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WEIGHTED HARDY INEQUALITY WITH HIGHER

DIMENSIONAL SINGULARITY ON THE BOUNDARY

MOUHAMED MOUSTAPHA FALL AND FETHI MAHMOUDI

Abstract. Let Ω be a smooth bounded domain in R
N with N ≥ 3 and let Σk be a closed smooth

submanifold of ∂Ω of dimension 1 ≤ k ≤ N − 2. In this paper we study the weighted Hardy

inequality with weight function singular on Σk. In particular we provide necessary and sufficient

conditions for existence of minimizers.

Key Words: Hardy inequality, extremals, existence, non-existence, Fermi coordinates.

1. Introduction

Let Ω be a smooth bounded domain of RN , N ≥ 2 and let Σk be a smooth closed

submanifold of ∂Ω with dimension 0 ≤ k ≤ N − 1. Here Σ0 is a single point and

ΣN−1 = ∂Ω. For λ ∈ R, consider the problem of finding minimizers for the quotient:

µλ(Ω,Σk) := inf
u∈H1

0
(Ω)

∫

Ω
|∇u|2p dx− λ

∫

Ω
δ−2|u|2η dx

∫

Ω
δ−2|u|2q dx

, (1)

where δ(x) := dist(x,Σk) is the distance function to Σk and where the weights p, q

and η satisfy

p, q ∈ C2(Ω), p, q > 0 in Ω, η > 0 in Ω \Σk, η ∈ Lip(Ω) (2)

and

max
Σk

q

p
= 1, η = 0 on Σk . (3)

We put

Ik =

∫

Σk

dσ
√

1− (q(σ)/p(σ))
, 1 ≤ k ≤ N − 1 and I0 = ∞. (4)
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It was shown by Brezis and Marcus in [4] that there exists λ∗ such that if λ > λ∗

then µλ(Ω,ΣN−1) <
1
4 and it is attained while for λ ≤ λ∗, µλ(Ω,ΣN−1) =

1
4 and it

is not achieved for every λ < λ∗. The critical case λ = λ∗ was studied by Brezis,

Marcus and Shafrir in [5], where they proved that µλ∗(Ω,ΣN−1) admits a minimizer

if and only if IN−1 < ∞. The case where k = 0 (Σ0 is reduced to a point on the

boundary) was treated by the first author in [10] and the same conclusions hold

true.

Here we obtain the following

Theorem 1.1. Let Ω be a smooth bounded domain of RN , N ≥ 3 and let Σk ⊂ ∂Ω be

a closed submanifold of dimension k ∈ [1, N − 2]. Assume that the weight functions

p, q and η satisfy (2) and (3). Then, there exists λ∗ = λ∗(p, q, η,Ω,Σk) such that

µλ(Ω,Σk) =
(N − k)2

4
, ∀λ ≤ λ∗,

µλ(Ω,Σk) <
(N − k)2

4
, ∀λ > λ∗.

The infinimum µλ(Ω,Σk) is attained if λ > λ∗ and it is not attained when λ < λ∗.

Concerning the critical case we get

Theorem 1.2. Let λ∗ be given by Theorem 1.1 and consider Ik defined in (4). Then

µλ∗(Ω,Σk) is achieved if and only if Ik <∞.

By choosing p = q ≡ 1 and η = δ2, we obtain the following consequence of the

above theorems.

Corollary 1.3. Let Ω be a smooth bounded domain of RN , N ≥ 3 and Σk ⊂ ∂Ω be

a closed submanifold of dimension k ∈ {1, · · · , N − 2}. For λ ∈ R, put

νλ(Ω,Σk) = inf
u∈H1

0
(Ω)

∫

Ω
|∇u|2 dx− λ

∫

Ω
|u|2 dx

∫

Ω
δ−2|u|2 dx

,

Then, there exists λ̄ = λ̄(Ω,Σk) such that

νλ(Ω,Σk) =
(N − k)2

4
, ∀λ ≤ λ̄,

νλ(Ω,Σk) <
(N − k)2

4
, ∀λ > λ̄.
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Moreover νλ(Ω,Σk) is attained if and only if λ > λ̄.

The proof of the above theorems are mainly based on the construction of appro-

priate sharp H1-subsolution and H1-supersolutions for the corresponding operator

Lλ := −∆− (N − k)2

4
qδ−2 + λδ−2η

(with p ≡ 1). These super-sub-solutions are perturbations of an approximate “vir-

tual” ground-state for the Hardy constant (N−k)2

4 near Σk. For that we will consider

the projection distance function δ̃ defined near Σk as

δ̃(x) :=

√

|dist∂Ω(x,Σk)|2 + |x− x|2,

where x is the orthogonal projection of x on ∂Ω and dist∂Ω(·,Σk) is the geodesic

distance to Σk on ∂Ω endowed with the induced metric. While the distances δ and

δ̃ are equivalent, ∆δ and ∆δ̃ differ and δ does not, in general, provide the right

approximate solution for k ≤ N − 2. Letting d∂Ω = dist(·, ∂Ω), we have

δ̃(x) :=

√

|dist∂Ω(x,Σk)|2 + d∂Ω(x)2.

Our approximate virtual ground-state near Σk reads then as

x 7→ d∂Ω(x) δ̃
k−N

2 (x). (5)

In some appropriate Fermi coordinates y = (y1, y2, . . . , yN−k, yN−k+1, . . . , yN ) =

(ỹ, ȳ) ∈ R
N with ỹ = (y1, y2, . . . , yN−k) ∈ R

N−k (see next section for precise defini-

tion), the function in (5) then becomes

y 7→ y1|ỹ|k−N
2

which is the ”virtual” ground-state for the Hardy constant (N−k)2

4 in the flat case

Σk = R
k and Ω = R

N . We refer to Section 2 for more details about the constructions

of the super-sub-solutions.

The proof of the existence part in Theorem 1.2 is inspired from [5]. It amounts to

obtain a uniform control of a specific minimizing sequence for µλ∗(Ω,Σk) near Σk

via the H1-super-solution constructed.

We mention that the existence and non-existence of extremals for (1) and related

problems were studied in [1, 6, 7, 8, 11, 12, 13, 17, 18, 19] and some references

therein. We would like to mention that some of the results in this paper might of
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interest in the study of semilinear equations with a Hardy potential singular at a

submanifold of the boundary. We refer to [9, 2, 3], where existence and nonexistence

for semilinear problems were studied via the method of super/sub-solutions.

2. Preliminaries and Notations

In this section we collect some notations and conventions we are going to use

throughout the paper.

Let U be an open subset of RN , N ≥ 3, with boundary M := ∂U a smooth closed

hypersurface of RN . Assume that M contains a smooth closed submanifold Σk of

dimension 1 ≤ k ≤ N − 2. In the following, for x ∈ R
N , we let d(x) be the distance

function of M and δ(x) the distance function of Σk. We denote by NM the unit

normal vector field of M pointed into U .
Given P ∈ Σk, the tangent space TPM of M at P splits as

TPM = TPΣk ⊕NPΣk,

where TPΣk is the tangent space of Σk and NPΣk stands for the normal space of

TPΣk at P . We assume that the basis of these subspaces are spanned respectively

by
(

Ea

)

a=N−k+1,··· ,N
and

(

Ei

)

i=2,··· ,N−k
. We will assume that NM(P ) = E1.

A neighborhood of P in Σk can be parameterized via the map

ȳ 7→ fP (ȳ) = ExpΣk

P (

N
∑

a=N−k+1

yaEa),

where, ȳ = (yN−k+1, · · · , yN ) and where ExpΣk

P is the exponential map at P in

Σk endowed with the metric induced by M. Next we extend (Ei)i=2,··· ,N−k to an

orthonormal frame (Xi)i=2,··· ,N−k in a neighborhood of P . We can therefore define

the parameterization of a neighborhood of P in M via the mapping

(y̆, ȳ) 7→ hPM(y̆, ȳ) := ExpMfP (ȳ)

(

N−k
∑

i=2

yiXi

)

,

with y̆ = (y2, · · · , yN−k) and ExpMQ is the exponential map at Q in M endowed

with the metric induced by R
N . We now have a parameterization of a neighborhood

of P in R
N defined via the above Fermi coordinates by the map

y = (y1, y̆, ȳ) 7→ FP
M(y1, y̆, ȳ) = hPM(y̆, ȳ) + y1NM(hPM(y̆, ȳ)).
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Next we denote by g the metric induced by FP
M whose components are defined by

gαβ(y) = 〈∂αFP
M(y), ∂βF

P
M(y)〉.

Then we have the following expansions (see for instance [14])

g11(y) = 1

g1β(y) = 0, for β = 2, · · · , N
gαβ(y) = δαβ +O(|ỹ|), for α, β = 2, · · · , N,

(6)

where ỹ = (y1, y̆) andO(rm) is a smooth function in the variable y which is uniformly

bounded by a constant (depending only M and Σk) times rm.

In concordance to the above coordinates, we will consider the “half”-geodesic

neighborhood contained in U around Σk of radius ρ

Uρ(Σk) := {x ∈ U : δ̃(x) < ρ}, (7)

with δ̃ is the projection distance function given by

δ̃(x) :=

√

|distM(x,Σk)|2 + |x− x|2,

where x is the orthogonal projection of x on M and distM(·,Σk) is the geodesic

distance to Σk on M with the induced metric. Observe that

δ̃(FP
M(y)) = |ỹ|, (8)

where ỹ = (y1, y̆). We also define σ(x) to be the orthogonal projection of x on Σk

within M. Letting

δ̂(x) := distM(x,Σk),

one has

x = ExpMσ(x)(δ̂∇δ̂) or equivalently σ(x) = ExpMx (−δ̂∇δ̂).

Next we observe that

δ̃(x) =

√

δ̂2(x̄) + d2(x). (9)

In addition it can be easily checked via the implicit function theorem that there

exists a positive constant β0 = β0(Σk,Ω) such that δ̃ ∈ C∞(Uβ0
(Σk)).
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It is clear that for ρ sufficiently small, there exists a finite number of Lipschitz

open sets (Ti)1≤i≤N0
such that

Ti ∩ Tj = ∅ for i 6= j and Uρ(Σk) =

N0
⋃

i=1

Ti.

We may assume that each Ti is chosen, using the above coordinates, so that

Ti = F pi
M(BN−k

+ (0, ρ) ×Di) with pi ∈ Σk,

where the Di’s are Lipschitz disjoint open sets of Rk such that

N0
⋃

i=1

fpi(Di) = Σk.

In the above setting we have

Lemma 2.1. As δ̃ → 0, the following expansions hold

(1) δ2 = δ̃2(1 +O(δ̃)),

(2) ∇δ̃ · ∇d =
d

δ̃
,

(3) |∇δ̃| = 1 +O(δ̃),

(4) ∆δ̃ = N−k−1
δ̃

+O(1),

where O(rm) is a function for which there exists a constant C = C(M,Σk) such

that

|O(rm)| ≤ Crm.

Proof.

(1) Let P ∈ Σk. With an abuse of notation, we write x(y) = FP
M(y) and we set

ϑ(y) :=
1

2
δ2(x(y)).

The function ϑ is smooth in a small neighborhood of the origin in R
N and

Taylor expansion yields

ϑ(y) = ϑ(0, ȳ)ỹ +∇ϑ(0, ȳ)[ỹ] + 1

2
∇2ϑ(0, ȳ)[ỹ, ỹ] +O(‖ỹ‖3)

=
1

2
∇2ϑ(0, ȳ)[ỹ, ỹ] +O(‖ỹ‖3). (10)
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Here we have used the fact that x(0, ȳ) ∈ Σk so that δ(x(0, ȳ)) = 0. We

write

∇2ϑ(0, ȳ)[ỹ, ỹ] =

N−k
∑

i,l=1

Λily
iyl,

with

Λil :=
∂2ϑ

∂yi∂yl
/ỹ=0

=
∂

∂yl

(

∂

∂xj
(
1

2
δ2(x)

∂xj

∂yi
)

)

/ỹ=0

=
∂2

∂xi∂xs
(
1

2
δ2)(x)

∂xj

∂yi
∂xs

∂yl
/ỹ=0 +

∂

∂xj
(δ2)(x)

∂2xs

∂yi∂yl
/ỹ=0.

Now using the fact that

∂xs

∂yl
/ỹ=0 = gls = δls and

∂

∂xj
(δ2)(x)/ỹ=0 = 0,

we obtain

Λily
iyl = yiys

∂2

∂xi∂xs
(
1

2
δ2)(x)/ỹ=0

= |ỹ|2,

where we have used the fact that the matrix
(

∂2

∂xi∂xs (
1
2δ

2)(x)/ỹ=0

)

1≤i,s≤N
is

the matrix of the orthogonal projection onto the normal space of TfP (ȳ)Σk.

Hence using (10), we get

δ2(x(y)) = |ỹ|2 +O(|ỹ|3).

This together with (8) prove the first expansion.

(2) Thanks to (8) and (6), we infer that

∇δ̃ · ∇d(x(y)) = ∂δ̃(x(y))

∂y1
=
y1

|ỹ| =
d(x(y))

δ̃(x(y))

as desired.

(3) We observe that

∂δ̃

∂xτ
∂δ̃

∂xτ
(x(y)) = gτα(y)gτβ(y)

∂δ̃(x(y))

∂yα
∂δ̃(x(y))

∂yβ
,
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where (gαβ)α,β=1,...,N is the inverse of the matrix (gαβ)α,β=1,...,N . Therefore

using (8) and (6), we get the result.

(4) Finally using the expansion of the Laplace-Beltrami operator ∆g, see Lemma

3.3 in [16], applied to (8), we get the last estimate.

In the following of – only – this section, q : U → R be such that

q ∈ C2(U), and q ≤ 1 on Σk. (11)

Let M,a ∈ R, we consider the function

Wa,M,q(x) = Xa(δ̃(x)) e
Md(x) d(x) δ̃(x)α(x), (12)

where

Xa(t) = (− log(t))a 0 < t < 1

and

α(x) =
k −N

2
+
N − k

2

√

1− q(σ(x̄)) + δ̃(x).

In the above setting, the following useful result holds.

Lemma 2.2. As δ → 0, we have

∆Wa,M,q = −(N − k)2

4
q δ−2Wa,M,q − 2 a

√
α̃X−1(δ) δ

−2Wa,M,q

+ a(a− 1)X−2(δ) δ
−2Wa,M,q +

h+ 2M

d
Wa,M,q +O(| log(δ)| δ− 3

2 )Wa,M,q,

where α̃(x) = (N−k)2

4

(

1− q(σ(x)) + δ̃(x)
)

and h = ∆d. Here the lower order term

satisfies

|O(r)| ≤ C|r|,
where C is a positive constant only depending on a,M,Σk,U and ‖q‖C2(U).

Proof. We put s = (N−k)2

4 . Let w = δ̃(x)α(x) then the following formula can be

easily verified

∆w = w

(

∆ log(w) + |∇ log(w)|2
)

. (13)
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Since

log(w) = α log(δ̃),

we get

∆ log(w) = ∆α log(δ̃) + 2∇α · ∇(log(δ̃)) + α∆ log(δ̃). (14)

We have

∆α = ∆
√
α̃ =

√
α̃

(

1

2
∆ log(α̃) +

1

4
|∇ log(α̃)|2

)

, (15)

∇ log(α̃) =
∇α̃
α̃

=
−s∇(q ◦ σ) + s∇δ̃

α̃
and using the formula (13), we obtain

∆ log(α̃) =
∆α̃

α̃
− |∇α̃|2

α̃2

=
−s∆(q ◦ σ) + s∆δ̃

α̃
− s2|∇(q ◦ σ)|2 + s2|∇δ̃|2

α̃2
+ 2s2

∇(q ◦ σ) · ∇δ̃
α̃2

.

Putting the above in (15), we deduce that

∆α =
1

2
√
α̃

(

− s∆(q ◦ σ) + s∆δ̃ − 1

2

s2|∇(q ◦ σ)|2 + s2|∇δ̃|2 − 2s2∇(q ◦ σ) · ∇δ̃
α̃

)

.

(16)

Using Lemma 2.1 and the fact that q is in C2(U), together with (16) we get

∆α = O(δ̃−
3

2 ). (17)

On the other hand

∇α = ∇
√
α̃ =

1

2

∇α̃√
α̃

= − s

2
√
α̃
∇(q ◦ σ) + s

2

∇δ̃√
α̃

so that

∇α · ∇δ̃ = − s

2
√
α̃
∇(q ◦ σ) · ∇δ̃ + s

2

|∇δ̃|2√
α̃

= O(δ̃−
1

2 )

and from which we deduce that

∇α · ∇ log(δ̃) =
1

δ̃
∇α · ∇δ̃ = O(δ̃−

3

2 ). (18)

By Lemma 2.1 we have that

α∆ log(δ̃) = α
N − k − 2

δ̃2
(1 +O(δ̃)).
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Taking back the above estimate together with (18) and (17) in (14), we get

∆ log(w) = α
N − k − 2

δ̃2
(1 +O(δ̃)) +O(| log(δ̃)|δ̃− 3

2 ). (19)

We also have

∇(log(w)) = ∇(α log(δ̃)) = α
∇δ̃
δ̃

+ log(δ̃)∇α

and thus

|∇(log(w))|2 =
α2

δ̃2
+

2α log(δ̃)

δ̃
∇δ̃ · ∇α+ | log(δ̃)|2|∇α|2 = α2

δ̃2
+O(| log(δ̃)|δ̃− 3

2 ).

Putting this together with (19) in (13), we conclude that

∆w

w
= α

N − k − 2

δ̃2
+
α2

δ̃2
+O(| log(δ̃)| δ̃− 3

2 ). (20)

Now we define the function

v(x) := d(x)w(x),

where we recall that d is the distance function to the boundary of U . It is clear that

∆v = w∆d+ d∆w + 2∇d · ∇w. (21)

Notice that

∇w = w∇ log(w) = w

(

log(δ̃)∇α+ α
∇δ̃
δ̃

)

and so

∇d · ∇w = w

(

log(δ̃)∇d · ∇α+
α

δ̃
∇d · ∇δ̃

)

. (22)

Recall the second assertion of Lemma 2.1 that we rewrite as

∇d · ∇δ̃ = d

δ̃
. (23)

Therefore

∇d · ∇α = ∇d ·
(

− s

2
√
α̃
∇(q ◦ σ) + s

2

∇δ̃√
α̃

)

=
s

2
√
α̃

d

δ̃
− s

2
√
α̃
∇d · ∇(q ◦ σ). (24)

Notice that if x is in a neighborhood of some point P ∈ Σk one has

∇d · ∇(q ◦ σ)(x) = ∂

∂y1
q(σ(x)) =

∂

∂y1
q(fP (y)) = 0.
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This with (24) and (23) in (22) give

∇d · ∇w = w

(

O(δ̃−
3

2 | log(δ̃)|) d+ α

δ̃2
d

)

= v

(

O(δ̃−
3

2 | log(δ̃)|) + α

δ̃2

)

. (25)

From (20), (21) and (25) (recalling the expression of α above), we get immediately

∆v =

(

α
N − k

δ̃2
+
α2

δ̃2

)

v +O(| log(δ̃)| δ̃− 3

2 ) v +
h

d
v

=

(

−(N − k)2

4

q(x)

δ̃2
+O(| log(δ̃)| δ̃− 3

2 )

)

v +
h

d
v, (26)

where h = ∆d. Here we have used the fact that |q(x)− q(σ(x̄))| ≤ Cδ̃(x) for x in a

neighborhood of Σk.

Recall that

Wa,M,q(x) = Xa(δ̃(x)) e
Md(x) v(x), with Xa(δ̃(x)) := (− log(δ̃(x)))a,

where M and a are two real numbers. We have

∆Wa,M,q = Xa(δ̃)∆(eMd v) + 2∇Xa(δ̃) · ∇(eMd v) + eMd v∆Xa(δ̃)

and thus

∆Wa,M,q = Xa(δ̃)e
Md ∆v +Xa(δ̃)∆(eMd) v + 2Xa(δ̃)∇v · ∇(eMd)

+ 2∇Xa(δ̃) ·
(

v∇(eMd) + eMd∇v
)

+ eMd v∆Xa(δ̃).
(27)

We shall estimate term by term the above expression.

First we have form (26)

Xa(δ̃)e
Md ∆v = −(N − k)2

4

q

δ̃2
Wa,M,q +

h

d
Wa,M,q +O(| log(δ̃)| δ̃− 3

2 )Wa,M,q. (28)

It is plain that

Xa(δ̃)∆(eMd) v = O(1)Wa,M,q. (29)

It is clear that

∇v = w∇d+ d∇w = w∇d+ d

(

log(δ̃)∇α+ α
∇δ̃
δ̃

)

w. (30)
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From which and (23) we get

Xa(δ̃)∇v · ∇(eMd) = M Xa(δ̃) e
Md w

{

|∇d|2 + d

(

log(δ̃)∇d · ∇α+
α

δ̃
∇δ̃ · ∇d

)}

= M Xa(δ̃) e
Md w

{

1 +O(| log(δ̃)| δ̃− 1

2 ) d+O(δ̃−1) d
}

= Wa,M,q

{

M

d
+O(| log(δ̃)| δ̃−1)

}

. (31)

Observe that

∇(Xa(δ̃)) = −a ∇δ̃
δ̃
Xa−1(δ̃).

This with (30) and (23) imply that

∇Xa(δ̃) ·
(

v∇(eMd) + eMd∇v
)

= −a(α+ 1)

δ̃2
X−1Wa,M,q +O(| log(δ̃)|δ̃− 3

2 )Wa,M,q.

(32)

By Lemma 2.1, we have

∆(Xa(δ̃)) =
a

δ̃2
Xa−1(δ̃){2 + k −N +O(δ̃)}+ a(a− 1)

δ̃2
Xa−2(δ̃).

Therefore we obtain

eMdv∆(Xa(δ̃)) =
a

δ̃2
{2 + k −N +O(δ̃)}X−1Wa,M,q +

a(a− 1)

δ̃2
X−2Wa,M,q. (33)

Collecting (28), (29), (31), (32) and (33) in the expression (27), we get as δ̃ → 0

∆Wa,M,q = −(N − k)2

4
q δ̃−2Wa,M,q − 2 a

√
α̃X−1(δ̃) δ̃

−2Wa,M,q

+ a(a− 1)X−2(δ̃) δ̃
−2Wa,M,q +

h+ 2M

d
Wa,M,q +O(| log(δ̃)| δ̃− 3

2 )Wa,M,q.

The conclusion of the lemma follows at once from the first assertion of Lemma 2.1.

2.1. Construction of a subsolution. For λ ∈ R and η ∈ Lip(U) with η = 0 on

Σk, we define the operator

Lλ := −∆− (N − k)2

4
q δ−2 + λ η δ−2, (34)

where q is as in (11). We have the following lemma
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Lemma 2.3. There exist two positive constants M0, β0 such that for all β ∈ (0, β0)

the function Vε :=W−1,M0,q +W0,M0,q−ε (see (12)) satisfies

LλVε ≤ 0 in Uβ, for all ε ∈ [0, 1). (35)

Moreover Vε ∈ H1(Uβ) for any ε ∈ (0, 1) and in addition

∫

Uβ

V 2
0

δ2
dx ≥ C

∫

Σk

1
√

1− q(σ)
dσ. (36)

Proof. Let β1 be a positive small real number so that d is smooth in Uβ1
. We

choose

M0 = max
x∈Uβ1

|h(x)|+ 1.

Using this and Lemma 2.2, for some β ∈ (0, β1), we have

LλW−1,M0,q ≤
(

−2δ−2X−2 + C| log(δ)| δ− 3

2 + |λ|ηδ−2
)

W−1,M0,q in Uβ. (37)

Using the fact that the function η vanishes on Σk (this implies in particular that

|η| ≤ Cδ in Uβ), we have

Lλ(W−1,M0,q) ≤ −δ−2X−2W−1,M0,q = −δ−2X−3W0,M0,q in Uβ,

for β sufficiently small. Again by Lemma 2.2, and similar arguments as above, we

have

LλW0,M0,q−ε ≤ C| log(δ)| δ− 3

2 W0,M0,q−ε ≤ C| log(δ)| δ− 3

2 W0,M0,q in Uβ , (38)

for any ε ∈ [0, 1). Therefore we get

Lλ (W−1,M0,q +W0,M0,q−ε) ≤ 0 in Uβ,

if β is small. This proves (35).

The proof of the fact that Wa,M0,q ∈ H1(Uβ), for any a < −1
2 and W0,M0,q−ε ∈

H1(Uβ), for ε > 0 can be easily checked using polar coordinates (by assuming

without any loss of generality that M0 = 0 and q ≡ 1), we therefore skip it.

We now prove the last statement of the theorem. Using Lemma 2.1, we have
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∫

Uβ

V 2
0

δ2
dx ≥

∫

Uβ

W 2
0,M0,q

δ2
dx

≥ C

∫

Uβ(Σk)
d2(x)δ̃(x)2α(x)−2 dx

≥ C

N0
∑

i=1

∫

Ti

d2(x)δ̃(x)2α(x)−2 dx

= C

N0
∑

i=1

∫

BN−k
+

(0,β)×Di

(y1)2 |ỹ|2α(F
pi
M

(y))−2 |Jac(F pi
M)|(y) dy

≥ C

N0
∑

i=1

∫

BN−k
+

(0,β)×Di

(y1)2 |ỹ|k−N−2+(N−k)
√

1−q(fpi (ȳ)) |ỹ|−
√

|ỹ| dy.

Here we used the fact that |Jac(F pi
M)|(y) ≥ C. Observe that

|ỹ|−
√

|ỹ| ≥ C > 0 as |ỹ| → 0.

Using polar coordinates, the above integral becomes

∫

Uβ

V 2
0

δ2
dx ≥ C

N0
∑

i=1

∫

Di

∫

SN−k−1

+

(

y1

|ỹ|

)2

dθ

∫ β

0
r−1+(N−k)

√
1−q(fpi (ȳ)) dȳ

≥ C

N0
∑

i=1

∫

Di

∫ ri1

0
r−1+(N−k)

√
1−q(fpi (ȳ)) |Jac(fpi)|(ȳ) dȳ.

We therefore obtain

∫

Uβ

V 2
0

δ2
dx ≥ C

∫

Σk

∫ β

0
r−1+(N−k)

√
1−q(σ) dr dσ

≥ C

∫

Σk

1
√

1− q(σ)
dσ.

This concludes the proof of the lemma.
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2.2. Construction of a supersolution. In this subsection we provide a superso-

lution for the operator Lλ defined in (34). We prove

Lemma 2.4. There exist constants β0 > 0, M1 < 0, M0 > 0 (the constant M0 is as

in Lemma 2.3) such that for all β ∈ (0, β0) the function U :=W0,M1,q−W−1,M0,q > 0

in Uβ and satisfies

LλUa ≥ 0 in Uβ. (39)

Moreover U ∈ H1(Uβ) provided

∫

Σk

1
√

1− q(σ)
dσ < +∞. (40)

Proof. We consider β1 as in the beginning of the proof of Lemma 2.3 and we define

M1 = −1

2
max
x∈Uβ1

|h(x)| − 1. (41)

Since

U(x) = (eM1d(x) − eM0d(x)X−1(δ̃(x)))d(x)δ̃(x)
α(x),

it follows that U > 0 in Uβ for β > 0 sufficiently small. By (41) and Lemma 2.2, we

get

LλW0,M1,q ≥
(

−C| log(δ)| δ− 3

2 − |λ|ηδ−2
)

W0,M1,q.

Using (37) we have

Lλ(−W−1,M0,q) ≥
(

2δ−2X−2 − C| log(δ)| δ− 3

2 − |λ|ηδ−2
)

W−1,M0,q.

Taking the sum of the two above inequalities, we obtain

LλU ≥ 0 in Uβ,

which holds true because |η| ≤ Cδ in Uβ. Hence we get readily (39).

Our next task is to prove that U ∈ H1(Uβ) provided (40) holds, to do so it is enough

to show that W0,M1,q ∈ H1(Uβ) provided (40) holds.
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We argue as in the proof of Lemma 2.3. We have

∫

Uβ

|∇W0,M1,q|2 ≤ C

∫

Uβ

d2(x)δ̃(x)2α(x)−2 dx

≤ C

N0
∑

i=1

∫

BN−k
+

(0,β)×Di

d2(F pi
M(y))δ̃(F pi

M(y))2α(F
pi
M

(y))−2|Jac(F pi
M)|(y)dy

≤ C

N0
∑

i=1

∫

BN−k
+

(0,β)×Di

(y1)2 |ỹ|2α(F
pi
M

(y))−2 |Jac(F pi
M)|(y) dy

≤ C

N0
∑

i=1

∫

BN−k
+

(0,β)×Di

(y1)2 |ỹ|k−N−2+(N−k)
√

1−q(fpi (ȳ)) |ỹ|−
√

|ỹ| dy.

Here we used the fact that |Jac(F pi
M)|(y) ≤ C. Note that

|ỹ|−
√

|ỹ| ≤ C as |ỹ| → 0.

Using polar coordinates, it follows that

∫

Uβ

|∇W0,M1,q|2 ≤ C

N0
∑

i=1

∫

Di

∫

SN−k−1
+

(

y1

|ỹ|

)2

dθ

∫ β

0
r−1+(N−k)

√
1−q(fpi (ȳ)) dr dȳ

≤ C

N0
∑

i=1

∫

Di

1
√

1− q(fpi(ȳ))
dȳ.

Racalling that |Jac(fpi)|(ȳ) = 1 +O(|ȳ|), we deduce that

N0
∑

i=1

∫

Di

1
√

1− q(fpi(ȳ))
dȳ ≤ C

N0
∑

i=1

∫

Di

1
√

1− q(fpi(ȳ))
|Jac(f)|(ȳ) dȳ

= C

∫

Σk

1
√

1− q(σ)
dσ.

Therefore
∫

Uβ

|∇W0,M1,q|2 dx ≤ C

∫

Σk

1
√

1− q(σ)
dσ

and the lemma follows at once.
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3. Existence of λ∗

We start with the following local improved Hardy inequality.

Lemma 3.1. Let Ω be a smooth domain and assume that ∂Ω contains a smooth

closed submanifold Σk of dimension 1 ≤ k ≤ N − 2. Assume that p, q and η satisfy

(2) and (3). Then there exist constants β0 > 0 and c > 0 depending only on

Ω,Σk, q, η and p such that for all β ∈ (0, β0) the inequality
∫

Ωβ

p|∇u|2 dx− (N − k)2

4

∫

Ωβ

q
|u|2
δ2

dx ≥ c

∫

Ωβ

|u|2
δ2| log(δ)|2 dx

holds for all u ∈ H1
0 (Ωβ).

Proof. We use the notations in Section 2 with U = Ω and M = ∂Ω.

Fix β1 > 0 small and

M2 = −1

2
max
x∈Ωβ1

(|h(x)| + |∇p · ∇d|)− 1. (42)

Since p
q ∈ C1(Ω), there exists C > 0 such that

∣

∣

∣

∣

p(x)

q(x)
− p(σ(x̄))

q(σ(x̄))

∣

∣

∣

∣

≤ Cδ(x) ∀x ∈ Ωβ, (43)

for small β > 0. Hence by (3) there exits a constant C ′ > 0 such that

p(x) ≥ q(x)−C ′δ(x) ∀x ∈ Ωβ. (44)

Consider W 1

2
,M2,1

(in Lemma 2.2 with q ≡ 1). For all β > 0 small, we set

w̃(x) =W 1

2
,M2,1

(x), ∀x ∈ Ωβ. (45)

Notice that div(p∇w̃) = p∆w̃ +∇p · ∇w̃. By Lemma 2.2, we have

−div(p∇w̃)
w̃

≥ (N − k)2

4
pδ−2 +

p

4
δ−2X−2(δ) +O(| log(δ)|δ− 3

2 ) in Ωβ.

This together with (44) yields

−div(p∇w̃)
w̃

≥ (N − k)2

4
qδ−2 +

c0
4
δ−2X−2(δ) +O(| log(δ)|δ− 3

2 ) in Ωβ,

with c0 = minΩβ1
p > 0. Therefore

−div(p∇w̃)
w̃

≥ (N − k)2

4
qδ−2 + c δ−2X−2(δ) in Ωβ, (46)
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for some positive constant c depending only on Ω,Σk, q, η and p.

Let u ∈ C∞
c (Ωβ) and put ψ = u

w̃ . Then one has |∇u|2 = |w̃∇ψ|2 + |ψ∇w̃|2 +
∇(ψ2) · w̃∇w̃. Therefore |∇u|2p = |w̃∇ψ|2p + p∇w̃ · ∇(w̃ψ2). Integrating by parts,

we get
∫

Ωβ

|∇u|2p dx =

∫

Ωβ

|w̃∇ψ|2p dx+

∫

Ωβ

(

−div(p∇w̃)
w̃

)

u2 dx.

Putting (46) in the above equality, we get the result.

We next prove the following result

Lemma 3.2. Let Ω be a smooth bounded domain and assume that ∂Ω contains a

smooth closed submanifold Σk of dimension 1 ≤ k ≤ N − 2. Assume that (2) and

(3) hold. Then there exists λ∗ = λ∗(Ω,Σk, p, q, η) ∈ R such that

µλ(Ω,Σk) =
(N − k)2

4
, ∀λ ≤ λ∗,

µλ(Ω,Σk) <
(N − k)2

4
, ∀λ > λ∗.

Proof. We devide the proof in two steps

Step 1: We claim that:

sup
λ∈R

µλ(Ω,Σk) ≤
(N − k)2

4
. (47)

Indeed, we know that ν0(R
N
+ ,R

k) = (N−k)2

4 , see [15] for instance. Given τ > 0, we

let uτ ∈ C∞
c (RN

+ ) be such that
∫

RN
+

|∇uτ |2 dy ≤
(

(N − k)2

4
+ τ

)
∫

RN
+

|ỹ|−2u2τ dy. (48)

By (3), we can let σ0 ∈ Σk be such that

q(σ0) = p(σ0).

Now, given r > 0, we let ρr > 0 such that for all x ∈ B(σ0, ρr) ∩ Ω

p(x) ≤ (1 + r)q(σ0), q(x) ≥ (1− r)q(σ0) and η(x) ≤ r. (49)

We choose Fermi coordinates near σ0 ∈ Σk given by the map F σ0

∂Ω (as in Section 2)

and we choose ε0 > 0 small such that, for all ε ∈ (0, ε0),

Λε,ρ,r,τ := F σ0

∂Ω(εSupp(uτ)) ⊂ B(σ0, ρr) ∩Ω
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and we define the following test function

v(x) = ε
2−N

2 uτ
(

ε−1(F σ0

∂Ω)
−1(x)

)

, x ∈ Λε,ρ,r,τ .

Clearly, for every ε ∈ (0, ε0), we have that v ∈ C∞
c (Ω) and thus by a change of

variable, (49) and Lemma 2.1, we have

µλ(Ω,Σk) ≤

∫

Ω
p|∇v|2 dx+ λ

∫

Ω
δ−2ηv2 dx

∫

Ω
q(x) δ−2 v2 dx

≤
(1 + r)

∫

Λε,ρ,r,τ

|∇v|2 dx

(1− r)

∫

Λε,ρ,r,τ

δ−2 v2 dx

+
r|λ|

(1− r)q(σ0)

≤
(1 + r)

∫

Λε,ρ,r,τ

|∇v|2 dx

(1− cr)

∫

Λε,ρ,r,τ

δ̃−2 v2 dx

+
r|λ|

(1− r)q(σ0)

≤
(1 + r)ε2−N

∫

RN
+

ε−2(gε)ij∂iuτ∂juτ |
√

|gε|(y) dy

(1− cr)

∫

RN
+

ε2−N |εỹ|−2 u2τ
√

|gε|(ỹ) dy
+

cr

1− r
,

where gε is the scaled metric with components gεαβ(y) = ε−2〈∂αF σ0

∂Ω(εy), ∂βF
σ0

∂Ω(εy)〉
for α, β = 1, . . . , N and where we have used the fact that δ̃(F σ0

∂Ω(εy)) = |εỹ|2 for

every ỹ in the support of uτ . Since the scaled metric gε expands a gε = I +O(ε) on

the support of uτ , we deduce that

µλ(Ω,Σk) ≤ 1 + r

1− cr

1 + cε

1− cε

∫

RN
+

|∇uτ |2 dy
∫

RN
+

|ỹ|−2 u2τ dy

+
cr

1− r
,
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where c is a positive constant depending only on Ω, p, q, η and Σk. Hence by (48)

we conclude

µλ(Ω,Σk) ≤ 1 + r

1− cr

1 + cε

1− cε

(

(N − k)2

4
+ τ

)

+
cr

1− r
.

Taking the limit in ε, then in r and then in τ , the claim follows.

Step 2: We claim that there exists λ̃ ∈ R such that µλ̃(Ω,Σk) ≥ (N−k)2

4 .

Thanks to Lemma 3.1, the proof uses a standard argument of cut-off function and

integration by parts (see [4]) and we can obtain
∫

Ω
δ−2u2q dx ≤

∫

Ω
|∇u|2p dx+ C

∫

Ω
δ−2u2η dx ∀u ∈ C∞

c (Ω),

for some constant C > 0. We skip the details. The claim now follows by choosing

λ̃ = −C

Finally, noticing that µλ(Ω,Σk) is decreasing in λ, we can set

λ∗ := sup

{

λ ∈ R : µλ(Ω,Σk) =
(N − k)2

4

}

(50)

so that µλ(Ω,Σk) <
(N−k)2

4 for all λ > λ∗.

4. Non-existence result

Lemma 4.1. Let Ω be a smooth bounded domain of RN , N ≥ 3, and let Σk be a

smooth closed submanifold of ∂Ω of dimension k with 1 ≤ k ≤ N − 2. Then, there

exist bounded smooth domains Ω± such that Ω+ ⊂ Ω ⊂ Ω− and

∂Ω+ ∩ ∂Ω = ∂Ω− ∩ ∂Ω = Σk.

Proof. Consider the maps

x 7→ g±(x) := d∂Ω(x)±
1

2
δ2(x),

where d∂Ω is the distance function to ∂Ω. For some β1 > 0 small, g± are smooth in

Ωβ1
and since |∇g±| ≥ C > 0 on Σk, by the implicit function theorem, the sets

{x ∈ Ωβ : g± = 0}
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are smooth (N − 1)-dimensional submanifolds of RN , for some β > 0 small. In

addition, by construction, they can be taken to be part of the boundaries of smooth

bounded domains Ω± with Ω+ ⊂ Ω ⊂ Ω− and such that

∂Ω+ ∩ ∂Ω = ∂Ω− ∩ ∂Ω = Σk.

The prove then follows at once.

Now, we prove the following non-existence result.

Theorem 4.2. Let Ω be a smooth bounded domain of RN and let Σk be a smooth

closed submanifold of ∂Ω of dimension k with 1 ≤ k ≤ N −2 and let λ ≥ 0. Assume

that p, q and η satisfy (2) and (3). Suppose that u ∈ H1
0 (Ω)∩C(Ω) is a non-negative

function satisfying

−div(p∇u)− (N − k)2

4
qδ−2u ≥ −ληδ−2u in Ω. (51)

If
∫

Σk

1√
1−p(σ)/q(σ)

dσ = +∞ then u ≡ 0.

Proof. We first assume that p ≡ 1. Let Ω+ be the set given by Lemma 4.1. We

will use the notations in Section 2 with U = Ω+ and M = ∂Ω+. For β > 0 small we

define

Ω+
β := {x ∈ Ω+ : δ(x) < β}.

We suppose by contradiction that u does not vanish identically near Σk and satisfies

(51) so that u > 0 in Ωβ by the maximum principle, for some β > 0 small.

Consider the subsolution Vε defined in Lemma 2.3 which satisfies

Lλ Vε ≤ 0 in Ω+
β , ∀ε ∈ (0, 1). (52)

Notice that ∂Ω+
β ∩ Ω+ ⊂ Ω thus, for β > 0 small, we can choose R > 0 (independent

on ε) so that

RVε ≤ RV0 ≤ u on ∂Ω+
β ∩ Ω+ ∀ε ∈ (0, 1).

Again by Lemma 2.3, setting vε = RVε − u, it turns out that v+ε = max(vε, 0) ∈
H1

0 (Ω
+
β ) because Vε = 0 on ∂Ω+

β \ ∂Ω+
β ∩ Ω+. Moreover by (51) and (52),

Lλ vε ≤ 0 in Ω+
β , ∀ε ∈ (0, 1).
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Multiplying the above inequality by v+ε and integrating by parts yields

∫

Ω+

β

|∇v+ε |2 dx− (N − k)2

4

∫

Ω+

β

δ−2q|v+ε |2 dx+ λ

∫

Ω+

β

ηδ−2|v+ε |2 dx ≤ 0.

But then Lemma 3.1 implies that v+ε = 0 in Ω+
β provided β small enough because

|η| ≤ Cδ near Σk. Therefore u ≥ RVε for every ε ∈ (0, 1). In particular u ≥ RV0.

Hence we obtain from Lemma 2.3 that

∞ >

∫

Ω+

β

u2

δ2
≥ R2

∫

Ω+

β

V 2
0

δ2
≥
∫

Σk

1
√

1− q(σ)
dσ

which leads to a contradiction. We deduce that u ≡ 0 in Ω+
β . Thus by the maximum

principle u ≡ 0 in Ω.

For the general case p 6= 1, we argue as in [5] by setting

ũ =
√
pu. (53)

This function satisfies

−∆ũ− (N − k)2

4

q

p
δ−2ũ ≥ −λη

p
δ−2ũ+

(

−∆p

2p
+

|∇p|2
4p2

)

ũ in Ω.

Hence since p ∈ C2(Ω) and p > 0 in Ω, we get the same conclusions as in the case

p ≡ 1 and q replaced by q/p.

5. Existence of minimizers for µλ(Ω,Σk)

Theorem 5.1. Let Ω be a smooth bounded domain of RN and let Σk be a smooth

closed submanifold of ∂Ω of dimension k with 1 ≤ k ≤ N − 2. Assume that p, q and

η satisfy (2) and (3). Then µλ(Ω,Σk) is achieved for every λ < λ∗.

Proof. The proof follows the same argument of [4] by taking into account the fact

that η = 0 on Σk so we skip it.
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Next, we prove the existence of minimizers in the critical case λ = λ∗.

Theorem 5.2. Let Ω be a smooth bounded domain of RN and let Σk be a smooth

closed submanifold of ∂Ω of dimension k with 1 ≤ k ≤ N − 2. Assume that p, q

and η satisfy (2) and (3). If

∫

Σk

1
√

1− p(σ)/q(σ)
dσ <∞ then µλ∗ = µλ∗(Ω,Σk) is

achieved.

Proof. We first consider the case p ≡ 1.

Let λn be a sequence of real numbers decreasing to λ∗. By Theorem 5.1, there exits

un minimizers for µλn
= µλn

(Ω,Σk) so that

−∆un − µλn
δ−2qun = −λnδ−2ηun in Ω. (54)

We may assume that un ≥ 0 in Ω. We may also assume that ‖∇un‖L2(Ω) = 1. Hence

un ⇀ u in H1
0 (Ω) and un → u in L2(Ω) and pointwise. Let Ω− ⊃ Ω be the set given

by Lemma 4.1. We will use the notations in Section 2 with U = Ω− and M = ∂Ω−.

It will be understood that q is extended to a function in C2(Ω−). For β > 0 small

we define

Ω−
β := {x ∈ Ω− : δ(x) < β}.

We have that

∆un + bn(x)un = 0 in Ω,

with |bn| ≤ C in Ω \Ω−
β
2

for all integer n. Thus by standard elliptic regularity theory,

un ≤ C in Ω \Ω−
β
2

. (55)

We consider the supersolution U in Lemma 2.4. We shall show that there exits a

constant C > 0 such that for all n ∈ N

un ≤ CU in Ω−
β . (56)

Notice that Ω ∩ ∂Ω−
β ⊂ Ω− thus by (55), we can choose C > 0 so that for any n

un ≤ C U on Ω ∩ ∂Ω−
β .

Again by Lemma 2.4, setting vn = un − C U , it turns out that v+n = max(vn, 0) ∈
H1

0 (Ω
−
β ) because un = 0 on ∂Ω ∩ Ω−

β . Hence we have

Lλn
vn ≤ −C(µλ∗ − µn)qU − C(λ∗ − λn)ηU ≤ 0 in Ω−

β ∩ Ω.
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Multiplying the above inequality by v+n and integrating by parts yields

∫

Ω−

β

|∇v+n |2 dx− µλn

∫

Ω−

β

δ−2q|v+n |2 dx+ λn

∫

Ω−

β

ηδ−2|v+n |2 dx ≤ 0.

Hence Lemma 3.1 implies that

C

∫

Ω−

β

δ−2X−2|v+n |2 dx+ λn

∫

Ω−

β

ηδ−2|v+n |2 dx ≤ 0.

Since λn is bounded, we can choose β > 0 small (independent of n) such that v+n ≡ 0

on Ω−
β (recall that |η| ≤ Cδ). Thus we obtain (56).

Now since un → u in L2(Ω), we get by the dominated convergence theorem and

(56), that

δ−1un → δ−1u in L2(Ω).

Since un satisfies

1 =

∫

Ω
|∇un|2 = µλn

∫

Ω
δ−2qu2n + λn

∫

Ω
δ−2ηu2n,

taking the limit, we have 1 = µλ∗

∫

Ω δ
−2qu2 + λ∗

∫

Ω δ
−2ηu2. Hence u 6= 0 and it is a

minimizer for µλ∗ = (N−k)2

4 .

For the general case p 6= 1, we can use the same transformation as in (53). So (56)

holds and the same argument as a above carries over.

6. Proof of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1: Combining Lemma 3.2 and Theorem 5.1, it remains only

to check the case λ < λ∗. But this is an easy consequence of the definition of λ∗ and

of µλ(Ω,Σk), see [[4], Section 3].

Proof of Theorem 1.2: Existence is proved in Theorem 5.2 for Ik < ∞. Since the

absolute value of any minimizer for µλ(Ω,Σk) is also a minimizer, we can apply

Theorem 4.2 to infer that µλ∗(Ω,Σk) is never achieved as soon as Ik = ∞.
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