilon}$ (see (12)) satisfies

$$
\begin{equation*}
\mathcal{L}_{\lambda} V_{\varepsilon} \leq 0 \quad \text { in } \mathcal{U}_{\beta}, \quad \text { for all } \varepsilon \in[0,1) \tag{35}
\end{equation*}
$$

Moreover $V_{\varepsilon} \in H^{1}\left(\mathcal{U}_{\beta}\right)$ for any $\varepsilon \in(0,1)$ and in addition

$$
\begin{equation*}
\int_{\mathcal{U}_{\beta}} \frac{V_{0}^{2}}{\delta^{2}} d x \geq C \int_{\Sigma_{k}} \frac{1}{\sqrt{1-q(\sigma)}} d \sigma \tag{36}
\end{equation*}
$$

Proof. Let β_{1} be a positive small real number so that d is smooth in $\mathcal{U}_{\beta_{1}}$. We choose

$$
M_{0}=\max _{x \in \overline{\mathcal{U}}_{\beta_{1}}}|h(x)|+1
$$

Using this and Lemma 2.2, for some $\beta \in\left(0, \beta_{1}\right)$, we have

$$
\begin{equation*}
\mathcal{L}_{\lambda} W_{-1, M_{0}, q} \leq\left(-2 \delta^{-2} X_{-2}+C|\log (\delta)| \delta^{-\frac{3}{2}}+|\lambda| \eta \delta^{-2}\right) W_{-1, M_{0}, q} \quad \text { in } \mathcal{U}_{\beta} \tag{37}
\end{equation*}
$$

Using the fact that the function η vanishes on Σ_{k} (this implies in particular that $|\eta| \leq C \delta$ in \mathcal{U}_{β}), we have

$$
\mathcal{L}_{\lambda}\left(W_{-1, M_{0}, q}\right) \leq-\delta^{-2} X_{-2} W_{-1, M_{0}, q}=-\delta^{-2} X_{-3} W_{0, M_{0}, q} \quad \text { in } \mathcal{U}_{\beta}
$$

for β sufficiently small. Again by Lemma 2.2, and similar arguments as above, we have

$$
\begin{equation*}
\mathcal{L}_{\lambda} W_{0, M_{0}, q-\varepsilon} \leq C|\log (\delta)| \delta^{-\frac{3}{2}} W_{0, M_{0}, q-\varepsilon} \leq C|\log (\delta)| \delta^{-\frac{3}{2}} W_{0, M_{0}, q} \quad \text { in } \mathcal{U}_{\beta} \tag{38}
\end{equation*}
$$

for any $\varepsilon \in[0,1)$. Therefore we get

$$
\mathcal{L}_{\lambda}\left(W_{-1, M_{0}, q}+W_{0, M_{0}, q-\varepsilon}\right) \leq 0 \quad \text { in } \mathcal{U}_{\beta}
$$

if β is small. This proves (35).
The proof of the fact that $W_{a, M_{0}, q} \in H^{1}\left(\mathcal{U}_{\beta}\right)$, for any $a<-\frac{1}{2}$ and $W_{0, M_{0}, q-\varepsilon} \in$ $H^{1}\left(\mathcal{U}_{\beta}\right)$, for $\varepsilon>0$ can be easily checked using polar coordinates (by assuming without any loss of generality that $M_{0}=0$ and $q \equiv 1$), we therefore skip it.
We now prove the last statement of the theorem. Using Lemma 2.1, we have

$$
\begin{aligned}
\int_{\mathcal{U}_{\beta}} \frac{V_{0}^{2}}{\delta^{2}} d x & \geq \int_{\mathcal{U}_{\beta}} \frac{W_{0, M_{0}, q}^{2}}{\delta^{2}} d x \\
& \geq C \int_{\mathcal{U}_{\beta}\left(\Sigma_{k}\right)} d^{2}(x) \tilde{\delta}(x)^{2 \alpha(x)-2} d x \\
& \geq C \sum_{i=1}^{N_{0}} \int_{T_{i}} d^{2}(x) \tilde{\delta}(x)^{2 \alpha(x)-2} d x \\
& =C \sum_{i=1}^{N_{0}} \int_{B_{+}^{N-k}(0, \beta) \times D_{i}}\left(y^{1}\right)^{2}|\tilde{y}|^{2 \alpha\left(F_{\mathcal{M}}^{\left.p_{i}(y)\right)-2}\left|\operatorname{Jac}\left(F_{\mathcal{M}}^{p_{i}}\right)\right|(y) d y\right.} \\
& \geq C \sum_{i=1}^{N_{0}} \int_{B_{+}^{N-k}(0, \beta) \times D_{i}}\left(y^{1}\right)^{2}|\tilde{y}|^{k-N-2+(N-k) \sqrt{1-q\left(f^{\left.p_{i}(\tilde{y})\right)}\right.}}|\tilde{y}|^{-\sqrt{\mid \tilde{y}}} d y .
\end{aligned}
$$

Here we used the fact that $\left|\operatorname{Jac}\left(F_{\mathcal{M}}^{p_{i}}\right)\right|(y) \geq C$. Observe that

$$
|\tilde{y}|^{-\sqrt{|\tilde{y}|} \geq C>0 \quad \text { as } \quad|\tilde{y}| \rightarrow 0 . ~}
$$

Using polar coordinates, the above integral becomes

$$
\begin{aligned}
\int_{\mathcal{U}_{\beta}} \frac{V_{0}^{2}}{\delta^{2}} d x & \geq C \sum_{i=1}^{N_{0}} \int_{D_{i}} \int_{S_{+}^{N-k-1}}\left(\frac{y^{1}}{|\tilde{y}|}\right)^{2} d \theta \int_{0}^{\beta} r^{-1+(N-k) \sqrt{1-q\left(f^{\left.p_{i}(\bar{y})\right)}\right.} d \bar{y}} \\
& \geq C \sum_{i=1}^{N_{0}} \int_{D_{i}} \int_{0}^{r_{i_{1}}} r^{-1+(N-k) \sqrt{1-q\left(f^{\left.p_{i}(\bar{y})\right)}\right.}\left|\operatorname{Jac}\left(f^{p_{i}}\right)\right|(\bar{y}) d \bar{y}} .
\end{aligned}
$$

We therefore obtain

$$
\begin{aligned}
\int_{\mathcal{U}_{\beta}} \frac{V_{0}^{2}}{\delta^{2}} d x & \geq C \int_{\Sigma_{k}} \int_{0}^{\beta} r^{-1+(N-k) \sqrt{1-q(\sigma)}} d r d \sigma \\
& \geq C \int_{\Sigma_{k}} \frac{1}{\sqrt{1-q(\sigma)}} d \sigma
\end{aligned}
$$

This concludes the proof of the lemma.
2.2. Construction of a supersolution. In this subsection we provide a supersolution for the operator \mathcal{L}_{λ} defined in (34). We prove

Lemma 2.4. There exist constants $\beta_{0}>0, M_{1}<0, M_{0}>0$ (the constant M_{0} is as in Lemma 2.3) such that for all $\beta \in\left(0, \beta_{0}\right)$ the function $U:=W_{0, M_{1}, q}-W_{-1, M_{0}, q}>0$ in \mathcal{U}_{β} and satisfies

$$
\begin{equation*}
\mathcal{L}_{\lambda} U_{a} \geq 0 \quad \text { in } \mathcal{U}_{\beta} \tag{39}
\end{equation*}
$$

Moreover $U \in H^{1}\left(\mathcal{U}_{\beta}\right)$ provided

$$
\begin{equation*}
\int_{\Sigma_{k}} \frac{1}{\sqrt{1-q(\sigma)}} d \sigma<+\infty \tag{40}
\end{equation*}
$$

Proof. We consider β_{1} as in the beginning of the proof of Lemma 2.3 and we define

$$
\begin{equation*}
M_{1}=-\frac{1}{2} \max _{x \in \overline{\mathcal{U}}_{\beta_{1}}}|h(x)|-1 \tag{41}
\end{equation*}
$$

Since

$$
U(x)=\left(e^{M_{1} d(x)}-e^{M_{0} d(x)} X_{-1}(\tilde{\delta}(x))\right) d(x) \tilde{\delta}(x)^{\alpha(x)}
$$

it follows that $U>0$ in \mathcal{U}_{β} for $\beta>0$ sufficiently small. By (41) and Lemma 2.2 , we get

$$
\mathcal{L}_{\lambda} W_{0, M_{1}, q} \geq\left(-C|\log (\delta)| \delta^{-\frac{3}{2}}-|\lambda| \eta \delta^{-2}\right) W_{0, M_{1}, q}
$$

Using (37) we have

$$
\mathcal{L}_{\lambda}\left(-W_{-1, M_{0}, q}\right) \geq\left(2 \delta^{-2} X_{-2}-C|\log (\delta)| \delta^{-\frac{3}{2}}-|\lambda| \eta \delta^{-2}\right) W_{-1, M_{0}, q}
$$

Taking the sum of the two above inequalities, we obtain

$$
\mathcal{L}_{\lambda} U \geq 0 \quad \text { in } \mathcal{U}_{\beta}
$$

which holds true because $|\eta| \leq C \delta$ in \mathcal{U}_{β}. Hence we get readily (39).
Our next task is to prove that $U \in H^{1}\left(\mathcal{U}_{\beta}\right)$ provided (40) holds, to do so it is enough to show that $W_{0, M_{1}, q} \in H^{1}\left(\mathcal{U}_{\beta}\right)$ provided (40) holds.

We argue as in the proof of Lemma 2.3. We have

$$
\begin{aligned}
\int_{\mathcal{U}_{\beta}}\left|\nabla W_{0, M_{1}, q}\right|^{2} & \leq C \int_{\mathcal{U}_{\beta}} d^{2}(x) \tilde{\delta}(x)^{2 \alpha(x)-2} d x \\
& \leq C \sum_{i=1}^{N_{0}} \int_{B_{+}^{N-k}(0, \beta) \times D_{i}} d^{2}\left(F_{\mathcal{M}}^{p_{i}}(y)\right) \tilde{\delta}\left(F_{\mathcal{M}}^{p_{i}}(y)\right)^{2 \alpha\left(F_{\mathcal{M}}^{p_{i}}(y)\right)-2}\left|\operatorname{Jac}\left(F_{\mathcal{M}}^{p_{i}}\right)\right|(y) d y \\
& \leq C \sum_{i=1}^{N_{0}} \int_{B_{+}^{N-k}(0, \beta) \times D_{i}}\left(y^{1}\right)^{2}|\tilde{y}|^{2 \alpha\left(F_{\mathcal{M}}^{p_{i}}(y)\right)-2}\left|\operatorname{Jac}\left(F_{\mathcal{M}}^{p_{i}}\right)\right|(y) d y \\
& \leq C \sum_{i=1}^{N_{0}} \int_{B_{+}^{N-k}(0, \beta) \times D_{i}}\left(y^{1}\right)^{2}|\tilde{y}|^{k-N-2+(N-k) \sqrt{1-q\left(f^{p_{i}}(\tilde{y})\right)}}|\tilde{y}|^{-\sqrt{|\tilde{y}|} \mid} d y .
\end{aligned}
$$

Here we used the fact that $\left|\operatorname{Jac}\left(F_{\mathcal{M}}^{p_{i}}\right)\right|(y) \leq C$. Note that

$$
|\tilde{y}|^{-\sqrt{\mid \tilde{y}} \mid} \leq C \quad \text { as }|\tilde{y}| \rightarrow 0 .
$$

Using polar coordinates, it follows that

$$
\begin{aligned}
\int_{\mathcal{U}_{\beta}}\left|\nabla W_{0, M_{1}, q}\right|^{2} & \leq C \sum_{i=1}^{N_{0}} \int_{D_{i}} \int_{S_{+}^{N-k-1}}\left(\frac{y^{1}}{|\tilde{y}|}\right)^{2} d \theta \int_{0}^{\beta} r^{-1+(N-k) \sqrt{1-q\left(f^{p_{i}}(\bar{y})\right)}} d r d \bar{y} \\
& \leq C \sum_{i=1}^{N_{0}} \int_{D_{i}} \frac{1}{\sqrt{1-q\left(f^{p_{i}}(\bar{y})\right)}} d \bar{y}
\end{aligned}
$$

Racalling that $\left|\operatorname{Jac}\left(f^{p_{i}}\right)\right|(\bar{y})=1+O(|\bar{y}|)$, we deduce that

$$
\begin{aligned}
\sum_{i=1}^{N_{0}} \int_{D_{i}} \frac{1}{\sqrt{1-q\left(f^{p_{i}}(\bar{y})\right)}} d \bar{y} & \leq C \sum_{i=1}^{N_{0}} \int_{D_{i}} \frac{1}{\sqrt{1-q\left(f^{p_{i}}(\bar{y})\right)}}|\operatorname{Jac}(f)|(\bar{y}) d \bar{y} \\
& =C \int_{\Sigma_{k}} \frac{1}{\sqrt{1-q(\sigma)}} d \sigma
\end{aligned}
$$

Therefore

$$
\int_{\mathcal{U}_{\beta}}\left|\nabla W_{0, M_{1}, q}\right|^{2} d x \leq C \int_{\Sigma_{k}} \frac{1}{\sqrt{1-q(\sigma)}} d \sigma
$$

and the lemma follows at once.

WEIGHTED HARDY INEQUALITY WITH HIGHER DIMENSIONAL SINGULARITY ON THE BOUNDARY7

3. Existence of λ^{*}

We start with the following local improved Hardy inequality.
Lemma 3.1. Let Ω be a smooth domain and assume that $\partial \Omega$ contains a smooth closed submanifold Σ_{k} of dimension $1 \leq k \leq N-2$. Assume that p, q and η satisfy (2) and (3). Then there exist constants $\beta_{0}>0$ and $c>0$ depending only on $\Omega, \Sigma_{k}, q, \eta$ and p such that for all $\beta \in\left(0, \beta_{0}\right)$ the inequality

$$
\int_{\Omega_{\beta}} p|\nabla u|^{2} d x-\frac{(N-k)^{2}}{4} \int_{\Omega_{\beta}} q \frac{|u|^{2}}{\delta^{2}} d x \geq c \int_{\Omega_{\beta}} \frac{|u|^{2}}{\delta^{2}|\log (\delta)|^{2}} d x
$$

holds for all $u \in H_{0}^{1}\left(\Omega_{\beta}\right)$.
Proof. We use the notations in Section 2 with $\mathcal{U}=\Omega$ and $\mathcal{M}=\partial \Omega$.
Fix $\beta_{1}>0$ small and

$$
\begin{equation*}
M_{2}=-\frac{1}{2} \max _{x \in \bar{\Omega}_{\beta_{1}}}(|h(x)|+|\nabla p \cdot \nabla d|)-1 \tag{42}
\end{equation*}
$$

Since $\frac{p}{q} \in C^{1}(\bar{\Omega})$, there exists $C>0$ such that

$$
\begin{equation*}
\left|\frac{p(x)}{q(x)}-\frac{p(\sigma(\bar{x}))}{q(\sigma(\bar{x}))}\right| \leq C \delta(x) \quad \forall x \in \Omega_{\beta} \tag{43}
\end{equation*}
$$

for small $\beta>0$. Hence by (3) there exits a constant $C^{\prime}>0$ such that

$$
\begin{equation*}
p(x) \geq q(x)-C^{\prime} \delta(x) \quad \forall x \in \Omega_{\beta} \tag{44}
\end{equation*}
$$

Consider $W_{\frac{1}{2}, M_{2}, 1}$ (in Lemma 2.2 with $q \equiv 1$). For all $\beta>0$ small, we set

$$
\begin{equation*}
\tilde{w}(x)=W_{\frac{1}{2}, M_{2}, 1}(x), \quad \forall x \in \Omega_{\beta} \tag{45}
\end{equation*}
$$

Notice that $\operatorname{div}(p \nabla \tilde{w})=p \Delta \tilde{w}+\nabla p \cdot \nabla \tilde{w}$. By Lemma 2.2, we have

$$
-\frac{\operatorname{div}(p \nabla \tilde{w})}{\tilde{w}} \geq \frac{(N-k)^{2}}{4} p \delta^{-2}+\frac{p}{4} \delta^{-2} X_{-2}(\delta)+O\left(|\log (\delta)| \delta^{-\frac{3}{2}}\right) \text { in } \Omega_{\beta}
$$

This together with (44) yields

$$
-\frac{\operatorname{div}(p \nabla \tilde{w})}{\tilde{w}} \geq \frac{(N-k)^{2}}{4} q \delta^{-2}+\frac{c_{0}}{4} \delta^{-2} X_{-2}(\delta)+O\left(|\log (\delta)| \delta^{-\frac{3}{2}}\right) \text { in } \Omega_{\beta}
$$

with $c_{0}=\min \overline{\Omega_{\beta_{1}}} p>0$. Therefore

$$
\begin{equation*}
-\frac{\operatorname{div}(p \nabla \tilde{w})}{\tilde{w}} \geq \frac{(N-k)^{2}}{4} q \delta^{-2}+c \delta^{-2} X_{-2}(\delta) \text { in } \Omega_{\beta} \tag{46}
\end{equation*}
$$

for some positive constant c depending only on $\Omega, \Sigma_{k}, q, \eta$ and p.
Let $u \in C_{c}^{\infty}\left(\Omega_{\beta}\right)$ and put $\psi=\frac{u}{\tilde{w}}$. Then one has $|\nabla u|^{2}=|\tilde{w} \nabla \psi|^{2}+|\psi \nabla \tilde{w}|^{2}+$ $\nabla\left(\psi^{2}\right) \cdot \tilde{w} \nabla \tilde{w}$. Therefore $|\nabla u|^{2} p=|\tilde{w} \nabla \psi|^{2} p+p \nabla \tilde{w} \cdot \nabla\left(\tilde{w} \psi^{2}\right)$. Integrating by parts, we get

$$
\int_{\Omega_{\beta}}|\nabla u|^{2} p d x=\int_{\Omega_{\beta}}|\tilde{w} \nabla \psi|^{2} p d x+\int_{\Omega_{\beta}}\left(-\frac{\operatorname{div}(p \nabla \tilde{w})}{\tilde{w}}\right) u^{2} d x
$$

Putting (46) in the above equality, we get the result.
We next prove the following result
Lemma 3.2. Let Ω be a smooth bounded domain and assume that $\partial \Omega$ contains a smooth closed submanifold Σ_{k} of dimension $1 \leq k \leq N-2$. Assume that (2) and (3) hold. Then there exists $\lambda^{*}=\lambda^{*}\left(\Omega, \Sigma_{k}, p, q, \eta\right) \in \mathbb{R}$ such that

$$
\begin{array}{ll}
\mu_{\lambda}\left(\Omega, \Sigma_{k}\right)=\frac{(N-k)^{2}}{4}, & \forall \lambda \leq \lambda^{*} \\
\mu_{\lambda}\left(\Omega, \Sigma_{k}\right)<\frac{(N-k)^{2}}{4}, & \forall \lambda>\lambda^{*}
\end{array}
$$

Proof. We devide the proof in two steps
Step 1: We claim that:

$$
\begin{equation*}
\sup _{\lambda \in \mathbb{R}} \mu_{\lambda}\left(\Omega, \Sigma_{k}\right) \leq \frac{(N-k)^{2}}{4} \tag{47}
\end{equation*}
$$

Indeed, we know that $\nu_{0}\left(\mathbb{R}_{+}^{N}, \mathbb{R}^{k}\right)=\frac{(N-k)^{2}}{4}$, see [15] for instance. Given $\tau>0$, we let $u_{\tau} \in C_{c}^{\infty}\left(\mathbb{R}_{+}^{N}\right)$ be such that

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{N}}\left|\nabla u_{\tau}\right|^{2} d y \leq\left(\frac{(N-k)^{2}}{4}+\tau\right) \int_{\mathbb{R}_{+}^{N}}|\tilde{y}|^{-2} u_{\tau}^{2} d y \tag{48}
\end{equation*}
$$

By (3), we can let $\sigma_{0} \in \Sigma_{k}$ be such that

$$
q\left(\sigma_{0}\right)=p\left(\sigma_{0}\right)
$$

Now, given $r>0$, we let $\rho_{r}>0$ such that for all $x \in B\left(\sigma_{0}, \rho_{r}\right) \cap \Omega$

$$
\begin{equation*}
p(x) \leq(1+r) q\left(\sigma_{0}\right), \quad q(x) \geq(1-r) q\left(\sigma_{0}\right) \quad \text { and } \quad \eta(x) \leq r . \tag{49}
\end{equation*}
$$

We choose Fermi coordinates near $\sigma_{0} \in \Sigma_{k}$ given by the map $F_{\partial \Omega}^{\sigma_{0}}$ (as in Section 2) and we choose $\varepsilon_{0}>0$ small such that, for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$,

$$
\Lambda_{\varepsilon, \rho, r, \tau}:=F_{\partial \Omega}^{\sigma_{0}}\left(\varepsilon \operatorname{Supp}\left(\mathrm{u}_{\tau}\right)\right) \subset B\left(\sigma_{0}, \rho_{r}\right) \cap \Omega
$$

WEIGHTED HARDY INEQUALITY WITH HIGHER DIMENSIONAL SINGULARITY ON THE BOUNDARY9 and we define the following test function

$$
v(x)=\varepsilon^{\frac{2-N}{2}} u_{\tau}\left(\varepsilon^{-1}\left(F_{\partial \Omega}^{\sigma_{0}}\right)^{-1}(x)\right), \quad x \in \Lambda_{\varepsilon, \rho, r, \tau}
$$

Clearly, for every $\varepsilon \in\left(0, \varepsilon_{0}\right)$, we have that $v \in C_{c}^{\infty}(\Omega)$ and thus by a change of variable, (49) and Lemma 2.1, we have

$$
\begin{aligned}
\mu_{\lambda}\left(\Omega, \Sigma_{k}\right) \leq & \frac{\int_{\Omega} p|\nabla v|^{2} d x+\lambda \int_{\Omega} \delta^{-2} \eta v^{2} d x}{\int_{\Omega} q(x) \delta^{-2} v^{2} d x} \\
\leq & \frac{(1+r) \int_{\Lambda_{\varepsilon, \rho, r, \tau}}|\nabla v|^{2} d x}{(1-r) \int_{\Lambda_{\varepsilon, \rho, r, \tau}} \delta^{-2} v^{2} d x}+\frac{r|\lambda|}{(1-r) q\left(\sigma_{0}\right)} \\
\leq & \frac{(1+r) \int_{\Lambda_{\varepsilon, \rho, r, \tau}}|\nabla v|^{2} d x}{(1-c r) \int_{\Lambda_{\varepsilon, \rho, r, \tau}} \tilde{\delta}^{-2} v^{2} d x}+\frac{r|\lambda|}{(1-r) q\left(\sigma_{0}\right)} \\
\leq & \frac{(1+r) \varepsilon^{2-N} \int_{\mathbb{R}_{+}^{N}} \varepsilon^{-2}\left(g^{\varepsilon}\right)^{i j} \partial_{i} u_{\tau} \partial_{j} u_{\tau} \mid \sqrt{\left|g^{\varepsilon}\right|}(y) d y}{(1-c r) \int_{\mathbb{R}_{+}^{N}} \varepsilon^{2-N}|\varepsilon \tilde{y}|^{-2} u_{\tau}^{2} \sqrt{\left|g^{\varepsilon}\right|}(\tilde{y}) d y}
\end{aligned}
$$

where g^{ε} is the scaled metric with components $g_{\alpha \beta}^{\varepsilon}(y)=\varepsilon^{-2}\left\langle\partial_{\alpha} F_{\partial \Omega}^{\sigma_{0}}(\varepsilon y), \partial_{\beta} F_{\partial \Omega}^{\sigma_{0}}(\varepsilon y)\right\rangle$ for $\alpha, \beta=1, \ldots, N$ and where we have used the fact that $\tilde{\delta}\left(F_{\partial \Omega}^{\sigma_{0}}(\varepsilon y)\right)=|\varepsilon \tilde{y}|^{2}$ for every \tilde{y} in the support of u_{τ}. Since the scaled metric g^{ε} expands a $g^{\varepsilon}=I+O(\varepsilon)$ on the support of u_{τ}, we deduce that

$$
\mu_{\lambda}\left(\Omega, \Sigma_{k}\right) \leq \frac{1+r}{1-c r} \frac{1+c \varepsilon}{1-c \varepsilon} \frac{\int_{\mathbb{R}_{+}^{N}}\left|\nabla u_{\tau}\right|^{2} d y}{\int_{\mathbb{R}_{+}^{N}}|\tilde{y}|^{-2} u_{\tau}^{2} d y}+\frac{c r}{1-r}
$$

where c is a positive constant depending only on Ω, p, q, η and Σ_{k}. Hence by (48) we conclude

$$
\mu_{\lambda}\left(\Omega, \Sigma_{k}\right) \leq \frac{1+r}{1-c r} \frac{1+c \varepsilon}{1-c \varepsilon}\left(\frac{(N-k)^{2}}{4}+\tau\right)+\frac{c r}{1-r}
$$

Taking the limit in ε, then in r and then in τ, the claim follows.
Step 2: We claim that there exists $\tilde{\lambda} \in \mathbb{R}$ such that $\mu_{\tilde{\lambda}}\left(\Omega, \Sigma_{k}\right) \geq \frac{(N-k)^{2}}{4}$.
Thanks to Lemma 3.1, the proof uses a standard argument of cut-off function and integration by parts (see [4]) and we can obtain

$$
\int_{\Omega} \delta^{-2} u^{2} q d x \leq \int_{\Omega}|\nabla u|^{2} p d x+C \int_{\Omega} \delta^{-2} u^{2} \eta d x \quad \forall u \in C_{c}^{\infty}(\Omega)
$$

for some constant $C>0$. We skip the details. The claim now follows by choosing $\tilde{\lambda}=-C$

Finally, noticing that $\mu_{\lambda}\left(\Omega, \Sigma_{k}\right)$ is decreasing in λ, we can set

$$
\begin{equation*}
\lambda^{*}:=\sup \left\{\lambda \in \mathbb{R}: \mu_{\lambda}\left(\Omega, \Sigma_{k}\right)=\frac{(N-k)^{2}}{4}\right\} \tag{50}
\end{equation*}
$$

so that $\mu_{\lambda}\left(\Omega, \Sigma_{k}\right)<\frac{(N-k)^{2}}{4}$ for all $\lambda>\lambda^{*}$.

4. Non-existence result

Lemma 4.1. Let Ω be a smooth bounded domain of $\mathbb{R}^{N}, N \geq 3$, and let Σ_{k} be a smooth closed submanifold of $\partial \Omega$ of dimension k with $1 \leq k \leq N-2$. Then, there exist bounded smooth domains $\Omega^{ \pm}$such that $\Omega^{+} \subset \Omega \subset \Omega^{-}$and

$$
\partial \Omega^{+} \cap \partial \Omega=\partial \Omega^{-} \cap \partial \Omega=\Sigma_{k}
$$

Proof. Consider the maps

$$
x \mapsto g^{ \pm}(x):=d_{\partial \Omega}(x) \pm \frac{1}{2} \delta^{2}(x),
$$

where $d_{\partial \Omega}$ is the distance function to $\partial \Omega$. For some $\beta_{1}>0$ small, $g^{ \pm}$are smooth in $\Omega_{\beta_{1}}$ and since $\left|\nabla g^{ \pm}\right| \geq C>0$ on Σ_{k}, by the implicit function theorem, the sets

$$
\left\{x \in \Omega_{\beta}: g^{ \pm}=0\right\}
$$

are smooth ($N-1$)-dimensional submanifolds of \mathbb{R}^{N}, for some $\beta>0$ small. In addition, by construction, they can be taken to be part of the boundaries of smooth bounded domains $\Omega^{ \pm}$with $\Omega^{+} \subset \Omega \subset \Omega^{-}$and such that

$$
\partial \Omega^{+} \cap \partial \Omega=\partial \Omega^{-} \cap \partial \Omega=\Sigma_{k}
$$

The prove then follows at once.
Now, we prove the following non-existence result.
Theorem 4.2. Let Ω be a smooth bounded domain of \mathbb{R}^{N} and let Σ_{k} be a smooth closed submanifold of $\partial \Omega$ of dimension k with $1 \leq k \leq N-2$ and let $\lambda \geq 0$. Assume that p, q and η satisfy (2) and (3). Suppose that $u \in H_{0}^{1}(\Omega) \cap C(\Omega)$ is a non-negative function satisfying

$$
\begin{equation*}
-\operatorname{div}(p \nabla u)-\frac{(N-k)^{2}}{4} q \delta^{-2} u \geq-\lambda \eta \delta^{-2} u \quad \text { in } \Omega \tag{51}
\end{equation*}
$$

If $\int_{\Sigma_{k}} \frac{1}{\sqrt{1-p(\sigma) / q(\sigma)}} d \sigma=+\infty$ then $u \equiv 0$.
Proof. We first assume that $p \equiv 1$. Let Ω^{+}be the set given by Lemma 4.1. We will use the notations in Section 2 with $\mathcal{U}=\Omega^{+}$and $\mathcal{M}=\partial \Omega^{+}$. For $\beta>0$ small we define

$$
\Omega_{\beta}^{+}:=\left\{x \in \Omega^{+}: \quad \delta(x)<\beta\right\} .
$$

We suppose by contradiction that u does not vanish identically near Σ_{k} and satisfies (51) so that $u>0$ in Ω_{β} by the maximum principle, for some $\beta>0$ small.

Consider the subsolution V_{ε} defined in Lemma 2.3 which satisfies

$$
\begin{equation*}
\mathcal{L}_{\lambda} V_{\varepsilon} \leq 0 \quad \text { in } \Omega_{\beta}^{+}, \quad \forall \varepsilon \in(0,1) \tag{52}
\end{equation*}
$$

Notice that $\overline{\partial \Omega_{\beta}^{+} \cap \Omega^{+}} \subset \Omega$ thus, for $\beta>0$ small, we can choose $R>0$ (independent on ε) so that

$$
R V_{\varepsilon} \leq R V_{0} \leq u \quad \text { on } \overline{\partial \Omega_{\beta}^{+} \cap \Omega^{+}} \quad \forall \varepsilon \in(0,1)
$$

Again by Lemma 2.3, setting $v_{\varepsilon}=R V_{\varepsilon}-u$, it turns out that $v_{\varepsilon}^{+}=\max \left(v_{\varepsilon}, 0\right) \in$ $H_{0}^{1}\left(\Omega_{\beta}^{+}\right)$because $V_{\varepsilon}=0$ on $\partial \Omega_{\beta}^{+} \backslash \overline{\partial \Omega_{\beta}^{+} \cap \Omega^{+}}$. Moreover by (51) and (52),

$$
\mathcal{L}_{\lambda} v_{\varepsilon} \leq 0 \quad \text { in } \Omega_{\beta}^{+}, \quad \forall \varepsilon \in(0,1)
$$

Multiplying the above inequality by v_{ε}^{+}and integrating by parts yields

$$
\int_{\Omega_{\beta}^{+}}\left|\nabla v_{\varepsilon}^{+}\right|^{2} d x-\frac{(N-k)^{2}}{4} \int_{\Omega_{\beta}^{+}} \delta^{-2} q\left|v_{\varepsilon}^{+}\right|^{2} d x+\lambda \int_{\Omega_{\beta}^{+}} \eta \delta^{-2}\left|v_{\varepsilon}^{+}\right|^{2} d x \leq 0 .
$$

But then Lemma 3.1 implies that $v_{\varepsilon}^{+}=0$ in Ω_{β}^{+}provided β small enough because $|\eta| \leq C \delta$ near Σ_{k}. Therefore $u \geq R V_{\varepsilon}$ for every $\varepsilon \in(0,1)$. In particular $u \geq R V_{0}$. Hence we obtain from Lemma 2.3 that

$$
\infty>\int_{\Omega_{\beta}^{+}} \frac{u^{2}}{\delta^{2}} \geq R^{2} \int_{\Omega_{\beta}^{+}} \frac{V_{0}^{2}}{\delta^{2}} \geq \int_{\Sigma_{k}} \frac{1}{\sqrt{1-q(\sigma)}} d \sigma
$$

which leads to a contradiction. We deduce that $u \equiv 0$ in Ω_{β}^{+}. Thus by the maximum principle $u \equiv 0$ in Ω.
For the general case $p \neq 1$, we argue as in [5] by setting

$$
\begin{equation*}
\tilde{u}=\sqrt{p} u \tag{53}
\end{equation*}
$$

This function satisfies

$$
-\Delta \tilde{u}-\frac{(N-k)^{2}}{4} \frac{q}{p} \delta^{-2} \tilde{u} \geq-\lambda \frac{\eta}{p} \delta^{-2} \tilde{u}+\left(-\frac{\Delta p}{2 p}+\frac{|\nabla p|^{2}}{4 p^{2}}\right) \tilde{u} \quad \text { in } \Omega .
$$

Hence since $p \in C^{2}(\bar{\Omega})$ and $p>0$ in $\bar{\Omega}$, we get the same conclusions as in the case $p \equiv 1$ and q replaced by q / p.

5. Existence of minimizers for $\mu_{\lambda}\left(\Omega, \Sigma_{k}\right)$

Theorem 5.1. Let Ω be a smooth bounded domain of \mathbb{R}^{N} and let Σ_{k} be a smooth closed submanifold of $\partial \Omega$ of dimension k with $1 \leq k \leq N-2$. Assume that p, q and η satisfy (2) and (3). Then $\mu_{\lambda}\left(\Omega, \Sigma_{k}\right)$ is achieved for every $\lambda<\lambda^{*}$.

Proof. The proof follows the same argument of [4] by taking into account the fact that $\eta=0$ on Σ_{k} so we skip it.

Next, we prove the existence of minimizers in the critical case $\lambda=\lambda_{*}$.
Theorem 5.2. Let Ω be a smooth bounded domain of \mathbb{R}^{N} and let Σ_{k} be a smooth closed submanifold of $\partial \Omega$ of dimension k with $1 \leq k \leq N-2$. Assume that p, q and η satisfy (2) and (3). If $\int_{\Sigma_{k}} \frac{1}{\sqrt{1-p(\sigma) / q(\sigma)}} d \sigma<\infty$ then $\mu_{\lambda^{*}}=\mu_{\lambda^{*}}\left(\Omega, \Sigma_{k}\right)$ is achieved.

Proof. We first consider the case $p \equiv 1$.
Let λ_{n} be a sequence of real numbers decreasing to λ^{*}. By Theorem 5.1, there exits u_{n} minimizers for $\mu_{\lambda_{n}}=\mu_{\lambda_{n}}\left(\Omega, \Sigma_{k}\right)$ so that

$$
\begin{equation*}
-\Delta u_{n}-\mu_{\lambda_{n}} \delta^{-2} q u_{n}=-\lambda_{n} \delta^{-2} \eta u_{n} \quad \text { in } \Omega \tag{54}
\end{equation*}
$$

We may assume that $u_{n} \geq 0$ in Ω. We may also assume that $\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}=1$. Hence $u_{n} \rightharpoonup u$ in $H_{0}^{1}(\Omega)$ and $u_{n} \rightarrow u$ in $L^{2}(\Omega)$ and pointwise. Let $\Omega^{-} \supset \Omega$ be the set given by Lemma 4.1. We will use the notations in Section 2 with $\mathcal{U}=\Omega^{-}$and $\mathcal{M}=\partial \Omega^{-}$. It will be understood that q is extended to a function in $C^{2}\left(\overline{\Omega^{-}}\right)$. For $\beta>0$ small we define

$$
\Omega_{\beta}^{-}:=\left\{x \in \Omega^{-}: \quad \delta(x)<\beta\right\}
$$

We have that

$$
\Delta u_{n}+b_{n}(x) u_{n}=0 \quad \text { in } \Omega
$$

with $\left|b_{n}\right| \leq C$ in $\overline{\Omega \backslash \overline{\Omega_{\frac{\beta}{2}}^{-}}}$for all integer n. Thus by standard elliptic regularity theory,

$$
\begin{equation*}
u_{n} \leq C \quad \text { in } \overline{\Omega \backslash \overline{\Omega_{\frac{\beta}{2}}^{-}}} \tag{55}
\end{equation*}
$$

We consider the supersolution U in Lemma 2.4. We shall show that there exits a constant $C>0$ such that for all $n \in \mathbb{N}$

$$
\begin{equation*}
u_{n} \leq C U \quad \text { in } \overline{\Omega_{\beta}^{-}} \tag{56}
\end{equation*}
$$

Notice that $\overline{\Omega \cap \partial \Omega_{\beta}^{-}} \subset \Omega^{-}$thus by (55), we can choose $C>0$ so that for any n

$$
u_{n} \leq C U \quad \text { on } \overline{\Omega \cap \partial \Omega_{\beta}^{-}}
$$

Again by Lemma 2.4, setting $v_{n}=u_{n}-C U$, it turns out that $v_{n}^{+}=\max \left(v_{n}, 0\right) \in$ $H_{0}^{1}\left(\Omega_{\beta}^{-}\right)$because $u_{n}=0$ on $\partial \Omega \cap \Omega_{\beta}^{-}$. Hence we have

$$
\mathcal{L}_{\lambda_{n}} v_{n} \leq-C\left(\mu_{\lambda^{*}}-\mu_{n}\right) q U-C\left(\lambda^{*}-\lambda_{n}\right) \eta U \leq 0 \quad \text { in } \Omega_{\beta}^{-} \cap \Omega
$$

Multiplying the above inequality by v_{n}^{+}and integrating by parts yields

$$
\int_{\Omega_{\beta}^{-}}\left|\nabla v_{n}^{+}\right|^{2} d x-\mu_{\lambda_{n}} \int_{\Omega_{\beta}^{-}} \delta^{-2} q\left|v_{n}^{+}\right|^{2} d x+\lambda_{n} \int_{\Omega_{\beta}^{-}} \eta \delta^{-2}\left|v_{n}^{+}\right|^{2} d x \leq 0
$$

Hence Lemma 3.1 implies that

$$
C \int_{\Omega_{\beta}^{-}} \delta^{-2} X_{-2}\left|v_{n}^{+}\right|^{2} d x+\lambda_{n} \int_{\Omega_{\beta}^{-}} \eta \delta^{-2}\left|v_{n}^{+}\right|^{2} d x \leq 0
$$

Since λ_{n} is bounded, we can choose $\beta>0$ small (independent of n) such that $v_{n}^{+} \equiv 0$ on Ω_{β}^{-}(recall that $|\eta| \leq C \delta$). Thus we obtain (56).
Now since $u_{n} \rightarrow u$ in $L^{2}(\Omega)$, we get by the dominated convergence theorem and (56), that

$$
\delta^{-1} u_{n} \rightarrow \delta^{-1} u \quad \text { in } L^{2}(\Omega)
$$

Since u_{n} satisfies

$$
1=\int_{\Omega}\left|\nabla u_{n}\right|^{2}=\mu_{\lambda_{n}} \int_{\Omega} \delta^{-2} q u_{n}^{2}+\lambda_{n} \int_{\Omega} \delta^{-2} \eta u_{n}^{2}
$$

taking the limit, we have $1=\mu_{\lambda^{*}} \int_{\Omega} \delta^{-2} q u^{2}+\lambda^{*} \int_{\Omega} \delta^{-2} \eta u^{2}$. Hence $u \neq 0$ and it is a minimizer for $\mu_{\lambda^{*}}=\frac{(N-k)^{2}}{4}$.
For the general case $p \neq 1$, we can use the same transformation as in (53). So (56) holds and the same argument as a above carries over.

6. Proof of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1: Combining Lemma 3.2 and Theorem 5.1, it remains only to check the case $\lambda<\lambda^{*}$. But this is an easy consequence of the definition of λ^{*} and of $\mu_{\lambda}\left(\Omega, \Sigma_{k}\right)$, see [[4], Section 3].

Proof of Theorem 1.2: Existence is proved in Theorem 5.2 for $I_{k}<\infty$. Since the absolute value of any minimizer for $\mu_{\lambda}\left(\Omega, \Sigma_{k}\right)$ is also a minimizer, we can apply Theorem 4.2 to infer that $\mu_{\lambda^{*}}\left(\Omega, \Sigma_{k}\right)$ is never achieved as soon as $I_{k}=\infty$.

Acknowledgments

This work started when the first author was visiting CMM, Universidad de Chile. He is grateful for their kind hospitality. M. M. Fall is supported by the Alexander-von-Humboldt Foundation. F. Mahmoudi is supported by the Fondecyt proyect n: 1100164 and Fondo Basal CMM.

References

[1] Adimurthi and Sandeep K., Existence and non-existence of the first eigenvalue of the perturbed Hardy-Sobolev operator. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), no. 5, 1021-1043.
[2] Bandle C., Moroz V.. Reichel W., Large solutions to semilinear elliptic equations with Hardy potential and exponential nonlinearity. Around the research of Vladimir Maz'ya. II, 1-22, Int. Math. Ser. (N. Y.), 12, Springer, New York, 2010.
[3] Bandle C., Moroz V.. Reichel W., 'Boundary blowup' type sub-solutions to semilinear elliptic equations with Hardy potential. J. Lond. Math. Soc. (2) 77 (2008), no. 2, 503-523.
[4] Brezis H. and Marcus M., Hardy's inequalities revisited. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 217-237.
[5] Brezis H., Marcus M. and Shafrir I., Extermal functions for Hardy's inequality with weight, J. Funct. Anal. 171 (2000), 177-191.
[6] Caldiroli P., Musina R., On a class of 2-dimensional singular elliptic problems. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 479-497.
[7] Caldiroli P., Musina R., Stationary states for a two-dimensional singular Schrödinger equation. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 4-B (2001), 609-633.
[8] Cazacu C., On Hardy inequalities with singularities on the boundary. C. R. Math. Acad. Sci. Paris 349 (2011), no. 5-6, 273-277.
[9] Fall M. M., Nonexistence of distributional supersolutions of a semilinear elliptic equation with Hardy potential. To appear in J. Funct. Anal. http://arxiv.org/abs/1105.5886.
[10] Fall M. M., On the Hardy-Poincaré inequality with boundary singularities. Commun. Contemp. Math., 14, 1250019, 2012.
[11] Fall M. M., A note on Hardy's inequalities with boundary singularities. Nonlinear Anal. 75 (2012) no. 2, 951-963.
[12] Fall M. M., Musina R., Hardy-Poincaré inequalities with boundary singularities. Proc. Roy. Soc. Edinburgh. A 142, 1-18, 2012.
[13] Fall M. M., Musina R., Sharp nonexistence results for a linear elliptic inequality involving Hardy and Leray potentials. Journal of Inequalities and Applications, vol. 2011, Article ID 917201, 21 pages, 2011. doi:10.1155/2011/917201.
[14] Fall M. M., Mahmoudi F., Hypersurfaces with free boundary and large constant mean curvature: concentration along submanifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), no. 3, 407-446.
[15] Filippas S., Tertikas A. and Tidblom J., On the structure of Hardy-Sobolev-Maz'ya inequalities. J. Eur. Math. Soc., 11(6), (2009), 1165-1185.
[16] Mahmoudi F., Malchiodi A., Concentration on minimal submanifolds for a singularly perturbed Neumann problem, Adv. in Math. 209 (2007) 460-525.
[17] Nazarov A. I., Hardy-Sobolev Inequalities in a cone, J. Math. Sciences, 132, (2006), (4), 419427.
[18] Nazarov A. I., Dirichlet and Neumann problems to critical Emden-Fowler type equations. J. Glob. Optim. (2008) 40, 289-303.
[19] Pinchover Y., Tintarev K., Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy's inequality. Indiana Univ. Math. J. 54 (2005), 10611074.
M.M. Fall - Goethe-Universität Frankfurt, Institut für Mathematik. Robert-Mayer-Str. 10 D-60054 Frankfurt, Germany.

E-mail address: fall@math.uni-frankfurt.de
F. Mahmoudi - Departamento de Ingenieria Matemática and CMM, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile.

E-mail address: fmahmoudi@dim.uchile.cl

