WEIGHTED HARDY INEQUALITY WITH HIGHER DIMENSIONAL SINGULARITY ON THE BOUNDARY

MOUHAMED MOUSTAPHA FALL AND FETHI MAHMOUDI

Abstract. Let Ω be a smooth bounded domain in \mathbb{R}^N with $N \geq 3$ and let Σ_k be a closed smooth submanifold of $\partial\Omega$ of dimension $1 \leq k \leq N-2$. In this paper we study the weighted Hardy inequality with weight function singular on Σ_k . In particular we provide necessary and sufficient conditions for existence of minimizers.

Key Words: Hardy inequality, extremals, existence, non-existence, Fermi coordinates.

1. INTRODUCTION

Let Ω be a smooth bounded domain of \mathbb{R}^N , $N \geq 2$ and let Σ_k be a smooth closed submanifold of $\partial\Omega$ with dimension $0 \leq k \leq N - 1$. Here Σ_0 is a single point and $\Sigma_{N-1} = \partial\Omega$. For $\lambda \in \mathbb{R}$, consider the problem of finding minimizers for the quotient:

$$\mu_{\lambda}(\Omega, \Sigma_k) := \inf_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} |\nabla u|^2 p \, dx - \lambda \int_{\Omega} \delta^{-2} |u|^2 \eta \, dx}{\int_{\Omega} \delta^{-2} |u|^2 q \, dx} , \qquad (1)$$

where $\delta(x) := \text{dist}(x, \Sigma_k)$ is the distance function to Σ_k and where the weights p, qand η satisfy

$$p, q \in C^2(\overline{\Omega}), \qquad p, q > 0 \quad \text{in } \overline{\Omega}, \qquad \eta > 0 \quad \text{in } \overline{\Omega} \setminus \Sigma_k, \qquad \eta \in Lip(\overline{\Omega})$$
 (2)

and

$$\max_{\Sigma_k} \frac{q}{p} = 1, \qquad \eta = 0 \qquad \text{on } \Sigma_k .$$
(3)

We put

$$I_k = \int_{\Sigma_k} \frac{d\sigma}{\sqrt{1 - (q(\sigma)/p(\sigma))}}, \quad 1 \le k \le N - 1 \quad \text{and} \quad I_0 = \infty.$$
(4)

It was shown by Brezis and Marcus in [4] that there exists λ^* such that if $\lambda > \lambda^*$ then $\mu_{\lambda}(\Omega, \Sigma_{N-1}) < \frac{1}{4}$ and it is attained while for $\lambda \leq \lambda^*$, $\mu_{\lambda}(\Omega, \Sigma_{N-1}) = \frac{1}{4}$ and it is not achieved for every $\lambda < \lambda^*$. The critical case $\lambda = \lambda^*$ was studied by Brezis, Marcus and Shafrir in [5], where they proved that $\mu_{\lambda^*}(\Omega, \Sigma_{N-1})$ admits a minimizer if and only if $I_{N-1} < \infty$. The case where k = 0 (Σ_0 is reduced to a point on the boundary) was treated by the first author in [10] and the same conclusions hold true.

Here we obtain the following

Theorem 1.1. Let Ω be a smooth bounded domain of \mathbb{R}^N , $N \geq 3$ and let $\Sigma_k \subset \partial \Omega$ be a closed submanifold of dimension $k \in [1, N-2]$. Assume that the weight functions p, q and η satisfy (2) and (3). Then, there exists $\lambda^* = \lambda^*(p, q, \eta, \Omega, \Sigma_k)$ such that

$$\mu_{\lambda}(\Omega, \Sigma_k) = \frac{(N-k)^2}{4}, \quad \forall \lambda \le \lambda^*, \\ \mu_{\lambda}(\Omega, \Sigma_k) < \frac{(N-k)^2}{4}, \quad \forall \lambda > \lambda^*.$$

The infinimum $\mu_{\lambda}(\Omega, \Sigma_k)$ is attained if $\lambda > \lambda^*$ and it is not attained when $\lambda < \lambda^*$.

Concerning the critical case we get

Theorem 1.2. Let λ^* be given by Theorem 1.1 and consider I_k defined in (4). Then $\mu_{\lambda^*}(\Omega, \Sigma_k)$ is achieved if and only if $I_k < \infty$.

By choosing $p = q \equiv 1$ and $\eta = \delta^2$, we obtain the following consequence of the above theorems.

Corollary 1.3. Let Ω be a smooth bounded domain of \mathbb{R}^N , $N \geq 3$ and $\Sigma_k \subset \partial \Omega$ be a closed submanifold of dimension $k \in \{1, \dots, N-2\}$. For $\lambda \in \mathbb{R}$, put

$$\nu_{\lambda}(\Omega, \Sigma_k) = \inf_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} |\nabla u|^2 \, dx - \lambda \int_{\Omega} |u|^2 \, dx}{\int_{\Omega} \delta^{-2} |u|^2 \, dx}$$

,

Then, there exists $\overline{\lambda} = \overline{\lambda}(\Omega, \Sigma_k)$ such that

$$\nu_{\lambda}(\Omega, \Sigma_k) = \frac{(N-k)^2}{4}, \quad \forall \lambda \le \bar{\lambda},$$
$$\nu_{\lambda}(\Omega, \Sigma_k) < \frac{(N-k)^2}{4}, \quad \forall \lambda > \bar{\lambda}.$$

WEIGHTED HARDY INEQUALITY WITH HIGHER DIMENSIONAL SINGULARITY ON THE BOUNDARY3

Moreover $\nu_{\lambda}(\Omega, \Sigma_k)$ is attained if and only if $\lambda > \overline{\lambda}$.

The proof of the above theorems are mainly based on the construction of appropriate sharp H^1 -subsolution and H^1 -supersolutions for the corresponding operator

$$\mathcal{L}_{\lambda} := -\Delta - \frac{(N-k)^2}{4}q\delta^{-2} + \lambda\delta^{-2}\eta$$

(with $p \equiv 1$). These super-sub-solutions are perturbations of an approximate "virtual" ground-state for the Hardy constant $\frac{(N-k)^2}{4}$ near Σ_k . For that we will consider the projection distance function $\tilde{\delta}$ defined near Σ_k as

$$\tilde{\delta}(x) := \sqrt{|\mathrm{dist}^{\partial\Omega}(\overline{x}, \Sigma_k)|^2 + |x - \overline{x}|^2},$$

where \overline{x} is the orthogonal projection of x on $\partial\Omega$ and $\operatorname{dist}^{\partial\Omega}(\cdot, \Sigma_k)$ is the geodesic distance to Σ_k on $\partial\Omega$ endowed with the induced metric. While the distances δ and $\tilde{\delta}$ are equivalent, $\Delta\delta$ and $\Delta\tilde{\delta}$ differ and δ does not, in general, provide the right approximate solution for $k \leq N - 2$. Letting $d_{\partial\Omega} = \operatorname{dist}(\cdot, \partial\Omega)$, we have

$$\tilde{\delta}(x) := \sqrt{|\text{dist}^{\partial\Omega}(\overline{x}, \Sigma_k)|^2 + d_{\partial\Omega}(x)^2}.$$

Our approximate virtual ground-state near Σ_k reads then as

$$x \mapsto d_{\partial\Omega}(x)\,\tilde{\delta}^{\frac{k-N}{2}}(x). \tag{5}$$

In some appropriate Fermi coordinates $y = (y^1, y^2, \dots, y^{N-k}, y^{N-k+1}, \dots, y^N) = (\tilde{y}, \bar{y}) \in \mathbb{R}^N$ with $\tilde{y} = (y^1, y^2, \dots, y^{N-k}) \in \mathbb{R}^{N-k}$ (see next section for precise definition), the function in (5) then becomes

$$y \mapsto y^1 |\tilde{y}|^{\frac{k-N}{2}}$$

which is the "virtual" ground-state for the Hardy constant $\frac{(N-k)^2}{4}$ in the flat case $\Sigma_k = \mathbb{R}^k$ and $\Omega = \mathbb{R}^N$. We refer to Section 2 for more details about the constructions of the super-sub-solutions.

The proof of the existence part in Theorem 1.2 is inspired from [5]. It amounts to obtain a uniform control of a specific minimizing sequence for $\mu_{\lambda^*}(\Omega, \Sigma_k)$ near Σ_k via the H^1 -super-solution constructed.

We mention that the existence and non-existence of extremals for (1) and related problems were studied in [1, 6, 7, 8, 11, 12, 13, 17, 18, 19] and some references therein. We would like to mention that some of the results in this paper might of interest in the study of semilinear equations with a Hardy potential singular at a submanifold of the boundary. We refer to [9, 2, 3], where existence and nonexistence for semilinear problems were studied via the method of super/sub-solutions.

2. Preliminaries and Notations

In this section we collect some notations and conventions we are going to use throughout the paper.

Let \mathcal{U} be an open subset of \mathbb{R}^N , $N \geq 3$, with boundary $\mathcal{M} := \partial \mathcal{U}$ a smooth closed hypersurface of \mathbb{R}^N . Assume that \mathcal{M} contains a smooth closed submanifold Σ_k of dimension $1 \leq k \leq N-2$. In the following, for $x \in \mathbb{R}^N$, we let d(x) be the distance function of \mathcal{M} and $\delta(x)$ the distance function of Σ_k . We denote by $N_{\mathcal{M}}$ the unit normal vector field of \mathcal{M} pointed into \mathcal{U} .

Given $P \in \Sigma_k$, the tangent space $T_P \mathcal{M}$ of \mathcal{M} at P splits as

$$T_P\mathcal{M} = T_P\Sigma_k \oplus N_P\Sigma_k$$

where $T_P \Sigma_k$ is the tangent space of Σ_k and $N_P \Sigma_k$ stands for the normal space of $T_P \Sigma_k$ at P. We assume that the basis of these subspaces are spanned respectively by $(E_a)_{a=N-k+1,\dots,N}$ and $(E_i)_{i=2,\dots,N-k}$. We will assume that $N_{\mathcal{M}}(P) = E_1$.

A neighborhood of P in Σ_k can be parameterized via the map

$$\bar{y} \mapsto f^P(\bar{y}) = \operatorname{Exp}_P^{\Sigma_k}(\sum_{a=N-k+1}^N y^a E_a),$$

where, $\bar{y} = (y^{N-k+1}, \dots, y^N)$ and where $\operatorname{Exp}_P^{\Sigma_k}$ is the exponential map at P in Σ_k endowed with the metric induced by \mathcal{M} . Next we extend $(E_i)_{i=2,\dots,N-k}$ to an orthonormal frame $(X_i)_{i=2,\dots,N-k}$ in a neighborhood of P. We can therefore define the parameterization of a neighborhood of P in \mathcal{M} via the mapping

$$(\check{y},\bar{y})\mapsto h^P_{\mathcal{M}}(\check{y},\bar{y}):=\operatorname{Exp}_{f^P(\bar{y})}^{\mathcal{M}}\left(\sum_{i=2}^{N-k}y^iX_i\right),$$

with $\check{y} = (y^2, \cdots, y^{N-k})$ and $\operatorname{Exp}_Q^{\mathcal{M}}$ is the exponential map at Q in \mathcal{M} endowed with the metric induced by \mathbb{R}^N . We now have a parameterization of a neighborhood of P in \mathbb{R}^N defined via the above Fermi coordinates by the map

$$y = (y^1, \breve{y}, \bar{y}) \mapsto F^P_{\mathcal{M}}(y^1, \breve{y}, \bar{y}) = h^P_{\mathcal{M}}(\breve{y}, \bar{y}) + y^1 N_{\mathcal{M}}(h^P_{\mathcal{M}}(\breve{y}, \bar{y})).$$

WEIGHTED HARDY INEQUALITY WITH HIGHER DIMENSIONAL SINGULARITY ON THE BOUNDARY5

Next we denote by g the metric induced by $F_{\mathcal{M}}^{P}$ whose components are defined by

$$g_{\alpha\beta}(y) = \langle \partial_{\alpha} F_{\mathcal{M}}^{P}(y), \partial_{\beta} F_{\mathcal{M}}^{P}(y) \rangle.$$

Then we have the following expansions (see for instance [14])

$$g_{11}(y) = 1$$

$$g_{1\beta}(y) = 0, \quad \text{for } \beta = 2, \cdots, N$$

$$g_{\alpha\beta}(y) = \delta_{\alpha\beta} + \mathcal{O}(|\tilde{y}|), \quad \text{for } \alpha, \beta = 2, \cdots, N,$$
(6)

where $\tilde{y} = (y^1, \check{y})$ and $\mathcal{O}(r^m)$ is a smooth function in the variable y which is uniformly bounded by a constant (depending only \mathcal{M} and Σ_k) times r^m .

In concordance to the above coordinates, we will consider the "half"-geodesic neighborhood contained in \mathcal{U} around Σ_k of radius ρ

$$\mathcal{U}_{\rho}(\Sigma_k) := \{ x \in \mathcal{U} : \quad \tilde{\delta}(x) < \rho \}, \tag{7}$$

with $\tilde{\delta}$ is the projection distance function given by

$$\tilde{\delta}(x) := \sqrt{|\mathrm{dist}^{\mathcal{M}}(\overline{x}, \Sigma_k)|^2 + |x - \overline{x}|^2},$$

where \overline{x} is the orthogonal projection of x on \mathcal{M} and $\operatorname{dist}^{\mathcal{M}}(\cdot, \Sigma_{\mathbf{k}})$ is the geodesic distance to Σ_k on \mathcal{M} with the induced metric. Observe that

$$\tilde{\delta}(F_{\mathcal{M}}^{P}(y)) = |\tilde{y}|, \tag{8}$$

where $\tilde{y} = (y^1, \check{y})$. We also define $\sigma(\bar{x})$ to be the orthogonal projection of \bar{x} on Σ_k within \mathcal{M} . Letting

$$\hat{\delta}(\overline{x}) := \operatorname{dist}^{\mathcal{M}}(\overline{x}, \Sigma_k),$$

one has

$$\overline{x} = \operatorname{Exp}_{\sigma(\overline{x})}^{\mathcal{M}}(\hat{\delta} \,\nabla \hat{\delta}) \quad \text{or equivalently} \quad \sigma(\overline{x}) = \operatorname{Exp}_{\overline{x}}^{\mathcal{M}}(-\hat{\delta} \,\nabla \hat{\delta}).$$

Next we observe that

$$\tilde{\delta}(x) = \sqrt{\hat{\delta}^2(\bar{x}) + d^2(x)}.$$
(9)

In addition it can be easily checked via the implicit function theorem that there exists a positive constant $\beta_0 = \beta_0(\Sigma_k, \Omega)$ such that $\tilde{\delta} \in C^{\infty}(\mathcal{U}_{\beta_0}(\Sigma_k))$.

It is clear that for ρ sufficiently small, there exists a finite number of Lipschitz open sets $(T_i)_{1 \le i \le N_0}$ such that

$$T_i \cap T_j = \emptyset$$
 for $i \neq j$ and $\mathcal{U}_{\rho}(\Sigma_k) = \bigcup_{i=1}^{N_0} \overline{T_i}$

We may assume that each T_i is chosen, using the above coordinates, so that

$$T_i = F_{\mathcal{M}}^{p_i}(B_+^{N-k}(0,\rho) \times D_i) \quad \text{with} \ p_i \in \Sigma_k,$$

where the D_i 's are Lipschitz disjoint open sets of \mathbb{R}^k such that

$$\bigcup_{i=1}^{N_0} \overline{f^{p_i}(D_i)} = \Sigma_k.$$

In the above setting we have

Lemma 2.1. As $\tilde{\delta} \to 0$, the following expansions hold

 $\begin{array}{ll} (1) & \delta^2 = \tilde{\delta}^2 (1 + O(\tilde{\delta})), \\ (2) & \nabla \tilde{\delta} \cdot \nabla d = \frac{d}{\tilde{\delta}}, \\ (3) & |\nabla \tilde{\delta}| = 1 + O(\tilde{\delta}), \\ (4) & \Delta \tilde{\delta} = \frac{N-k-1}{\tilde{\delta}} + O(1), \end{array}$

where $O(r^m)$ is a function for which there exists a constant $C = C(\mathcal{M}, \Sigma_k)$ such that

$$|O(r^m)| \le Cr^m$$

Proof.

(1) Let $P \in \Sigma_k$. With an abuse of notation, we write $x(y) = F_{\mathcal{M}}^P(y)$ and we set

$$\vartheta(y) := \frac{1}{2}\delta^2(x(y)).$$

The function ϑ is smooth in a small neighborhood of the origin in \mathbb{R}^N and Taylor expansion yields

$$\vartheta(y) = \vartheta(0,\bar{y})\tilde{y} + \nabla\vartheta(0,\bar{y})[\tilde{y}] + \frac{1}{2}\nabla^2\vartheta(0,\bar{y})[\tilde{y},\tilde{y}] + \mathcal{O}(\|\tilde{y}\|^3)$$
$$= \frac{1}{2}\nabla^2\vartheta(0,\bar{y})[\tilde{y},\tilde{y}] + \mathcal{O}(\|\tilde{y}\|^3).$$
(10)

WEIGHTED HARDY INEQUALITY WITH HIGHER DIMENSIONAL SINGULARITY ON THE BOUNDARY7

Here we have used the fact that $x(0,\bar{y}) \in \Sigma_k$ so that $\delta(x(0,\bar{y})) = 0$. We write

$$\nabla^2 \vartheta(0, \bar{y})[\tilde{y}, \tilde{y}] = \sum_{i,l=1}^{N-k} \Lambda_{il} y^i y^l,$$

with

$$\begin{split} \Lambda_{il} &:= \frac{\partial^2 \vartheta}{\partial y^i \partial y^l} / \tilde{y}_{=0} \\ &= \frac{\partial}{\partial y^l} \left(\frac{\partial}{\partial x^j} (\frac{1}{2} \delta^2(x) \frac{\partial x^j}{\partial y^i}) \right) / \tilde{y}_{=0} \\ &= \frac{\partial^2}{\partial x^i \partial x^s} (\frac{1}{2} \delta^2)(x) \frac{\partial x^j}{\partial y^i} \frac{\partial x^s}{\partial y^l} / \tilde{y}_{=0} + \frac{\partial}{\partial x^j} (\delta^2)(x) \frac{\partial^2 x^s}{\partial y^i \partial y^l} / \tilde{y}_{=0}. \end{split}$$

Now using the fact that

$$\frac{\partial x^s}{\partial y^l}/_{\tilde{y}=0} = g_{ls} = \delta_{ls}$$
 and $\frac{\partial}{\partial x^j}(\delta^2)(x)/_{\tilde{y}=0} = 0$

we obtain

$$\begin{split} \Lambda_{il} y^i y^l &= y^i y^s \, \frac{\partial^2}{\partial x^i \partial x^s} (\frac{1}{2} \delta^2)(x) /_{\tilde{y}=0} \\ &= |\tilde{y}|^2, \end{split}$$

where we have used the fact that the matrix $\left(\frac{\partial^2}{\partial x^i \partial x^s}(\frac{1}{2}\delta^2)(x)/\tilde{y}=0\right)_{1 \le i,s \le N}$ is the matrix of the orthogonal projection onto the normal space of $T_{f^P(\bar{y})}\Sigma_k$. Hence using (10), we get

$$\delta^2(x(y)) = |\tilde{y}|^2 + \mathcal{O}(|\tilde{y}|^3).$$

This together with (8) prove the first expansion.

(2) Thanks to (8) and (6), we infer that

$$\nabla \tilde{\delta} \cdot \nabla d(x(y)) = \frac{\partial \tilde{\delta}(x(y))}{\partial y^1} = \frac{y^1}{|\tilde{y}|} = \frac{d(x(y))}{\tilde{\delta}(x(y))}$$

as desired.

(3) We observe that

$$\frac{\partial \tilde{\delta}}{\partial x^{\tau}} \frac{\partial \tilde{\delta}}{\partial x^{\tau}}(x(y)) = g^{\tau \alpha}(y) g^{\tau \beta}(y) \frac{\partial \tilde{\delta}(x(y))}{\partial y^{\alpha}} \frac{\partial \tilde{\delta}(x(y))}{\partial y^{\beta}},$$

where $(g^{\alpha\beta})_{\alpha,\beta=1,\ldots,N}$ is the inverse of the matrix $(g_{\alpha\beta})_{\alpha,\beta=1,\ldots,N}$. Therefore using (8) and (6), we get the result.

(4) Finally using the expansion of the Laplace-Beltrami operator Δ_g , see Lemma 3.3 in [16], applied to (8), we get the last estimate.

In the following of – only – this section, $q: \overline{\mathcal{U}} \to \mathbb{R}$ be such that

$$q \in C^2(\overline{\mathcal{U}}), \quad \text{and} \quad q \le 1 \quad \text{on } \Sigma_k.$$
 (11)

Let $M, a \in \mathbb{R}$, we consider the function

$$W_{a,M,q}(x) = X_a(\tilde{\delta}(x)) e^{Md(x)} d(x) \,\tilde{\delta}(x)^{\alpha(x)},\tag{12}$$

where

$$X_a(t) = (-\log(t))^a \quad 0 < t < 1$$

and

$$\alpha(x) = \frac{k-N}{2} + \frac{N-k}{2}\sqrt{1-q(\sigma(\bar{x})) + \tilde{\delta}(x)}$$

In the above setting, the following useful result holds.

Lemma 2.2. As $\delta \to 0$, we have

$$\Delta W_{a,M,q} = -\frac{(N-k)^2}{4} q \,\delta^{-2} W_{a,M,q} - 2 a \sqrt{\tilde{\alpha}} X_{-1}(\delta) \,\delta^{-2} W_{a,M,q} + a(a-1) X_{-2}(\delta) \,\delta^{-2} W_{a,M,q} + \frac{h+2M}{d} W_{a,M,q} + O(|\log(\delta)| \,\delta^{-\frac{3}{2}}) W_{a,M,q},$$

where $\tilde{\alpha}(x) = \frac{(N-k)^2}{4} \left(1 - q(\sigma(\overline{x})) + \tilde{\delta}(x)\right)$ and $h = \Delta d$. Here the lower order term satisfies

$$|O(r)| \le C|r|,$$

where C is a positive constant only depending on $a, M, \Sigma_k, \mathcal{U}$ and $||q||_{C^2(\mathcal{U})}$.

Proof. We put $s = \frac{(N-k)^2}{4}$. Let $w = \tilde{\delta}(x)^{\alpha(x)}$ then the following formula can be easily verified

$$\Delta w = w \bigg(\Delta \log(w) + |\nabla \log(w)|^2 \bigg).$$
(13)

WEIGHTED HARDY INEQUALITY WITH HIGHER DIMENSIONAL SINGULARITY ON THE BOUNDARY9

Since

$$\log(w) = \alpha \log(\tilde{\delta}),$$

we get

$$\Delta \log(w) = \Delta \alpha \log(\tilde{\delta}) + 2\nabla \alpha \cdot \nabla(\log(\tilde{\delta})) + \alpha \Delta \log(\tilde{\delta}).$$
(14)

We have

$$\Delta \alpha = \Delta \sqrt{\tilde{\alpha}} = \sqrt{\tilde{\alpha}} \left(\frac{1}{2} \Delta \log(\tilde{\alpha}) + \frac{1}{4} |\nabla \log(\tilde{\alpha})|^2 \right),$$
(15)
$$\nabla \log(\tilde{\alpha}) = \frac{\nabla \tilde{\alpha}}{\tilde{\alpha}} = \frac{-s \nabla (q \circ \sigma) + s \nabla \tilde{\delta}}{\tilde{\alpha}}$$

and using the formula (13), we obtain

$$\begin{split} \Delta \log(\tilde{\alpha}) &= \frac{\Delta \tilde{\alpha}}{\tilde{\alpha}} - \frac{|\nabla \tilde{\alpha}|^2}{\tilde{\alpha}^2} \\ &= \frac{-s\Delta(q\circ\sigma) + s\Delta \tilde{\delta}}{\tilde{\alpha}} - \frac{s^2 |\nabla(q\circ\sigma)|^2 + s^2 |\nabla \tilde{\delta}|^2}{\tilde{\alpha}^2} + 2s^2 \frac{\nabla(q\circ\sigma) \cdot \nabla \tilde{\delta}}{\tilde{\alpha}^2}. \end{split}$$

Putting the above in (15), we deduce that

$$\Delta \alpha = \frac{1}{2\sqrt{\tilde{\alpha}}} \bigg(-s\Delta(q \circ \sigma) + s\Delta\tilde{\delta} - \frac{1}{2} \frac{s^2 |\nabla(q \circ \sigma)|^2 + s^2 |\nabla\tilde{\delta}|^2 - 2s^2 \nabla(q \circ \sigma) \cdot \nabla\tilde{\delta}}{\tilde{\alpha}} \bigg).$$
(16)

Using Lemma 2.1 and the fact that q is in $C^2(\overline{\mathcal{U}})$, together with (16) we get

$$\Delta \alpha = O(\tilde{\delta}^{-\frac{3}{2}}). \tag{17}$$

On the other hand

$$\nabla \alpha = \nabla \sqrt{\tilde{\alpha}} = \frac{1}{2} \frac{\nabla \tilde{\alpha}}{\sqrt{\tilde{\alpha}}} = -\frac{s}{2\sqrt{\tilde{\alpha}}} \nabla (q \circ \sigma) + \frac{s}{2} \frac{\nabla \tilde{\delta}}{\sqrt{\tilde{\alpha}}}$$

so that

$$\nabla \alpha \cdot \nabla \tilde{\delta} = -\frac{s}{2\sqrt{\tilde{\alpha}}} \nabla (q \circ \sigma) \cdot \nabla \tilde{\delta} + \frac{s}{2} \frac{|\nabla \tilde{\delta}|^2}{\sqrt{\tilde{\alpha}}} = O(\tilde{\delta}^{-\frac{1}{2}})$$

and from which we deduce that

$$\nabla \alpha \cdot \nabla \log(\tilde{\delta}) = \frac{1}{\tilde{\delta}} \nabla \alpha \cdot \nabla \tilde{\delta} = O(\tilde{\delta}^{-\frac{3}{2}}).$$
(18)

By Lemma 2.1 we have that

$$\alpha \Delta \log(\tilde{\delta}) = \alpha \, \frac{N-k-2}{\tilde{\delta}^2} \, (1+O(\tilde{\delta})).$$

Taking back the above estimate together with (18) and (17) in (14), we get

$$\Delta \log(w) = \alpha \, \frac{N - k - 2}{\tilde{\delta}^2} \left(1 + O(\tilde{\delta}) \right) + O(|\log(\tilde{\delta})|\tilde{\delta}^{-\frac{3}{2}}). \tag{19}$$

We also have

$$\nabla(\log(w)) = \nabla(\alpha \log(\tilde{\delta})) = \alpha \frac{\nabla \tilde{\delta}}{\tilde{\delta}} + \log(\tilde{\delta}) \nabla \alpha$$

and thus

$$|\nabla(\log(w))|^2 = \frac{\alpha^2}{\tilde{\delta}^2} + \frac{2\alpha\log(\tilde{\delta})}{\tilde{\delta}}\nabla\tilde{\delta}\cdot\nabla\alpha + |\log(\tilde{\delta})|^2|\nabla\alpha|^2 = \frac{\alpha^2}{\tilde{\delta}^2} + O(|\log(\tilde{\delta})|\tilde{\delta}^{-\frac{3}{2}}).$$

Putting this together with (19) in (13), we conclude that

$$\frac{\Delta w}{w} = \alpha \, \frac{N - k - 2}{\tilde{\delta}^2} + \frac{\alpha^2}{\tilde{\delta}^2} + O(|\log(\tilde{\delta})| \, \tilde{\delta}^{-\frac{3}{2}}). \tag{20}$$

Now we define the function

$$v(x) := d(x) w(x),$$

where we recall that d is the distance function to the boundary of \mathcal{U} . It is clear that

$$\Delta v = w\Delta d + d\Delta w + 2\nabla d \cdot \nabla w. \tag{21}$$

Notice that

$$\nabla w = w \,\nabla \log(w) = w \,\left(\log(\tilde{\delta}) \nabla \alpha + \alpha \frac{\nabla \tilde{\delta}}{\tilde{\delta}}\right)$$

and so

$$\nabla d \cdot \nabla w = w \left(\log(\tilde{\delta}) \nabla d \cdot \nabla \alpha + \frac{\alpha}{\tilde{\delta}} \nabla d \cdot \nabla \tilde{\delta} \right).$$
(22)

Recall the second assertion of Lemma 2.1 that we rewrite as

$$\nabla d \cdot \nabla \tilde{\delta} = \frac{d}{\tilde{\delta}}.$$
(23)

Therefore

$$\nabla d \cdot \nabla \alpha = \nabla d \cdot \left(-\frac{s}{2\sqrt{\tilde{\alpha}}} \nabla (q \circ \sigma) + \frac{s}{2} \frac{\nabla \tilde{\delta}}{\sqrt{\tilde{\alpha}}} \right) = \frac{s}{2\sqrt{\tilde{\alpha}}} \frac{d}{\tilde{\delta}} - \frac{s}{2\sqrt{\tilde{\alpha}}} \nabla d \cdot \nabla (q \circ \sigma).$$
(24)

Notice that if x is in a neighborhood of some point $P \in \Sigma_k$ one has

$$\nabla d \cdot \nabla (q \circ \sigma)(x) = \frac{\partial}{\partial y^1} q(\sigma(\overline{x})) = \frac{\partial}{\partial y^1} q(f^P(\overline{y})) = 0.$$

WEIGHTED HARDY INEQUALITY WITH HIGHER DIMENSIONAL SINGULARITY ON THE BOUNDARY

This with (24) and (23) in (22) give

$$\nabla d \cdot \nabla w = w \left(O(\tilde{\delta}^{-\frac{3}{2}} |\log(\tilde{\delta})|) d + \frac{\alpha}{\tilde{\delta}^2} d \right)$$
$$= v \left(O(\tilde{\delta}^{-\frac{3}{2}} |\log(\tilde{\delta})|) + \frac{\alpha}{\tilde{\delta}^2} \right).$$
(25)

From (20), (21) and (25) (recalling the expression of α above), we get immediately

$$\Delta v = \left(\alpha \frac{N-k}{\tilde{\delta}^2} + \frac{\alpha^2}{\tilde{\delta}^2}\right) v + O(|\log(\tilde{\delta})| \tilde{\delta}^{-\frac{3}{2}}) v + \frac{h}{d} v$$
$$= \left(-\frac{(N-k)^2}{4} \frac{q(x)}{\tilde{\delta}^2} + O(|\log(\tilde{\delta})| \tilde{\delta}^{-\frac{3}{2}})\right) v + \frac{h}{d} v, \tag{26}$$

where $h = \Delta d$. Here we have used the fact that $|q(x) - q(\sigma(\bar{x}))| \leq C\tilde{\delta}(x)$ for x in a neighborhood of Σ_k .

Recall that

$$W_{a,M,q}(x) = X_a(\tilde{\delta}(x)) e^{Md(x)} v(x), \quad \text{with} \quad X_a(\tilde{\delta}(x)) := (-\log(\tilde{\delta}(x)))^a,$$

where M and a are two real numbers. We have

$$\Delta W_{a,M,q} = X_a(\tilde{\delta}) \,\Delta(e^{Md} \, v) + 2\nabla X_a(\tilde{\delta}) \cdot \nabla(e^{Md} \, v) + e^{Md} \, v \,\Delta X_a(\tilde{\delta})$$

and thus

$$\Delta W_{a,M,q} = X_a(\tilde{\delta})e^{Md} \Delta v + X_a(\tilde{\delta})\Delta(e^{Md}) v + 2X_a(\tilde{\delta})\nabla v \cdot \nabla(e^{Md}) + 2\nabla X_a(\tilde{\delta}) \cdot \left(v \nabla(e^{Md}) + e^{Md}\nabla v\right) + e^{Md} v \Delta X_a(\tilde{\delta}).$$
(27)

We shall estimate term by term the above expression. First we have form (26)

$$X_{a}(\tilde{\delta})e^{Md}\,\Delta v = -\frac{(N-k)^{2}}{4}\frac{q}{\tilde{\delta}^{2}}\,W_{a,M,q} + \frac{h}{d}\,W_{a,M,q} + O(|\log(\tilde{\delta})|\,\tilde{\delta}^{-\frac{3}{2}})\,W_{a,M,q}.$$
 (28)

It is plain that

$$X_a(\tilde{\delta})\,\Delta(e^{Md})\,v = O(1)\,W_{a,M,q}.$$
(29)

It is clear that

$$\nabla v = w \,\nabla d + d \,\nabla w = w \,\nabla d + d \,\left(\log(\tilde{\delta}) \,\nabla \alpha + \alpha \frac{\nabla \tilde{\delta}}{\tilde{\delta}}\right) \,w. \tag{30}$$

From which and (23) we get

$$X_{a}(\tilde{\delta}) \nabla v \cdot \nabla(e^{Md}) = M X_{a}(\tilde{\delta}) e^{Md} w \left\{ |\nabla d|^{2} + d \left(\log(\tilde{\delta}) \nabla d \cdot \nabla \alpha + \frac{\alpha}{\tilde{\delta}} \nabla \tilde{\delta} \cdot \nabla d \right) \right\}$$
$$= M X_{a}(\tilde{\delta}) e^{Md} w \left\{ 1 + O(|\log(\tilde{\delta})| \tilde{\delta}^{-\frac{1}{2}}) d + O(\tilde{\delta}^{-1}) d \right\}$$
$$= W_{a,M,q} \left\{ \frac{M}{d} + O(|\log(\tilde{\delta})| \tilde{\delta}^{-1}) \right\}.$$
(31)

Observe that

$$\nabla(X_a(\tilde{\delta})) = -a \frac{\nabla \tilde{\delta}}{\tilde{\delta}} X_{a-1}(\tilde{\delta}).$$

This with (30) and (23) imply that

$$\nabla X_a(\tilde{\delta}) \cdot \left(v \,\nabla(e^{Md}) + e^{Md} \nabla v \right) = -\frac{a(\alpha+1)}{\tilde{\delta}^2} \, X_{-1} \, W_{a,M,q} + O(|\log(\tilde{\delta})|\tilde{\delta}^{-\frac{3}{2}}) \, W_{a,M,q}.$$
(32)

By Lemma 2.1, we have

$$\Delta(X_a(\tilde{\delta})) = \frac{a}{\tilde{\delta}^2} X_{a-1}(\tilde{\delta}) \{2 + k - N + O(\tilde{\delta})\} + \frac{a(a-1)}{\tilde{\delta}^2} X_{a-2}(\tilde{\delta}).$$

Therefore we obtain

$$e^{Md}v\Delta(X_{a}(\tilde{\delta})) = \frac{a}{\tilde{\delta}^{2}} \{2 + k - N + O(\tilde{\delta})\} X_{-1} W_{a,M,q} + \frac{a(a-1)}{\tilde{\delta}^{2}} X_{-2} W_{a,M,q}.$$
 (33)

Collecting (28), (29), (31), (32) and (33) in the expression (27), we get as $\tilde{\delta} \to 0$

$$\begin{aligned} \Delta W_{a,M,q} &= -\frac{(N-k)^2}{4} q \,\tilde{\delta}^{-2} \, W_{a,M,q} - 2 \, a \, \sqrt{\tilde{\alpha}} \, X_{-1}(\tilde{\delta}) \,\tilde{\delta}^{-2} \, W_{a,M,q} \\ &+ a(a-1) \, X_{-2}(\tilde{\delta}) \,\tilde{\delta}^{-2} \, W_{a,M,q} + \frac{h+2M}{d} \, W_{a,M,q} + O(|\log(\tilde{\delta})| \,\tilde{\delta}^{-\frac{3}{2}}) \, W_{a,M,q}. \end{aligned}$$

The conclusion of the lemma follows at once from the first assertion of Lemma 2.1. \Box

2.1. Construction of a subsolution. For $\lambda \in \mathbb{R}$ and $\eta \in Lip(\overline{\mathcal{U}})$ with $\eta = 0$ on Σ_k , we define the operator

$$\mathcal{L}_{\lambda} := -\Delta - \frac{(N-k)^2}{4} q \,\delta^{-2} + \lambda \eta \,\delta^{-2}, \qquad (34)$$

where q is as in (11). We have the following lemma

Lemma 2.3. There exist two positive constants M_0 , β_0 such that for all $\beta \in (0, \beta_0)$ the function $V_{\varepsilon} := W_{-1,M_0,q} + W_{0,M_0,q-\varepsilon}$ (see (12)) satisfies

$$\mathcal{L}_{\lambda} V_{\varepsilon} \leq 0 \quad in \ \mathcal{U}_{\beta}, \quad for \ all \ \varepsilon \in [0, 1).$$
 (35)

Moreover $V_{\varepsilon} \in H^1(\mathcal{U}_{\beta})$ for any $\varepsilon \in (0,1)$ and in addition

$$\int_{\mathcal{U}_{\beta}} \frac{V_0^2}{\delta^2} dx \ge C \int_{\Sigma_k} \frac{1}{\sqrt{1 - q(\sigma)}} d\sigma.$$
(36)

Proof. Let β_1 be a positive small real number so that d is smooth in \mathcal{U}_{β_1} . We choose

$$M_0 = \max_{x \in \overline{\mathcal{U}}_{\beta_1}} |h(x)| + 1.$$

Using this and Lemma 2.2, for some $\beta \in (0, \beta_1)$, we have

$$\mathcal{L}_{\lambda} W_{-1,M_{0},q} \leq \left(-2\delta^{-2} X_{-2} + C |\log(\delta)| \, \delta^{-\frac{3}{2}} + |\lambda| \eta \delta^{-2} \right) W_{-1,M_{0},q} \quad \text{in } \mathcal{U}_{\beta}.$$
(37)

Using the fact that the function η vanishes on Σ_k (this implies in particular that $|\eta| \leq C\delta$ in \mathcal{U}_{β}), we have

$$\mathcal{L}_{\lambda}(W_{-1,M_{0},q}) \leq -\delta^{-2} X_{-2} W_{-1,M_{0},q} = -\delta^{-2} X_{-3} W_{0,M_{0},q} \quad \text{in } \mathcal{U}_{\beta},$$

for β sufficiently small. Again by Lemma 2.2, and similar arguments as above, we have

$$\mathcal{L}_{\lambda}W_{0,M_{0},q-\varepsilon} \leq C |\log(\delta)| \,\delta^{-\frac{3}{2}} W_{0,M_{0},q-\varepsilon} \leq C |\log(\delta)| \,\delta^{-\frac{3}{2}} W_{0,M_{0},q} \quad \text{in } \mathcal{U}_{\beta}, \quad (38)$$

for any $\varepsilon \in [0, 1)$. Therefore we get

$$\mathcal{L}_{\lambda}\left(W_{-1,M_{0},q}+W_{0,M_{0},q-\varepsilon}\right)\leq 0 \quad \text{ in } \mathcal{U}_{\beta},$$

if β is small. This proves (35).

The proof of the fact that $W_{a,M_0,q} \in H^1(\mathcal{U}_\beta)$, for any $a < -\frac{1}{2}$ and $W_{0,M_0,q-\varepsilon} \in H^1(\mathcal{U}_\beta)$, for $\varepsilon > 0$ can be easily checked using polar coordinates (by assuming without any loss of generality that $M_0 = 0$ and $q \equiv 1$), we therefore skip it. We now prove the last statement of the theorem. Using Lemma 2.1, we have

$$\begin{split} \int_{\mathcal{U}_{\beta}} \frac{V_{0}^{2}}{\delta^{2}} \, dx &\geq \int_{\mathcal{U}_{\beta}} \frac{W_{0,M_{0},q}^{2}}{\delta^{2}} \, dx \\ &\geq C \int_{\mathcal{U}_{\beta}(\Sigma_{k})} d^{2}(x) \tilde{\delta}(x)^{2\alpha(x)-2} \, dx \\ &\geq C \sum_{i=1}^{N_{0}} \int_{T_{i}} d^{2}(x) \tilde{\delta}(x)^{2\alpha(x)-2} \, dx \\ &= C \sum_{i=1}^{N_{0}} \int_{B_{+}^{N-k}(0,\beta) \times D_{i}} (y^{1})^{2} \, |\tilde{y}|^{2\alpha(F_{\mathcal{M}}^{p_{i}}(y))-2} \, |\mathrm{Jac}(F_{\mathcal{M}}^{p_{i}})|(y) \, dy \\ &\geq C \sum_{i=1}^{N_{0}} \int_{B_{+}^{N-k}(0,\beta) \times D_{i}} (y^{1})^{2} \, |\tilde{y}|^{k-N-2+(N-k)\sqrt{1-q(f^{p_{i}}(\bar{y}))}} \, |\tilde{y}|^{-\sqrt{|\tilde{y}|}} \, dy. \end{split}$$

Here we used the fact that $|\operatorname{Jac}(F^{p_i}_{\mathcal{M}})|(y) \ge C$. Observe that

 $|\tilde{y}|^{-\sqrt{|\tilde{y}|}} \geq C > 0 \quad \text{as } |\tilde{y}| \to 0.$

Using polar coordinates, the above integral becomes

$$\begin{aligned} \int_{\mathcal{U}_{\beta}} \frac{V_{0}^{2}}{\delta^{2}} dx &\geq C \sum_{i=1}^{N_{0}} \int_{D_{i}} \int_{S_{+}^{N-k-1}} \left(\frac{y^{1}}{|\tilde{y}|}\right)^{2} d\theta \int_{0}^{\beta} r^{-1+(N-k)\sqrt{1-q(f^{p_{i}}(\bar{y}))}} d\bar{y} \\ &\geq C \sum_{i=1}^{N_{0}} \int_{D_{i}} \int_{0}^{r_{i_{1}}} r^{-1+(N-k)\sqrt{1-q(f^{p_{i}}(\bar{y}))}} |\operatorname{Jac}(f^{p_{i}})|(\bar{y}) d\bar{y}. \end{aligned}$$

We therefore obtain

$$\int_{\mathcal{U}_{\beta}} \frac{V_0^2}{\delta^2} dx \geq C \int_{\Sigma_k} \int_0^{\beta} r^{-1+(N-k)\sqrt{1-q(\sigma)}} dr d\sigma$$
$$\geq C \int_{\Sigma_k} \frac{1}{\sqrt{1-q(\sigma)}} d\sigma.$$

This concludes the proof of the lemma.

WEIGHTED HARDY INEQUALITY WITH HIGHER DIMENSIONAL SINGULARITY ON THE BOUNDARYS

2.2. Construction of a supersolution. In this subsection we provide a supersolution for the operator \mathcal{L}_{λ} defined in (34). We prove

Lemma 2.4. There exist constants $\beta_0 > 0$, $M_1 < 0$, $M_0 > 0$ (the constant M_0 is as in Lemma 2.3) such that for all $\beta \in (0, \beta_0)$ the function $U := W_{0,M_1,q} - W_{-1,M_0,q} > 0$ in \mathcal{U}_β and satisfies

$$\mathcal{L}_{\lambda} U_a \ge 0 \quad in \ \mathcal{U}_{\beta}. \tag{39}$$

Moreover $U \in H^1(\mathcal{U}_\beta)$ provided

$$\int_{\Sigma_k} \frac{1}{\sqrt{1 - q(\sigma)}} \, d\sigma < +\infty. \tag{40}$$

Proof. We consider β_1 as in the beginning of the proof of Lemma 2.3 and we define

$$M_1 = -\frac{1}{2} \max_{x \in \overline{\mathcal{U}}_{\beta_1}} |h(x)| - 1.$$
(41)

Since

$$U(x) = (e^{M_1 d(x)} - e^{M_0 d(x)} X_{-1}(\tilde{\delta}(x))) d(x) \tilde{\delta}(x)^{\alpha(x)},$$

it follows that U > 0 in \mathcal{U}_{β} for $\beta > 0$ sufficiently small. By (41) and Lemma 2.2, we get

$$\mathcal{L}_{\lambda}W_{0,M_{1},q} \ge \left(-C|\log(\delta)|\,\delta^{-\frac{3}{2}} - |\lambda|\eta\delta^{-2}\right)\,W_{0,M_{1},q}.$$

Using (37) we have

$$\mathcal{L}_{\lambda}(-W_{-1,M_{0},q}) \ge \left(2\delta^{-2}X_{-2} - C|\log(\delta)|\,\delta^{-\frac{3}{2}} - |\lambda|\eta\delta^{-2}\right)\,W_{-1,M_{0},q}.$$

Taking the sum of the two above inequalities, we obtain

$$\mathcal{L}_{\lambda}U \geq 0$$
 in \mathcal{U}_{β} ,

which holds true because $|\eta| \leq C\delta$ in \mathcal{U}_{β} . Hence we get readily (39). Our next task is to prove that $U \in H^1(\mathcal{U}_{\beta})$ provided (40) holds, to do so it is enough to show that $W_{0,M_{1,q}} \in H^1(\mathcal{U}_{\beta})$ provided (40) holds. We argue as in the proof of Lemma 2.3. We have

$$\begin{split} \int_{\mathcal{U}_{\beta}} |\nabla W_{0,M_{1},q}|^{2} &\leq C \int_{\mathcal{U}_{\beta}} d^{2}(x) \tilde{\delta}(x)^{2\alpha(x)-2} \, dx \\ &\leq C \sum_{i=1}^{N_{0}} \int_{B^{N-k}_{+}(0,\beta) \times D_{i}} d^{2}(F^{p_{i}}_{\mathcal{M}}(y)) \tilde{\delta}(F^{p_{i}}_{\mathcal{M}}(y))^{2\alpha(F^{p_{i}}_{\mathcal{M}}(y))-2} |\operatorname{Jac}(F^{p_{i}}_{\mathcal{M}})|(y) dy \\ &\leq C \sum_{i=1}^{N_{0}} \int_{B^{N-k}_{+}(0,\beta) \times D_{i}} (y^{1})^{2} |\tilde{y}|^{2\alpha(F^{p_{i}}_{\mathcal{M}}(y))-2} |\operatorname{Jac}(F^{p_{i}}_{\mathcal{M}})|(y) \, dy \\ &\leq C \sum_{i=1}^{N_{0}} \int_{B^{N-k}_{+}(0,\beta) \times D_{i}} (y^{1})^{2} |\tilde{y}|^{k-N-2+(N-k)\sqrt{1-q(f^{p_{i}}(\bar{y}))}} |\tilde{y}|^{-\sqrt{|\tilde{y}|}} \, dy. \end{split}$$

Here we used the fact that $|\operatorname{Jac}(F^{p_i}_{\mathcal{M}})|(y) \leq C$. Note that

$$|\tilde{y}|^{-\sqrt{|\tilde{y}|}} \le C$$
 as $|\tilde{y}| \to 0$.

Using polar coordinates, it follows that

$$\begin{aligned} \int_{\mathcal{U}_{\beta}} |\nabla W_{0,M_{1},q}|^{2} &\leq C \sum_{i=1}^{N_{0}} \int_{D_{i}} \int_{S_{+}^{N-k-1}} \left(\frac{y^{1}}{|\tilde{y}|}\right)^{2} d\theta \int_{0}^{\beta} r^{-1+(N-k)\sqrt{1-q(f^{p_{i}}(\bar{y}))}} dr d\bar{y} \\ &\leq C \sum_{i=1}^{N_{0}} \int_{D_{i}} \frac{1}{\sqrt{1-q(f^{p_{i}}(\bar{y}))}} d\bar{y}. \end{aligned}$$

Racalling that $|\operatorname{Jac}(f^{p_i})|(\bar{y}) = 1 + O(|\bar{y}|)$, we deduce that

$$\begin{split} \sum_{i=1}^{N_0} \int_{D_i} \frac{1}{\sqrt{1 - q(f^{p_i}(\bar{y}))}} \, d\bar{y} &\leq C \sum_{i=1}^{N_0} \int_{D_i} \frac{1}{\sqrt{1 - q(f^{p_i}(\bar{y}))}} \, |\operatorname{Jac}(f)|(\bar{y}) \, d\bar{y} \\ &= C \int_{\Sigma_k} \frac{1}{\sqrt{1 - q(\sigma)}} \, d\sigma. \end{split}$$

Therefore

$$\int_{\mathcal{U}_{\beta}} |\nabla W_{0,M_{1},q}|^{2} dx \leq C \int_{\Sigma_{k}} \frac{1}{\sqrt{1-q(\sigma)}} d\sigma$$

and the lemma follows at once.

3. Existence of λ^*

We start with the following local improved Hardy inequality.

Lemma 3.1. Let Ω be a smooth domain and assume that $\partial\Omega$ contains a smooth closed submanifold Σ_k of dimension $1 \le k \le N-2$. Assume that p, q and η satisfy (2) and (3). Then there exist constants $\beta_0 > 0$ and c > 0 depending only on $\Omega, \Sigma_k, q, \eta$ and p such that for all $\beta \in (0, \beta_0)$ the inequality

$$\int_{\Omega_{\beta}} p|\nabla u|^2 \, dx - \frac{(N-k)^2}{4} \int_{\Omega_{\beta}} q \frac{|u|^2}{\delta^2} \, dx \ge c \int_{\Omega_{\beta}} \frac{|u|^2}{\delta^2 |\log(\delta)|^2} \, dx$$

holds for all $u \in H_0^1(\Omega_\beta)$.

Proof. We use the notations in Section 2 with $\mathcal{U} = \Omega$ and $\mathcal{M} = \partial \Omega$. Fix $\beta_1 > 0$ small and

$$M_{2} = -\frac{1}{2} \max_{x \in \overline{\Omega}_{\beta_{1}}} (|h(x)| + |\nabla p \cdot \nabla d|) - 1.$$
(42)

Since $\frac{p}{q} \in C^1(\overline{\Omega})$, there exists C > 0 such that

$$\left|\frac{p(x)}{q(x)} - \frac{p(\sigma(\bar{x}))}{q(\sigma(\bar{x}))}\right| \le C\delta(x) \quad \forall x \in \Omega_{\beta},\tag{43}$$

for small $\beta > 0$. Hence by (3) there exits a constant C' > 0 such that

$$p(x) \ge q(x) - C'\delta(x) \quad \forall x \in \Omega_{\beta}.$$
(44)

Consider $W_{\frac{1}{2},M_{2},1}$ (in Lemma 2.2 with $q \equiv 1$). For all $\beta > 0$ small, we set

$$\tilde{w}(x) = W_{\frac{1}{2}, M_2, 1}(x), \quad \forall x \in \Omega_\beta.$$
(45)

Notice that $\operatorname{div}(p\nabla \tilde{w}) = p\Delta \tilde{w} + \nabla p \cdot \nabla \tilde{w}$. By Lemma 2.2, we have

$$-\frac{\operatorname{div}(p\nabla\tilde{w})}{\tilde{w}} \ge \frac{(N-k)^2}{4} p\delta^{-2} + \frac{p}{4}\delta^{-2}X_{-2}(\delta) + O(|\log(\delta)|\delta^{-\frac{3}{2}}) \text{ in } \Omega_{\beta}.$$

This together with (44) yields

$$-\frac{\operatorname{div}(p\nabla\tilde{w})}{\tilde{w}} \ge \frac{(N-k)^2}{4}q\delta^{-2} + \frac{c_0}{4}\delta^{-2}X_{-2}(\delta) + O(|\log(\delta)|\delta^{-\frac{3}{2}}) \text{ in } \Omega_{\beta},$$

with $c_0 = \min_{\overline{\Omega_{\beta_1}}} p > 0$. Therefore

$$-\frac{\operatorname{div}(p\nabla\tilde{w})}{\tilde{w}} \ge \frac{(N-k)^2}{4} q\delta^{-2} + c\,\delta^{-2}X_{-2}(\delta) \text{ in }\Omega_{\beta},\tag{46}$$

for some positive constant c depending only on Ω , Σ_k , q, η and p.

Let $u \in C_c^{\infty}(\Omega_{\beta})$ and put $\psi = \frac{u}{\tilde{w}}$. Then one has $|\nabla u|^2 = |\tilde{w}\nabla \psi|^2 + |\psi\nabla \tilde{w}|^2 + \nabla(\psi^2) \cdot \tilde{w}\nabla \tilde{w}$. Therefore $|\nabla u|^2 p = |\tilde{w}\nabla \psi|^2 p + p\nabla \tilde{w} \cdot \nabla(\tilde{w}\psi^2)$. Integrating by parts, we get

$$\int_{\Omega_{\beta}} |\nabla u|^2 p \, dx = \int_{\Omega_{\beta}} |\tilde{w} \nabla \psi|^2 p \, dx + \int_{\Omega_{\beta}} \left(-\frac{\operatorname{div}(p\nabla \tilde{w})}{\tilde{w}} \right) u^2 \, dx.$$

Putting (46) in the above equality, we get the result.

We next prove the following result

Lemma 3.2. Let Ω be a smooth bounded domain and assume that $\partial\Omega$ contains a smooth closed submanifold Σ_k of dimension $1 \leq k \leq N-2$. Assume that (2) and (3) hold. Then there exists $\lambda^* = \lambda^*(\Omega, \Sigma_k, p, q, \eta) \in \mathbb{R}$ such that

$$\mu_{\lambda}(\Omega, \Sigma_k) = \frac{(N-k)^2}{4}, \qquad \forall \lambda \le \lambda^*,$$
$$\mu_{\lambda}(\Omega, \Sigma_k) < \frac{(N-k)^2}{4}, \qquad \forall \lambda > \lambda^*.$$

Proof. We devide the proof in two steps **Step 1:** We claim that:

$$\sup_{\lambda \in \mathbb{R}} \mu_{\lambda}(\Omega, \Sigma_k) \le \frac{(N-k)^2}{4}.$$
(47)

Indeed, we know that $\nu_0(\mathbb{R}^N_+, \mathbb{R}^k) = \frac{(N-k)^2}{4}$, see [15] for instance. Given $\tau > 0$, we let $u_\tau \in C_c^{\infty}(\mathbb{R}^N_+)$ be such that

$$\int_{\mathbb{R}^{N}_{+}} |\nabla u_{\tau}|^{2} \, dy \leq \left(\frac{(N-k)^{2}}{4} + \tau\right) \int_{\mathbb{R}^{N}_{+}} |\tilde{y}|^{-2} u_{\tau}^{2} \, dy. \tag{48}$$

By (3), we can let $\sigma_0 \in \Sigma_k$ be such that

$$q(\sigma_0) = p(\sigma_0).$$

Now, given r > 0, we let $\rho_r > 0$ such that for all $x \in B(\sigma_0, \rho_r) \cap \Omega$

$$p(x) \le (1+r)q(\sigma_0), \quad q(x) \ge (1-r)q(\sigma_0) \quad \text{and} \quad \eta(x) \le r.$$
 (49)

We choose Fermi coordinates near $\sigma_0 \in \Sigma_k$ given by the map $F^{\sigma_0}_{\partial\Omega}$ (as in Section 2) and we choose $\varepsilon_0 > 0$ small such that, for all $\varepsilon \in (0, \varepsilon_0)$,

$$\Lambda_{\varepsilon,\rho,r,\tau} := F^{\sigma_0}_{\partial\Omega}(\varepsilon \operatorname{Supp}(\mathbf{u}_{\tau})) \subset B(\sigma_0,\rho_r) \cap \Omega$$

WEIGHTED HARDY INEQUALITY WITH HIGHER DIMENSIONAL SINGULARITY ON THE BOUNDARY9 and we define the following test function

$$v(x) = \varepsilon^{\frac{2-N}{2}} u_{\tau} \left(\varepsilon^{-1} (F^{\sigma_0}_{\partial \Omega})^{-1}(x) \right), \quad x \in \Lambda_{\varepsilon, \rho, r, \tau}.$$

Clearly, for every $\varepsilon \in (0, \varepsilon_0)$, we have that $v \in C_c^{\infty}(\Omega)$ and thus by a change of variable, (49) and Lemma 2.1, we have

$$\begin{split} \mu_{\lambda}(\Omega,\Sigma_{k}) &\leq \frac{\displaystyle\int_{\Omega} p|\nabla v|^{2} \, dx + \lambda \int_{\Omega} \delta^{-2} \eta v^{2} \, dx}{\displaystyle\int_{\Omega} q(x) \, \delta^{-2} \, v^{2} \, dx} \\ &\leq \frac{\displaystyle(1+r) \int_{\Lambda_{\varepsilon,\rho,r,\tau}} |\nabla v|^{2} \, dx}{(1-r) \int_{\Lambda_{\varepsilon,\rho,r,\tau}} \delta^{-2} \, v^{2} \, dx} + \frac{r|\lambda|}{(1-r)q(\sigma_{0})} \\ &\leq \frac{\displaystyle(1+r) \int_{\Lambda_{\varepsilon,\rho,r,\tau}} |\nabla v|^{2} \, dx}{(1-cr) \int_{\Lambda_{\varepsilon,\rho,r,\tau}} \tilde{\delta}^{-2} \, v^{2} \, dx} + \frac{r|\lambda|}{(1-r)q(\sigma_{0})} \\ &\leq \frac{\displaystyle(1+r) \varepsilon^{2-N} \int_{\mathbb{R}^{N}_{+}} \varepsilon^{-2} (g^{\varepsilon})^{ij} \partial_{i} u_{\tau} \partial_{j} u_{\tau} |\sqrt{|g^{\varepsilon}|}(y) \, dy}{(1-cr) \int_{\mathbb{R}^{N}_{+}} \varepsilon^{2-N} |\varepsilon \tilde{y}|^{-2} \, u_{\tau}^{2} \, \sqrt{|g^{\varepsilon}|}(\tilde{y}) \, dy} + \frac{cr}{1-r}, \end{split}$$

where g^{ε} is the scaled metric with components $g_{\alpha\beta}^{\varepsilon}(y) = \varepsilon^{-2} \langle \partial_{\alpha} F_{\partial\Omega}^{\sigma_0}(\varepsilon y), \partial_{\beta} F_{\partial\Omega}^{\sigma_0}(\varepsilon y) \rangle$ for $\alpha, \beta = 1, \ldots, N$ and where we have used the fact that $\tilde{\delta}(F_{\partial\Omega}^{\sigma_0}(\varepsilon y)) = |\varepsilon \tilde{y}|^2$ for every \tilde{y} in the support of u_{τ} . Since the scaled metric g^{ε} expands a $g^{\varepsilon} = I + O(\varepsilon)$ on the support of u_{τ} , we deduce that

$$\mu_{\lambda}(\Omega, \Sigma_k) \leq \frac{1+r}{1-cr} \frac{1+c\varepsilon}{1-c\varepsilon} \frac{\int_{\mathbb{R}^N_+} |\nabla u_{\tau}|^2 \, dy}{\int_{\mathbb{R}^N_+} |\tilde{y}|^{-2} \, u_{\tau}^2 \, dy} + \frac{cr}{1-r},$$

where c is a positive constant depending only on Ω, p, q, η and Σ_k . Hence by (48) we conclude

$$\mu_{\lambda}(\Omega, \Sigma_k) \leq \frac{1+r}{1-cr} \frac{1+c\varepsilon}{1-c\varepsilon} \left(\frac{(N-k)^2}{4} + \tau \right) + \frac{cr}{1-r}$$

Taking the limit in ε , then in r and then in τ , the claim follows. **Step 2:** We claim that there exists $\tilde{\lambda} \in \mathbb{R}$ such that $\mu_{\tilde{\lambda}}(\Omega, \Sigma_k) \geq \frac{(N-k)^2}{4}$. Thanks to Lemma 3.1, the proof uses a standard argument of cut-off function and integration by parts (see [4]) and we can obtain

$$\int_{\Omega} \delta^{-2} u^2 q \, dx \leq \int_{\Omega} |\nabla u|^2 p \, dx + C \int_{\Omega} \delta^{-2} u^2 \eta \, dx \quad \forall u \in C_c^{\infty}(\Omega),$$

for some constant C>0. We skip the details. The claim now follows by choosing $\tilde{\lambda}=-C$

Finally, noticing that $\mu_{\lambda}(\Omega, \Sigma_k)$ is decreasing in λ , we can set

$$\lambda^* := \sup\left\{\lambda \in \mathbb{R} : \mu_\lambda(\Omega, \Sigma_k) = \frac{(N-k)^2}{4}\right\}$$
(50)

so that $\mu_{\lambda}(\Omega, \Sigma_k) < \frac{(N-k)^2}{4}$ for all $\lambda > \lambda^*$.

4. Non-existence result

Lemma 4.1. Let Ω be a smooth bounded domain of \mathbb{R}^N , $N \geq 3$, and let Σ_k be a smooth closed submanifold of $\partial\Omega$ of dimension k with $1 \leq k \leq N-2$. Then, there exist bounded smooth domains Ω^{\pm} such that $\Omega^+ \subset \Omega \subset \Omega^-$ and

$$\partial \Omega^+ \cap \partial \Omega = \partial \Omega^- \cap \partial \Omega = \Sigma_k$$

Proof. Consider the maps

$$x \mapsto g^{\pm}(x) := d_{\partial\Omega}(x) \pm \frac{1}{2} \,\delta^2(x),$$

where $d_{\partial\Omega}$ is the distance function to $\partial\Omega$. For some $\beta_1 > 0$ small, g^{\pm} are smooth in Ω_{β_1} and since $|\nabla g^{\pm}| \ge C > 0$ on Σ_k , by the implicit function theorem, the sets

$$\{x \in \Omega_\beta : g^\pm = 0\}$$

are smooth (N-1)-dimensional submanifolds of \mathbb{R}^N , for some $\beta > 0$ small. In addition, by construction, they can be taken to be part of the boundaries of smooth bounded domains Ω^{\pm} with $\Omega^+ \subset \Omega \subset \Omega^-$ and such that

$$\partial \Omega^+ \cap \partial \Omega = \partial \Omega^- \cap \partial \Omega = \Sigma_k.$$

The prove then follows at once.

Now, we prove the following non-existence result.

Theorem 4.2. Let Ω be a smooth bounded domain of \mathbb{R}^N and let Σ_k be a smooth closed submanifold of $\partial\Omega$ of dimension k with $1 \leq k \leq N-2$ and let $\lambda \geq 0$. Assume that p, q and η satisfy (2) and (3). Suppose that $u \in H_0^1(\Omega) \cap C(\Omega)$ is a non-negative function satisfying

$$-\operatorname{div}(p\nabla u) - \frac{(N-k)^2}{4}q\delta^{-2}u \ge -\lambda\eta\delta^{-2}u \quad in \ \Omega.$$
(51)

If $\int_{\Sigma_k} \frac{1}{\sqrt{1-p(\sigma)/q(\sigma)}} d\sigma = +\infty$ then $u \equiv 0$.

Proof. We first assume that $p \equiv 1$. Let Ω^+ be the set given by Lemma 4.1. We will use the notations in Section 2 with $\mathcal{U} = \Omega^+$ and $\mathcal{M} = \partial \Omega^+$. For $\beta > 0$ small we define

$$\Omega_{\beta}^{+} := \{ x \in \Omega^{+} : \quad \delta(x) < \beta \}.$$

We suppose by contradiction that u does not vanish identically near Σ_k and satisfies (51) so that u > 0 in Ω_β by the maximum principle, for some $\beta > 0$ small. Consider the subsolution V_{ε} defined in Lemma 2.3 which satisfies

$$\mathcal{L}_{\lambda} V_{\varepsilon} \le 0 \quad \text{in } \Omega_{\beta}^+, \quad \forall \varepsilon \in (0, 1).$$
 (52)

Notice that $\overline{\partial \Omega_{\beta}^{+} \cap \Omega^{+}} \subset \Omega$ thus, for $\beta > 0$ small, we can choose R > 0 (independent on ε) so that

$$R V_{\varepsilon} \leq R V_0 \leq u \quad \text{on } \overline{\partial \Omega_{\beta}^+ \cap \Omega^+} \quad \forall \varepsilon \in (0,1).$$

Again by Lemma 2.3, setting $v_{\varepsilon} = RV_{\varepsilon} - u$, it turns out that $v_{\varepsilon}^{+} = \max(v_{\varepsilon}, 0) \in H_{0}^{1}(\Omega_{\beta}^{+})$ because $V_{\varepsilon} = 0$ on $\partial\Omega_{\beta}^{+} \setminus \overline{\partial\Omega_{\beta}^{+} \cap \Omega^{+}}$. Moreover by (51) and (52),

$$\mathcal{L}_{\lambda} v_{\varepsilon} \leq 0 \quad \text{in } \Omega_{\beta}^{+}, \quad \forall \varepsilon \in (0, 1).$$

Multiplying the above inequality by v_{ε}^+ and integrating by parts yields

$$\int_{\Omega_{\beta}^{+}} |\nabla v_{\varepsilon}^{+}|^{2} dx - \frac{(N-k)^{2}}{4} \int_{\Omega_{\beta}^{+}} \delta^{-2} q |v_{\varepsilon}^{+}|^{2} dx + \lambda \int_{\Omega_{\beta}^{+}} \eta \delta^{-2} |v_{\varepsilon}^{+}|^{2} dx \le 0.$$

But then Lemma 3.1 implies that $v_{\varepsilon}^+ = 0$ in Ω_{β}^+ provided β small enough because $|\eta| \leq C\delta$ near Σ_k . Therefore $u \geq R V_{\varepsilon}$ for every $\varepsilon \in (0, 1)$. In particular $u \geq R V_0$. Hence we obtain from Lemma 2.3 that

$$\infty > \int_{\Omega_{\beta}^{+}} \frac{u^2}{\delta^2} \ge R^2 \int_{\Omega_{\beta}^{+}} \frac{V_0^2}{\delta^2} \ge \int_{\Sigma_k} \frac{1}{\sqrt{1 - q(\sigma)}} d\sigma$$

which leads to a contradiction. We deduce that $u \equiv 0$ in Ω_{β}^+ . Thus by the maximum principle $u \equiv 0$ in Ω .

For the general case $p \neq 1$, we argue as in [5] by setting

$$\tilde{u} = \sqrt{p}u. \tag{53}$$

This function satisfies

$$-\Delta \tilde{u} - \frac{(N-k)^2}{4} \frac{q}{p} \delta^{-2} \tilde{u} \ge -\lambda \frac{\eta}{p} \delta^{-2} \tilde{u} + \left(-\frac{\Delta p}{2p} + \frac{|\nabla p|^2}{4p^2}\right) \tilde{u} \quad \text{in } \Omega.$$

Hence since $p \in C^2(\overline{\Omega})$ and p > 0 in $\overline{\Omega}$, we get the same conclusions as in the case $p \equiv 1$ and q replaced by q/p.

5. EXISTENCE OF MINIMIZERS FOR $\mu_{\lambda}(\Omega, \Sigma_k)$

Theorem 5.1. Let Ω be a smooth bounded domain of \mathbb{R}^N and let Σ_k be a smooth closed submanifold of $\partial\Omega$ of dimension k with $1 \leq k \leq N-2$. Assume that p,q and η satisfy (2) and (3). Then $\mu_{\lambda}(\Omega, \Sigma_k)$ is achieved for every $\lambda < \lambda^*$.

Proof. The proof follows the same argument of [4] by taking into account the fact that $\eta = 0$ on Σ_k so we skip it.

Next, we prove the existence of minimizers in the critical case $\lambda = \lambda_*$.

Theorem 5.2. Let Ω be a smooth bounded domain of \mathbb{R}^N and let Σ_k be a smooth closed submanifold of $\partial\Omega$ of dimension k with $1 \leq k \leq N-2$. Assume that p,q and η satisfy (2) and (3). If $\int_{\Sigma_k} \frac{1}{\sqrt{1-p(\sigma)/q(\sigma)}} d\sigma < \infty$ then $\mu_{\lambda^*} = \mu_{\lambda^*}(\Omega, \Sigma_k)$ is achieved.

Proof. We first consider the case $p \equiv 1$.

Let λ_n be a sequence of real numbers decreasing to λ^* . By Theorem 5.1, there exits u_n minimizers for $\mu_{\lambda_n} = \mu_{\lambda_n}(\Omega, \Sigma_k)$ so that

$$-\Delta u_n - \mu_{\lambda_n} \delta^{-2} q u_n = -\lambda_n \delta^{-2} \eta u_n \quad \text{in } \Omega.$$
(54)

We may assume that $u_n \geq 0$ in Ω . We may also assume that $\|\nabla u_n\|_{L^2(\Omega)} = 1$. Hence $u_n \rightharpoonup u$ in $H_0^1(\Omega)$ and $u_n \rightarrow u$ in $L^2(\Omega)$ and pointwise. Let $\Omega^- \supset \Omega$ be the set given by Lemma 4.1. We will use the notations in Section 2 with $\mathcal{U} = \Omega^-$ and $\mathcal{M} = \partial \Omega^-$. It will be understood that q is extended to a function in $C^2(\overline{\Omega^-})$. For $\beta > 0$ small we define

$$\Omega_{\beta}^{-} := \{ x \in \Omega^{-} : \quad \delta(x) < \beta \}.$$

We have that

$$\Delta u_n + b_n(x) \, u_n = 0 \quad \text{in } \Omega,$$

with $|b_n| \leq C$ in $\overline{\Omega \setminus \overline{\Omega_{\frac{\beta}{2}}}}$ for all integer *n*. Thus by standard elliptic regularity theory,

$$u_n \le C \qquad \text{in } \overline{\Omega \setminus \overline{\Omega_{\frac{\beta}{2}}^{-}}}.$$
 (55)

We consider the supersolution U in Lemma 2.4. We shall show that there exits a constant C > 0 such that for all $n \in \mathbb{N}$

$$u_n \le CU \quad \text{in } \overline{\Omega_{\beta}^-}.$$
 (56)

Notice that $\overline{\Omega \cap \partial \Omega_{\beta}^{-}} \subset \Omega^{-}$ thus by (55), we can choose C > 0 so that for any n

$$u_n \le C U$$
 on $\overline{\Omega \cap \partial \Omega_{\beta}^-}$.

Again by Lemma 2.4, setting $v_n = u_n - C U$, it turns out that $v_n^+ = \max(v_n, 0) \in H_0^1(\Omega_{\beta}^-)$ because $u_n = 0$ on $\partial \Omega \cap \Omega_{\beta}^-$. Hence we have

$$\mathcal{L}_{\lambda_n} v_n \leq -C(\mu_{\lambda^*} - \mu_n)qU - C(\lambda^* - \lambda_n)\eta U \leq 0 \quad \text{ in } \Omega_{\beta}^- \cap \Omega.$$

Multiplying the above inequality by v_n^+ and integrating by parts yields

$$\int_{\Omega_{\beta}^{-}} |\nabla v_{n}^{+}|^{2} dx - \mu_{\lambda_{n}} \int_{\Omega_{\beta}^{-}} \delta^{-2} q |v_{n}^{+}|^{2} dx + \lambda_{n} \int_{\Omega_{\beta}^{-}} \eta \delta^{-2} |v_{n}^{+}|^{2} dx \le 0.$$

Hence Lemma 3.1 implies that

$$C \int_{\Omega_{\beta}^{-}} \delta^{-2} X_{-2} |v_{n}^{+}|^{2} dx + \lambda_{n} \int_{\Omega_{\beta}^{-}} \eta \delta^{-2} |v_{n}^{+}|^{2} dx \le 0.$$

Since λ_n is bounded, we can choose $\beta > 0$ small (independent of n) such that $v_n^+ \equiv 0$ on Ω_{β}^- (recall that $|\eta| \leq C\delta$). Thus we obtain (56).

Now since $u_n \to u$ in $L^2(\Omega)$, we get by the dominated convergence theorem and (56), that

$$\delta^{-1}u_n \to \delta^{-1}u \quad \text{in } L^2(\Omega)$$

Since u_n satisfies

$$1 = \int_{\Omega} |\nabla u_n|^2 = \mu_{\lambda_n} \int_{\Omega} \delta^{-2} q u_n^2 + \lambda_n \int_{\Omega} \delta^{-2} \eta u_n^2$$

taking the limit, we have $1 = \mu_{\lambda^*} \int_{\Omega} \delta^{-2} q u^2 + \lambda^* \int_{\Omega} \delta^{-2} \eta u^2$. Hence $u \neq 0$ and it is a minimizer for $\mu_{\lambda^*} = \frac{(N-k)^2}{4}$.

For the general case $p \neq 1$, we can use the same transformation as in (53). So (56) holds and the same argument as a above carries over.

6. Proof of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1: Combining Lemma 3.2 and Theorem 5.1, it remains only to check the case $\lambda < \lambda^*$. But this is an easy consequence of the definition of λ^* and of $\mu_{\lambda}(\Omega, \Sigma_k)$, see [[4], Section 3].

Proof of Theorem 1.2: Existence is proved in Theorem 5.2 for $I_k < \infty$. Since the absolute value of any minimizer for $\mu_{\lambda}(\Omega, \Sigma_k)$ is also a minimizer, we can apply Theorem 4.2 to infer that $\mu_{\lambda^*}(\Omega, \Sigma_k)$ is never achieved as soon as $I_k = \infty$.

WEIGHTED HARDY INEQUALITY WITH HIGHER DIMENSIONAL SINGULARITY ON THE BOUNDARYS

Acknowledgments

This work started when the first author was visiting CMM, Universidad de Chile. He is grateful for their kind hospitality. M. M. Fall is supported by the Alexandervon-Humboldt Foundation. F. Mahmoudi is supported by the Fondecyt proyect n: 1100164 and Fondo Basal CMM.

References

- Adimurthi and Sandeep K., Existence and non-existence of the first eigenvalue of the perturbed Hardy-Sobolev operator. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), no. 5, 1021-1043.
- [2] Bandle C., Moroz V.. Reichel W., Large solutions to semilinear elliptic equations with Hardy potential and exponential nonlinearity. Around the research of Vladimir Maz'ya. II, 1-22, Int. Math. Ser. (N. Y.), 12, Springer, New York, 2010.
- [3] Bandle C., Moroz V.. Reichel W., 'Boundary blowup' type sub-solutions to semilinear elliptic equations with Hardy potential. J. Lond. Math. Soc. (2) 77 (2008), no. 2, 503-523.
- [4] Brezis H. and Marcus M., Hardy's inequalities revisited. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 217-237.
- [5] Brezis H., Marcus M. and Shafrir I., External functions for Hardy's inequality with weight, J. Funct. Anal. 171 (2000), 177-191.
- [6] Caldiroli P., Musina R., On a class of 2-dimensional singular elliptic problems. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 479-497.
- [7] Caldiroli P., Musina R., Stationary states for a two-dimensional singular Schrödinger equation. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 4-B (2001), 609-633.
- [8] Cazacu C., On Hardy inequalities with singularities on the boundary. C. R. Math. Acad. Sci. Paris 349 (2011), no. 5-6, 273-277.
- [9] Fall M. M., Nonexistence of distributional supersolutions of a semilinear elliptic equation with Hardy potential. To appear in J. Funct. Anal. http://arxiv.org/abs/1105.5886.
- [10] Fall M. M., On the Hardy-Poincaré inequality with boundary singularities. Commun. Contemp. Math., 14, 1250019, 2012.
- [11] Fall M. M., A note on Hardy's inequalities with boundary singularities. Nonlinear Anal. 75 (2012) no. 2, 951-963.
- [12] Fall M. M., Musina R., Hardy-Poincaré inequalities with boundary singularities. Proc. Roy. Soc. Edinburgh. A 142, 1-18, 2012.
- [13] Fall M. M., Musina R., Sharp nonexistence results for a linear elliptic inequality involving Hardy and Leray potentials. Journal of Inequalities and Applications, vol. 2011, Article ID 917201, 21 pages, 2011. doi:10.1155/2011/917201.

- [14] Fall M. M., Mahmoudi F., Hypersurfaces with free boundary and large constant mean curvature: concentration along submanifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), no. 3, 407–446.
- [15] Filippas S., Tertikas A. and Tidblom J., On the structure of Hardy-Sobolev-Maz'ya inequalities.
 J. Eur. Math. Soc., 11(6), (2009), 1165-1185.
- [16] Mahmoudi F., Malchiodi A., Concentration on minimal submanifolds for a singularly perturbed Neumann problem, Adv. in Math. 209 (2007) 460-525.
- [17] Nazarov A. I., Hardy-Sobolev Inequalities in a cone, J. Math. Sciences, 132, (2006), (4), 419-427.
- [18] Nazarov A. I., Dirichlet and Neumann problems to critical Emden-Fowler type equations. J. Glob. Optim. (2008) 40, 289-303.
- [19] Pinchover Y., Tintarev K., Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy's inequality. Indiana Univ. Math. J. 54 (2005), 1061-1074.

M.M. Fall - Goethe-Universität Frankfurt, Institut für Mathematik. Robert-Mayer-Str. 10 D-60054 Frankfurt, Germany.

E-mail address: fall@math.uni-frankfurt.de

F. MAHMOUDI - DEPARTAMENTO DE INGENIERIA MATEMÁTICA AND CMM, UNIVERSIDAD DE CHILE, CASILLA 170 CORREO 3, SANTIAGO, CHILE.

 $E\text{-}mail\ address:\ \texttt{fmahmoudi}\texttt{@dim.uchile.cl}$