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Abstract

Letting Γ be an embedded curve in a Riemannian manifoldM, we prove the existence of
minimal disc-type surfaces centered at Γ inside surface of revolution ofM around Γ, having
small radius, and intersecting it with constant angles. In particular we obtain that small
tubular neighborhoods can be foliated by minimal discs.

1 Introduction

Minimal surfaces are surfaces with mean curvature vanishing everywhere. These include, but are
not limited to, surfaces of minimal area subjected to various constraints.
In this paper we are interested in minimal surfaces which intersect a given hyper-surface with a
constant angle. Such surfaces, called capillary minimal surfaces, are critical points of an energy
functional under some constraints, see (3) below.
Capillary surfaces correspond to the physical problem of describing of an incompressible liquid
in a container in the absence of gravity. A great deal of work has been devoted to capillarity
phenomena from the point of view of existence, uniqueness and topological properties of solutions
mainly in the non-parametric case and in the more general situation of presence of gravity (see
the book of R. Finn, [7], for an account of the subject). Some answers to these questions have
been obtained by many authors. We refer for example to the papers [9], [10], [4] [12], [16], [18]
[17], [20],[21] and the references therein.
Here we prove existence results of capillary surfaces with prescribed topology in Riemannian man-
ifolds. Roughly speaking, we first show the existence of a class of capilary (minimal) disc-type
surfaces embedded in a Riemannian surface of revolution (see below). In particular, shrinking
enough the thickness of the surface of revolution, this class constitutes a foliation. Secondly we
have existence of minimal disc-type surfaces embedded in a geodesic tube of a curve which inter-
sect perpendicularly the boundary of the tube.
The method we use is perturbative in nature and the main idea goes back to R. Ye, [23], sub-
sequently employed with success by many authors to obtain existence of (large) constant mean
curvature hyper-surfaces. For example, one can see [5], [6] [13], [14] and [15]. Before stating our
results, some preliminaries are required.

A surface of revolution is a surface created by rotating a parametric curve [a, b] 3 s →
(κ(s) , φ(s)) ∈ R2 lying on some plane around a straight line (the axis of rotation) in the same
plane.
The resulting surface C 1 therefore always has azimuthal symmetry. Examples of surfaces of
revolution include cylinder (excluding the ends), hyperboloid, paraboloid, sphere, torus, etc.
In more generality one can obtain surfaces of revolution in Rn+1, n ≥ 2 using the standard
parametrization
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S(s, z) = (κ(s) , φ(s) Θ(z)) ,

where z 7→ Θ(z) ∈ Sn−1, φ(s) 6= 0 ∀s ∈ [a, b].
Assuming that the rotating curve is parameterized by arc length namely

(φ′(s))2 + (κ′(s))2 = 1,

clearly the disc Ds,1 centered at (κ(s) , 0) (on the axis of rotation) with radius φ(s) parame-
terized by

Bn
1 3 x 7→ (κ(s) , φ(s)x) ,

has zero mean curvature and intersects the above surface of revolution with a constant angle
equal to arccos φ′(s), where Bn

1 stands for the unit ball of Rn centered at the origin, namely Ds,1

is a capillary surface.
Motivated by capillarity problems, for questions of stability, see [7], it is not restrictive to assume
that the angle of contact is in (0, π), namely φ′(s) ∈ (−1, 1) or equivalently

κ′(s) 6= 0.

We shall extend these definitions of surface of revolution in a Riemannian setting.

Let (Mn+1, g) be Riemannian manifold, and Γ an embedded curve parameterized by a map
γ : [0, 1] → M. We consider a local parallel orthogonal frame E1, · · · , En of NΓ along Γ. This
determines a coordinate system by

[0, 1]× Rn 3 (x0, y) 7→ f(x0, y) := expγ(x0)(y
iEi) ∈ M.

For a small parameter ρ > 0, consider the Riemannian surface of revolution C ρ around Γ in M
parameterized by

(s, z) −→ f(ρS(s, z)) = f(ρ κ(s) , ρ φ(s)Θ(z)) = expγ(ρ κ(s))(ρ φ(s)Θi(z)Ei),

where z 7→ Θ(z) ∈ Sn−1, and call its interior Ωρ := intC ρ which is nothing but a tubular
neighborhood for Γ if ρ is small enough. Here we are assuming always that φ(s) 6= 0 and that
(φ′(s))2 + (κ′(s))2 = 1.

For any s ∈ [a, b], we consider the following set

Ds,ρ := f(ρ κ(s) , ρ φ(s)Bn
1 ),

it is clear that ∂Ds,ρ ⊂ C ρ and we have that the mean curvature HDs,ρ of Ds,ρ, see § 4.1, satisfies

(1) HDs,ρ = O(ρ) in Ds,ρ

while the angle between the unit outer normals (see also § 4.2) can be expanded as

(2) 〈NDs,ρ
, NC ρ〉 = φ′(s) +O(ρ) on ∂Ds,ρ.

Our aim is to perturb Ds,ρ to a capillary minimal submanifold, Ds,ρ, of Ωρ centered on Γ with
contact angle arccos φ′(s) along ∂Ds,ρ ⊂ C ρ, as it happens in Rn+1.

Theorem 1.1 Suppose we are in the situation described above. Let [a′, b′] ⊂ [a, b] be such that
φ(s)φ′′(s) > 0 for every s ∈ [a′, b′]. Then there exists ρ0 > 0 such that for any s ∈ [a′, b′] and
ρ ∈ (0, ρ0), there exists an embedded minimal disc Ds,ρ ⊂ Ωρ, intersecting C ρ by an angle equal
to φ′(s) along its boundary. Moreover Ds,ρ is a normal graph over the set Ds,ρ for which the
norm (in the C2,α-topology) of this function defining the graph tends to zero uniformly as ρ tends
to zero.
Furthermore there exists a tubular neighborhood Oρ of γ([a′, b′]) foliated by such minimal discs
for which each leaf intersects ∂Oρ transversally along its boundary.
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Remark 1.2 • When we parameterize in particular C ρ with κ(s) = s, and if we require the
capillary discs to be perpendicular to C ρ, we obtain the conditions φ′ = 0 and φ′′ 6= 0. This
means that non-degenerate extrema of the width φ determine the location of such surfaces.

• An example is the hyperboloid, φ(s) = cosh s and κ(s) = sinh s. Here one may see M
as a Lorentzian manifold modeled on the Minkowski space Rn

1 . Letting q ∈ M and E0 a
unit time-like vector of TqM and γ(x0) = expq(x0E0) so one can see D0,ρ as a space-like
minimal disc in the geodesic sphere of radius ρ.

An interesting particular case which is not covered by Theorem 1.1 is when φ ≡ 1 and κ =Id,
namely when we deal with geodesic tubes. In this situation (recall that in this case the angle
of contact is π

2 ) it is the geometry of the manifold to determine the position of the discs. More
precisely, we have that C ρ is the geodesic tube of radius ρ > 0 around Γ,

C ρ = {q ∈M : distg(q,Γ) = ρ},

and its interior is nothing but

Ωρ := {q ∈M : distg(q,Γ) < ρ}.

In this case due to invariance by translations along the axis of rotation, we reduced our problem
of finding minimal surfaces to a finite-dimensional one. Namely we have obtained the following

Theorem 1.3 There exists a smooth function ψρ : [a, b] → R such that, for ρ small, if s0 is a
critical point of ψρ the set Ds0,ρ can be smoothly perturbed to an embedded minimal hyper-surface
Ds0,ρ ⊂ Ωρ intersecting C ρ perpendicularly along its boundary. Furthermore, for any integer k,
there exists a constant ck (independant on ρ) such that

‖ψρ −
n∑
i,j

〈Rp(Ej , Ei)Ej , Ei〉‖Ck[a,b] ≤ ckρ
2,

where Rp is the Riemann tensor of M at p = γ(ρ s).

Some remarks are due: let Γ 3 p→ Ψ(p) =
∑n

i,j 〈Rp(Ej , Ei)Ej , Ei〉 any strict maxima or minima
of Ψ imply the existence of minimal surfaces. In particular suppose at some point p0 = γ(ρ s0)
interior to Γ, there hold

dΨ(p0)[γ̇(ρ s0)] = 0 and
∣∣d2Ψ(p0)[γ̇(ρ s0), γ̇(ρ s0)]

∣∣ > c,

for some constant c independent on ρ. By the implicit function theorem, there exits a curve
(0, ρ0) 3 ρ 7→ sρ with sρ → s0 such that sρ is a critical point of ψρ. Hence for every ρ ∈ (0, ρ0),
there exits an embedded minimal disc Dsρ,ρ, centered at γ(ρ sρ), contained in Ωρ that intersects
∂Ωρ perpendicularly along its boundary.

Remark 1.4 • We have that

Ψ(p) =
n∑
i,j

〈Rp(Ej , Ei)Ej , Ei〉 = S(p) + 2Ricp(γ̇(ρ s), γ̇(ρ s)),

where

S(p) =
n∑

α,β=0

〈Rp(Eα, Eβ)Eα, Eβ〉

is the scalar curvature of M at p = γ(ρ s), E0 = γ̇(ρ s) and Ricp is the Ricci tensor of M
at p. From Theorem 1.3, we have that if s 7→ Ricp(γ̇(ρ s), γ̇(ρ s)) is locally constant along
Γ then stable critical points the scalar curvature yields existence of minimal discs.

3



• Recall that if (Mm1
1 , g1) and (Mm2

2 , g2) are two manifolds, the Riemann tensor R of the
(Riemannian) Cartesian product Mm1+m2 := (M1 × M2, g1 ⊕ g2) decomposes as R =
R1 ⊕ R2 since the connection ∇ is given by ∇X1+X2(Y1 + Y2) = ∇1

X1
Y1 +∇2

X2
Y2 for any

X1, Y1 (resp. X2, Y2) vector fields of M1 (resp. M2), where ∇i is the connection of
Mi. Clearly for any p2 ∈ M2, the set (M1)(p2) := {(p1, p2) ∈ M : p1 ∈ M1} is a
submanifold of M, diffeomorphic to M1.
In particular if m1 = 1, R1 = 0, by Theorem 1.3 we obtain that stable critical points of the
mapping S

∣∣∣
(M1)(p2)

yield existence of minimal discs inside (small) geodesic tubes around

the curve (M1)(p2), where as before S is the scalar curvature of M.

• As a simple byproduct of our analysis, we find that if Γ is a closed curve, we have at
least 2 (equal to the Lusternik-Schnierelman category of Γ, see [3] ) solutions (without any
assumptions on the curvature of M).

• We believe that this result might be generalized to higher codimensions namely if N `, 1 <
` < n, is an `-dimensional submanifold of Mn+1 and considering the following surface of
revolution with axis of rotation R`

S(s, z) = (κ1(s), . . . , κ`(s), φ(s)Θ(z)),

where z 7→ Θ(z) ∈ Sn−`, one could obtain (n − ` + 1)-dimensional minimal disc-type sub-
manifolds of M centered on N `.

Let us describe the proof of the theorems above. We first recall, see [17], that Capillary
hyper-surfaces with constant contact angle arccos φ′(s) are stationary for the energy functional

(3) E(D) = Area(D ∩ Ωρ)− φ′(s) Area(Ω′
ρ),

among (orientable smooth) surfaces D ⊂ Ωρ with ∂D ⊂ ∂Ωρ and Ω′
ρ ⊂ ∂Ωρ is the part (on one

side of D) for which the angle is measured. Moreover the Euler-Lagrange equations is nothing
but

(4)
HD = 0 in D,

〈ND, N∂Ωρ
〉 = φ′(s) on ∂D.

Here HD is the mean curvature of D while ND and N∂Ωρ
are outer unit normals of D and ∂Ωρ

respectively. Since we look for stationary surfaces with a given profile for this energy functional,
clearly by (1)-(2) a manifold of approximate solutions is given by Zρ := {Ds,ρ : s ∈ [a, b]}.
For any given hyper-surface Ds,ρ ∈ Zρ, we parametrize (locally) a neighborhood of Ds,ρ (in the
manifold in M) by a mapping F s : R×Bn

1 →M for which F s(t, ∂Bn
1 ) ⊂ ∂Ωρ, for every t, while

the direction F s
∗ (∂t) is nearly normal to Ds,ρ, and moreover Ds,ρ = F s(0, Bn

1 ), see (8). This
allows to parametrize any set D nearby Ds,ρ satisfying ∂D ⊂ ∂Ωρ by a function w : Bn

1 → R
such that D(w) = F s(w,Bn

1 ). We call H(s, ρ, w) the mean curvature of D(w) and B(s, ρ, w) the
angle between the normals N∂D(w) and NC ρ of ∂D(w) and ∂Ωρ respectively.
One of the main features in this work in the (technical) Sections 4.1, § 4.2 is to calculate H(s, ρ, w)
as a nonlinear elliptic partial differential operator, depending on ρ and s acting on w coupled
with the mixed boundary operator which we denote by B(s, ρ, w). In these calculations it is
important to gather various different types of error terms, some of which depend linearly and
some nonlinearly on w, and some of which are inhomogeneous terms vanishing to some order in
ρ. It turns out to be helpful to rescale the local coordinates y by ε(s) = ρφ(s) which is the radius
of the discs. The final expression, Proposition 4.5, for the mean curvature of D(w) then is

− φ

κ′
H(s, ρ, w) = −Lρ,s(w) +O(ρ2) + ρQ(w) in D(w),

where Lρ,s is the linearized mean curvature operator about D(0) = Ds,ρ:

Lρ,s(w) = −∆w + ρLs(w) in D(w);

4



also the angle between the normals satisfies (see Proposition 4.6)

ρ−1 (B(s, ρ, w)− φ′(s)) = Bρ,s(w) +O(1) + ρ Q̄(w),

where

Bρ,s(w) =
(

(κ′(s))2
∂w

∂η
+ φφ′′w

)
+ ρ L̄s(w) on ∂D(w).

Here Ls (resp. L̄s) is a second order (resp. first order) differential operator and Q(w), Q̄(w) are
quadratic in w, see also the end of Section 2 for more precise definitions.

It turns out that the problem of finding w such that D(w) solves (4) namely

H(s, ρ, w) = 0 in D(w),

B(s, ρ, w) = φ′(s) on ∂D(w),

can be transformed to a fixed point problem for which the solvability is based on the invertibility
of Lρ,s on a suitable space of functions w such that Bρ,s(w) = 0. If φφ′′ > 0 , the operator Lρ,s

(resp. −Lρ,s) is invertible by means of usual Sobolev inequalities. Hence after suitable adjustment
of the disc D(w), we readily prove the first theorem. This program is carried out in § 5.1.

Now in the situation where φ ≡ 1 and κ =Id, it is clear that the linearized mean curvature
Lρ,s about any D ∈ Zρ may have small (possibly zero) eigenvalues on the space of functions for
which Bρ,s(w) = ∂w

∂η + ρ L̄s(w) = 0. This is related to the invariance by translations along the
axis of rotation in the ”flat” case. Hence Lρ,s may not be invertible on such space. However
restricting again ourselves on space of function orthogonal to the constant function 1, we can
perturb Zρ to a manifold Zρ (constituted by sets having constant and small mean curvatures,

see § 5.3.1) which turns out to be a natural constraint for E namely critical point of E
∣∣∣
Zρ

is also

stationary for E . For that we use an argument from Kapouleas in [11] which was successfully
employed in [15]. We will follow the argument of the latter, we refer to § 5.3.1.
It is worth noticing that this method is also closely related to variational-perturbative methods
introduced by Ambrosetti and Badiale in [1] and subsequently used with success to get existence
and multiplicity results for a wide class of variational problems in some perturbative setting we
refer to the book by Ambrosetti Malchiodi [2] for more details and related applications.

Remark 1.5 • If φ′′ ≡ 0, namely when φ(s) = cs + d, S parameterizes the cone we cannot
conclude. However we notice that the proof of Theorem 1.3 highlights that near a point
γ(ρ s0) for which φ′′(s0) = 0, there will be capillary surfaces with constant and small mean
curvatures, see Remark 5.1.

• An interesting question is also to perturb the set

expγ(ρ κ(s))(ρ φ(s)Sn−1)

to a closed minimal submanifold of C ρ. One can see also the work by S.Secchi [19].

• Another problem can be set as follows. Let U be a smooth bounded domain of M, and
Γ ↪→ ∂U be a smooth curve. We let ỹ = (y1, . . . , yn) and N∂U be a unit interior normal
field along ∂U . Choosing an oriented orthogonal frame (E1 . . . , En−1) along Γ in ∂U , one
obtains a coordinate system by letting, for any y = (ỹ, yn) = (y1, . . . , yn−1, yn),

F (x0, ỹ, y
n) := expMexp∂U

γ(x0)(y
iEi)

(ynN∂U ).

Now consider the set
F (ρ κ(s), ρ φ(s)Bn

+),

where Bn
+ = {x = (x1, . . . , xn−1, xn) ∈ Rn : |x| = 1, xn > 0}. One may be tempted

to perturb the set above into capillary minimal surfaces that meet the ”half”-surface of
revolution

F (ρ κ(s), ρ φ(s)Sn−1
+ )
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by an angle equal to arccos φ′. In this case, as we believe, a result like Theorem 1.1 would
carry over. On the other hand one would need maybe to impose some conditions on the
principal curvature of ∂U along Γ in order to obtain a variant of Theorem 1.3.
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2 Preliminaries and notations

We consider (φ, κ) : [a, b] → R2 smooth with κ′(s), φ(s) 6= 0 for every s ∈ [a, b] moreover we
assume that s is the arc length of the rotating curve s 7→ (φ(s), κ(s)) precisely

(φ′(s))2 + (κ′(s))2 = 1 ∀s ∈ [a, b].

We also assume that x0 is the arc length of γ, and we will let E0 := γ′. We choose a parallel
(local) orthonormal frame E1, · · · , En of NΓ along Γ. This determines a coordinate system by
defining

f(x0, y) := expγ(x0)(y
iEi) for y = (y1, · · · , yn)

which therefore defines coordinates vector fields :

Y0 := f∗(∂x0), Yi := f∗(∂yi
).

We will adopt the convention that the indices i, j, k, · · · ∈ {1, . . . , n} while α, β, · · · ∈ {0, . . . , n}
with Yα = Y0 when α = 0.
By construction, ∇XiY0

∣∣∣
Γ
∈ TΓ so that we can define

〈∇XiY0, Y0〉
∣∣∣
Γ

= −Γ0
0(Ei).

There also holds

(5) ∇Yi
Yj(y) = O(|y|)γYγ .

If q = f(x0, y) ∈ M near the point p = f(x0, 0) ∈ Γ, we can expand the metric gαβ(q) =
〈Yα, Yβ〉 in y, (we refer to [13] Proposition 2.1 for the proof).

Lemma 2.1 In the above coordinates (x0, y), for any i, j = 1, ..., n, we have

gij(q) = δij + 1
3 〈Rp(Y,Ei)Y,Ej〉+ 1

6 〈∇Y Rp(Y,Ei)Y,Ej〉+ Op(|y|4);

g0j(q) = 2
3 〈Rp(Y,E0)Y,Ej〉+Op(|y|3);

g00(q) = 1− 2Γ0
0(Y ) + 〈Rp(Y,E0)Y,E0〉+ Op(|y|3),

where Y := yiEi.

Notation for error terms: Any expression of the form L(ω) (resp. L̄(ω)) denotes a linear
combination of the function ω together with its derivatives with respect to the vector fields Yi up
to order 2 (resp. order 1). The coefficients of L or L̄ might depend on ρ and s but, for all k ∈ N,
there exists a constant c > 0 independent of ρ ∈ (0, 1) and s ∈ [a, b] such that

‖L(ω)‖Ck,α(Bn
1 ) ≤ c ‖ω‖Ck+2,α(Bn

1 ),

‖L̄s(ω)‖Ck,α(Bn
1 ) ≤ c ‖ω‖Ck+1,α(Bn

+).
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Similarly, any expression of the form Q(ω) (resp Q̄(ω)) denotes a nonlinear operator in the
function ω together with its derivatives with respect to the vector fields Yi up to order 2 (resp.
1). The coefficients of the Taylor expansion of Qa(ω) in powers of ω and its partial derivatives
might depend on ρ and s and, given k ∈ N, there exists a constant c > 0 independent of ρ ∈ (0, 1)
and s ∈ [a, b] such that

‖Q(ω1)−Q(ω2)‖Ck,α(Bn
1 ) ≤ c

(
‖ω1‖Ck+2,α(Bn

1 ) + ‖ω2‖Ck+2,α(Bn
1 )

)
‖ω1 − ω2‖Ck+2,α(Bn

1 ),

provided ‖ωi‖Ck+2,α(Bn
1 ) ≤ 1, i = 1, 2. Also

‖Q̄(ω1)− Q̄(ω2)‖Ck,α(Bn
1 ) ≤ c

(
‖ω1‖Ck+1,α(Bn

1 ) + ‖ω2‖Ck+1,α(Bn
1 )

)
‖ω1 − ω2‖Ck+1,α(Bn

1 ),

provided ‖ωi‖Ck+2,α(Bn
1 ) ≤ 1. We also agree that any term denoted by O(rd) ( with r ∈ R may

depend on s) is a smooth function on Bn
1 that might depend on s but satisfies

‖O(rd)
|r|d

‖Ck,α(Bn
1 ) ≤ c

for a constant c independent of s.

3 On the surface of revolution around Γ

We start by fixing the following notations which will be useful later.

Notations:

Through the following of this paper,

ε(s) = ρ φ(s) and ε1(s) = ρ κ(s) for every s ∈ [a, b].

In terms of cylindrical coordinates, letting Θ(z) : Rn−1 → Sn−1, the surface of revolution C ε

around Γ can be parameterized by

Cε(s, z) := f(ε1(s), ε(s)Θ(z)) = expγ(ε1(s))(ε(s)Θ
i(z)Ei).

The tangent plane is spanned by the vector fields

Zc
0 = Cρ(∂x0) = ε′1Y0 + ε′ Υ,

Zc
j = Cρ(∂zj ) = εΥj , j = 1, · · · , n,

where
Υ = ΘiYi.

We recall also from [13]

Lemma 3.1 Let q = Cρ(s, z) ∈ C ρ, there hold

〈Υ,Υ〉q = 1,

〈Υ, Y0〉q = 0,

〈Υ,Υj〉q = 0.
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Lemma 3.2 In the notations above, the first fundamental form of C ρ has the following expan-
sions

〈Zc
0, Z

c
0〉 =

ε2

φ2
− 2ε|ε′1|2Γ0

0(Θ) + ε2|ε′1|2〈R(Θ, E0)Θ, E0〉+O(ε5),

〈Zc
l , Z

c
k〉 = ε2〈Θl,Θk〉+O(ε4),

〈Zc
0, Z

c
k〉 = O(ε4).

Proof. Recalling that

|ε′1|2 + |ε′|2 =
ε2

φ2

hence we obtain, using also the Lemmas 3.1, 2.1, that

〈Zc
0, Z

c
0〉 = |ε′1|2

(
1− 2εΓ0

0(Θ) + ε2〈R(Θ, E0)Θ, E0〉+O(ε3)
)

+ |ε′|2

=
ε2

φ2
− 2ε|ε′1|2Γ0

0(Θ) + ε2|ε′1|2〈R(Θ, E0)Θ, E0〉+O(ε5)

The other expansions are easy consequences of the Lemmas 3.1 2.1.

3.1 The unit normal field to the surface of revolution

Call
M := ε′X0 − ε′1Υ

and set

Ñc(s, z) = M + α0Z
c
0 + αkZ

c
k.

Note that this vector filed is normal (not necessary unitary) to the surface whenever we can
determined αk so that 〈Ñc, Z

c
k〉 = 〈Ñc, Z

c
0〉 = 0 for all k = 1, . . . , n. This therefore leads to

solving a linear system.
Observe that

〈M,Zc
0〉 = ε′1ε

′〈Y0, Y0〉 − ε′1ε
′〈Υ,Υ〉

= ε′1ε
′ (1− 2εΓ0

0(Θ) + ε2〈R(Θ, E0)Θ, E0〉 − 1 +O(ε3)
)
,

hence
〈M,Zc

0〉 = −2ε′1ε
′εΓ0

0(Θ) + ε′1ε
′ε2〈R(Θ, E0)Θ, E0〉+O(ε5).

Also we have
〈M,Zc

k〉 = εε′〈X0, Yk〉 − ε′1ε〈Υ, Yk〉 = O(ε4).

If we use Lemma 3.2, we have

α0〈Zc
0, Z

c
0〉 = −αk〈Zc

k, Z
c
0〉 − 〈M,Zc

0〉

= αkO(ε4) + 2εε′1ε
′Γ0

0(Θ)− ε2ε′1ε
′〈R(Θ, E0)Θ, E0〉+O(ε5)

so

(6) α0 =
ε′ε′1
ε2

φ2
(
2εΓ0

0(Θ)− |ε′1|2〈R(Θ, E0)Θ, E0〉
)
+ 4φ2 |ε′1|3

ε2
ε′Γ0

0(Θ)Γ0
0(Θ) +O(ε3) +αkO(ε4).

Since
αk〈Zc

k, Z
c
l 〉+ α0〈Zc

0, Z
c
l 〉 = −〈M,Zc

l 〉
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and using (6)
αk〈Zc

k, Z
c
l 〉+ αkO(ε6) +O(ε5) = O(ε4)

we get
αk

(
ε2〈Θl,Θk〉+O(ε4)

)
= O(ε4),

therefore
αk = O(ε2).

Recalling that ε = ρ φ while ε1 = ρ κ we define ᾱ0 by the relation

α0 = φ′ᾱ0 +O(ε3).

Namely
ᾱ0 = 2ε′1φΓ0

0(Θ)− ε′ε′1φ〈R(Θ, E0)Θ, E0〉+ 4ε′1κ
′εΓ0

0(Θ)Γ0
0(Θ).

Now let us compute the norm of this normal vector field. Since

Ñc(s, z) := M + α0Z
c
0 + αkZ

c
k

we have by construction

〈Ñc, Ñc〉 = 〈M,M〉+ a2
0〈Zc

0, Z
c
0〉+ αkαl〈Zc

k, Z
c
l 〉+ 2α0〈M,Zc

0〉+ 2αk〈M,Zc
k〉+ 2αkα0〈Zc

k, Z
c
0〉.

Notice that

α0〈Zc
0, Z

c
0〉 = −〈M,Zc

0〉 − αk〈Zc
k, Z

c
0〉

= −〈M,Zc
0〉+O(ε6)

and
α2

0〈Zc
0, Z

c
0〉 = −α0〈M,Zc

0〉+O(ε6),

hence
〈Ñc, Ñc〉 = 〈M,M〉+ α0〈M,Zc

0〉+O(ε6).

Now observe that

〈M,M〉 = |ε′|2〈X0, X0〉+ |ε′1|2〈Υ,Υ〉

=
ε2

φ2
+ |ε′|2

(
−2εΓ0

0(Θ) + ε2〈R(Θ, E0)Θ, E0〉+O(ε3)
)

and

α0〈M,Zc
0〉 = −2εε′1ε

′Γ0
0(Θ)α0 +O(ε4)α0 = −4

ε2

ρ2
|ε′|2|ε′1|2Γ0

0(Θ)Γ0
0(Θ) +O(ε5).

So we have

φ2

ε2 〈Ñc, Ñc〉 = 1 + |ε′|2
ε2 φ2

(
−2εΓ0

0(Θ) + ε2〈R(Θ, E0)Θ, E0〉
)
− 4φ4

ε2 |ε′|2|ε′1|2Γ0
0(Θ)Γ0

0(Θ) +O(ε3)

Finally we conclude that

ε
φ |Ñc|−1 = 1 + |ε′|2

ε φ2Γ0
0(Θ) +

(
3| ε

′

ε |
4φ4ε2 + 2| ε

′
1
ε |

2|ε′|2φ4
)

Γ0
0(Θ)Γ0

0(Θ)− |ε′|2

2
〈R(Θ, E0)Θ, E0〉+O(ε3)

and, setting

Hc(Θ,Θ) :=
(

3
|ε′|2

ε2
+ 2

|ε′1|2

ε2

)
φ2Γ0

0(Θ)Γ0
0(Θ)− 1

2
〈R(Θ, E0)Θ, E0〉,

we can simply write

ε

φ
|Ñc|−1 = 1 + |ε′|2φ2

[
1
ε
Γ0

0(Θ) +Hc(Θ,Θ)
]

+O(ε3).

We collect all these in the following

9



Proposition 3.3 There exists an interior (non unit) normal vector field of C ρ which has the
following expansions

ÑC ρ(s, z) = −ε′1Υ + ε′Y0 + (φ′ᾱ0 +O(ε3))Zc
0 + αkZ

c
k,

where
ᾱ0 = 2ε′1φΓ0

0(Θ)− ε′ε′1φ〈R(Θ, E0)Θ, E0〉+ 4ε′1κ
′εΓ0

0(Θ)Γ0
0(Θ);

αk = O(ε2).

Moreover
ρ
∣∣∣ÑC ρ

∣∣∣−1

= 1 + |φ′|2
(
εΓ0

0(Θ) + ε2Hc(Θ,Θ)
)

+O(ε3),

where
Hc(Θ,Θ) =

(
|φ′|2 + 2φ4

)
Γ0

0(Θ)Γ0
0(Θ)− 1

2
〈R(Θ, E0)Θ, E0〉+O(ε3).

4 Discs centered on Γ with boundary on C ρ

For δ > 0, Bn
δ will denote the ball of Rn with radius δ centered at the origin. For any s, we

consider the disc Ds,ε of radius ε centered at γ(ε(s)) given by

Ds,ε := f(ε1(s) , ε(s)Bn
1 ),

parameterized by
Bn

1 3 x 7→ Ds,ε(x) = f(ε1, ε x).

Notations

ε̄(s, t) := ε(s+ ε(s)t) ε̄1(s, t) := ε1(s+ ε(s)t);

ε̄′(s, t) := ∂tε(s+ ε(s)t) = ε(s)ε′(s+ ε(s)t) ε̄′1(s, t) := ∂tε1(s+ ε(s)t) = ε(s)ε′1(s+ ε(s)t).

Notice that

(7) ε̄′(s, t) = (ε′ + εε′′ t+ ε3O(t2))ε, ε̄′1(s, t) = (ε′1 + εε′′1 t+ ε3O(t2))ε.

A parametrization of the neighborhood of the disc (in M) centered at p = γ(ε1(s)) ∈ Γ with
radius ε ( ρ small) can be defined by

(8) F s(t, x) := f(ε̄1(s, t) , ε̄(s, t)x) ∀x ∈ Bn
1 , |t| � 1

note that by construction,
F s(t , ∂Bn

1 ) ⊂ C ρ, ∀|t| � 1

and more precisely, for every |t| � 1

F s(t, x) = Cρ(s+ ε t, ε(s+ ε t)x) ∀x ∈ ∂Bn
1 = Sn−1.

We consider the following vector fields induced by F s

ε T0 := F∗(∂t) = ε̄′1 Y0(t) + ε̄′X(t),

ε̄ Tj := F∗(∂yj ) = ε̄ Yj(t).

Here X = xiEi.
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Lemma 4.1 At q = F s(t, x),we have

〈Yi(t), Yj(t)〉q = δij + ε2

3 〈Rp(X,Ei)X,Ej〉+ ε3

6 〈∇XRp(X,Ei)X,Ej〉+Op(ε4) + ε3O(t) + ε4Op(t2);

〈Y0(t), Yj(t)〉q = 2ε2

3 〈Rp(X,E0)X,Ej〉+Op(ε3) + ε3Op(t) + ε4Op(t2);

〈Y0(t), Y0(t)〉q = 1− 2ε̄Γ0
0(X) + 2ε2U0

0 (X)t+ ε2 〈Rp(X,E0)X,E0〉+ Op(ε3) + ε3Op(t) + ε4Op(t2),

where p = γ(ε1(s)) ∈ Γ and
εU0

0 (X) = ε′1Γ
0
00 − ε′Γ0

0(X).

Proof. There holds

d

dt
〈Y0(t), Y0(t)〉q

∣∣∣
t=0

= 2〈∇εT0Y0, Y0〉
∣∣∣
t=0

= 2ε̄′1〈∇Y0Y0, Y0〉
∣∣∣
t=0

+ 2ε̄′〈∇XY0, Y0〉
∣∣∣
t=0

= 2ε(ε′1Γ
0
00 − ε′Γ0

0(X)) +Op(ε3).

we have used (7). Hence the last expansion follows. On the other hand one has

d

dt
〈Y0(t), Yi(t)〉q

∣∣∣
t=0

= 〈∇εT0Y0, Yi〉
∣∣∣
t=0

+ 〈Y0,∇εT0Yi〉
∣∣∣
t=0

= ε̄′1〈∇Y0Y0, Yi〉
∣∣∣
t=0

+ 2ε̄′〈∇XY0, Yi〉
∣∣∣
t=0

+ ε̄′1〈Y0,∇Y0Yi〉
∣∣∣
t=0

+ 2ε̄′〈Y0,∇XYi〉
∣∣∣
t=0

Since by construction 〈∇E0E0, Ei〉+ 〈E0,∇E0Ei〉 = 0 and also 〈∇XE0, Ei〉+ 〈E0,∇XEi〉 = 0 on
Γ, we infer that

d

dt
〈Y0(t), Yi(t)〉q

∣∣∣
t=0

= Op(ε3).

In the same vain, the first expansions follows similarly.

Using the above lemma, and (7) we get

Lemma 4.2 The following expansions hold

〈Ti, Tj〉 = δij + ε2

3 〈Rp(X,Ei)X,Ej〉+ ε3

6 〈∇XRp(X,Ei)X,Ej〉+ Op(ε4) + ε3O(t) + ε4Op(t2);

〈T0, Tj〉 = ε′xi +Op(ε3) + ε4Op(t) + ε5Op(t2);

〈T0, T0〉 = ε2

φ2 + |ε′1|2
(
−2ε̄Γ0

0(X) + 2ε2U0
0 (X)t

)
+Op(ε5) + ε5Op(t) + ε6Op(t2),

where p = γ(ε1(s)) ∈ Γ.

Observe that all disc-type surfaces nearby Ds,ρ with boundary contained in C ρ can be param-
eterized by

(9) Gs(x) := F s(w(x) , x),

for some smooth function w : Bn
1 → R. We will call Ds,ε(s)(w) = Gs(Bn

1 ).

4.1 Mean curvature of Perturbed disc D(w)

It is not difficult to see that the tangent plane of D(w) = Ds,ε(s)(w) is spanned by the vector
fields

Zj = Gs
∗(∂xj ) = εwxjT0 + ε̄(s, w)Tj .
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From Lemma 4.2, it is clear that at the point q = Gs(x) = F s(w(x) , x) there hold
(10)
〈Ti, Tj〉q = δij + ε2

3 〈Rp(X,Ei)X,Ej〉+ ε3

6 〈∇XRp(X,Ei)X,Ej〉+ O(ε4) + ε3L(w) + ε4Q(w);

〈T0, Tj〉q = ε′xj +O(ε3) + ε4L(w) + ε5Q(w);

〈T0, T0〉q = ε2

φ2 + |ε′1|2
(
−2ε̄Γ0

0(X) + 2ε2U0
0 (X)w

)
+Op(ε5) + ε5L(w) + ε6Q(w).

Observing that ε̄(s, w) = ε + εε′ w + ε3Q(w) and using (10), we get the first fundamental form
hij := 〈Zi, Zj〉,
(11)
ε−2hij = (1 + 2ε′ w) δij + ε′(wxixj + wxjxi) + ε2

3 〈Rp(X,Ei)X,Ej〉+ ε3

6 〈∇XRp(X,Ei)X,Ej〉

+ O(ε4) + ε3L(w) + ε2Q(w).

4.1.1 The normal vector field

Considering the vector field
ÑD = Y0 + akZk.

Observe that it is normal (not necessary unitary) to the disc whenever we can find ak such that
〈ÑD , Zk〉 = 0 for any k = 1, . . . , n. Namely ak satisfies

(12) Ds,ε(s)(w) ak hik = −〈Y0, Zi〉.

Since
〈Y0, Zi〉 = ε̄′1wxi〈Y0, Y0〉+ ε̄′wxi〈Y0, X〉+ ε̄〈Y0, Yi〉

then from (11) and (7), we get the formula

(13) ε2ak = εε′1wxk〈Y0, Y0〉+ ε〈Y0, Yk〉+O(ε4) + ε4L(w) + ε3Q(w).

And also since ε̄ = ε+ ε2L(w), ε̄1 = ε1 + ε2L(w), we get

ε2 ak = −εε′1(1− 2εΓ0
0(X))wxk − 2ε3

3
〈R(X,E0)X,Ek〉+O(ε4) + ε4L(w) + ε3Q(w)

and thus

ak = −ε
′
1

ε
(1− 2εΓ0

0(X))wxi − 2ε
3
〈R(X,E0)X,Ei〉+O(ε2) + ε2L(w) + εQ(w).

Moreover using also (12) we have

〈ÑD , ÑD〉 = 〈Y0, Y0〉 − akal hkl

= 〈Y0, Y0〉 − ak(O(ε3) + ε2L(w) + ε4Q(w))

= 〈Y0, Y0〉 −
(
O(ε) + L(w) + ε2Q(w)

) (
O(ε3) + ε2L(w) + ε2Q(w)

)
= 〈Y0, Y0〉+O(ε4) + ε3L(w) + ε2Q(w).

Hence

(14)
∣∣∣〈ÑD , ÑD〉

∣∣∣−1

= |〈Y0, Y0〉|−1 +O(ε4) + ε3L(w) + ε2Q(w)

Therefore

(15)
∣∣∣〈ÑD , ÑD〉

∣∣∣−1

= 1 + ε̄Γ0
0(X) +O(ε2) + ε2L(w) + ε2Q(w).
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We then conclude that the unit normal has the following expansions:

(16)

ND =
(
1 + εΓ0

0(X) +O(ε2) + ε2L(w) + ε2Q(w)
)
Y0

+
(
− ε′1

ε (1 + εΓ0
0(X))wxk − 2ε

3 〈R(X,E0)X,Ek〉+O(ε2) + ε2L(w) + εQ(w)
)
Zk.

Sometimes we will simply need to write ND in the more compact form

ND = Y0 +
(
O(ε2) + εL(w) + ε2Q(w)

)
α
Yα.

4.1.2 The Second Fundamental Form

Observe that in the scaled variables y = ε x, since the functions O(εm), L(w) and Q(w) are
depending on x whereas the vector fields Yα depend on y = ε x, we have for any

Ei(O(εm)) = O(εm−1), Ei(εmL(w)) = εm−1L(w), Ei(εmQ(w)) = εm−1Q(w).

Having this in mind, we state the following

Lemma 4.3 There holds

〈T0,∇ZiND〉 = O(ε3) + εL(w) + ε2Q(w).

Proof. Using (16) and recall that T0 = ε′1Y0 + ε′X + εL(w)αYα, we have

〈T0,∇ZiND〉
∣∣∣
w=0

= 〈T0,∇εYi(1 + εΓ0
0(X))Y0〉+O(ε3)

= εΓ0
0(Ei)〈T0, Y0〉+ ε(1 + εΓ0

0(X))〈T0,∇Yi
Y0〉+O(ε3)

= εε′1Γ
0
0(Ei)〈Y0, Y0〉+ εε′1(1 + εΓ0

0(X))〈Y0,∇Yi
Y0〉+O(ε3)

= εε′1Γ
0
0(Ei)− εε′1Γ

0
0(Ei) +O(ε3).

Hence we get the result.

Let us now estimate the second fundamental form of D(w).

Lemma 4.4

〈∇Zi
Zj , ND〉 = ε

(
1− εΓ0

0(El)xl
)
wxixj + ε2〈∇Y iYj , Y0〉+O(ε4)

− ε2
(
wxj Γ0

0(Ei) + wxiΓ0
0(Ej)

)
+ ε3L(w) + ε3Q(w).

Proof. we have

〈∇Zi
Zj , ND〉 = ε〈∇Zi

(wxjT0), N〉+ 〈∇Zi
(ε̄Tj), ND〉.

We first estimate 〈∇Zi(wxjT0), ND〉.
Observe that

∂

∂xi
〈wxjT0, ND〉 = 〈∇Zi

(wxjT0), ND〉+ 〈wxjT0,∇Zi
ND〉,

which implies that

〈∇Zi
(wxjT0), ND〉 =

∂

∂xi
〈wxjT0, ND〉 − wxj 〈T0,∇Zi

ND〉.

The formula (12) shows that

〈Y0, ÑD〉 = 〈Y0, Y0〉+ ak〈Zk, Y0〉 = 〈Y0, Y0〉 − akal〈Zk, Zl〉 =
∣∣∣ÑD

∣∣∣2
13



and then
〈Y0, ND〉 =

∣∣∣ÑD

∣∣∣ .
From the fact that 〈Y0, X〉 = 0 when w = 0 and that

〈Zk, X〉 = εxk +O(ε4) + ε2L(w) + ε5Q(w)

we obtain ak〈Zk, X〉 = O(ε2) + εL(w) + ε2Q(w), from which the following hold

〈εT0, ND〉 = ε̄′1〈Y0, ND〉+ ε̄′〈X,ND〉

= ε̄′1

∣∣∣ÑD

∣∣∣+ ε̄′(ε2 + εL(w) + ε2Q(w))

= εε′1(1− εΓ0
0(X)) +O(ε4) + ε3L(w) + ε4Q(w).

From this, we deduce that

∂

∂xi
〈wxjT0, ND〉 = ε′1

(
1− εΓ0

0(X)
)
wxixj − εε′1Γ

0
0(Ei)wxj + ε3L(w) + ε2Q(w).

We conclude using also Lemma 4.3 that

(17) 〈∇Zi
(wxjT0), ND〉 = ε′1

(
1− εΓ0

0(X)
)
wxixj − εε′1Γ

0
0(Ei)wxj + ε3L(w) + ε2Q(w).

It remains the term 〈∇Zi
(ε̄Tj), ND〉 = εwxi〈∇T0(ε̄Tj), ND〉+ ε̄〈∇Ti

(ε̄Tj), ND〉.
Since

(18) ε̄(s, w) = ε(s) + εL(w) + ε3Q(w),

we can write

〈∇Ti(ε̄Tj), ND〉 = ε〈∇TiTj , N〉+ 〈∇Ti((ε
2L+ ε3Q)Tj), ND〉.

Recalling that ∇Yi
Yj = (O(ε) + εL+ ε2Q)αYα also 〈Ti, ND〉 = ε2 + εL+ ε2Q thus

〈∇Ti
(ε̄Tj), ND〉 = ε〈∇Yi

Yj , Y0〉
∣∣∣
w=0

+O(ε3) + ε3L(w) + ε3Q(w).

Moreover (7) and (18) yield

〈∇T0(ε̄Tj), ND〉
∣∣∣
w=0

= εεε′1〈∇Y0Yj , ND〉+ εεε′〈∇XYj , ND〉 = −εεε′1Γ0
0 +O(ε4).

This implies that

〈∇T0(ε̄Tj), ND〉 = −εεε′1Γ0
0 +O(ε4) + ε2L(w) + ε3Q(w).

Finally, collecting these and using (18) it turns out that

(19) 〈∇Zi
(ε̄Tj), ND〉 = εε〈∇Yi

Yj , Y0〉
∣∣∣
w=0

+O(ε4)− εεε′1Γ
0
0(Ej)wxi + ε4L(w) + ε3Q(w).

The result follows from (17) and (19).

We need also to expand more precisely 〈∇Yi
Yj , Y0〉

∣∣∣
w=0

. By construction it vanish on Γ and

Yl〈∇Yi
Yj , Y0〉 = 〈∇Yl

∇Yi
Yj , Y0〉+ 〈∇Yi

Yj ,∇Yl
Y0〉

Furthermore by (5) and since (see for instance [8] Lemma 9.20)

∇Yl
∇Yi

Yj

∣∣∣
γ(x0)

= −1
3

(R(El, Ei)Ej +R(El, Ej)Ei) ,
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it follows that

〈∇Yi
Yj , Y0〉 = −ε

3
(〈R(X,Ei)Ej , E0〉+ 〈R(X,Ej)Ei, E0〉) +O(ε2)

We conclude that from Lemma 4.4 that the Second fundamental form qij = 〈∇ZiZj , N
D〉 of

the perturbed disc Ds,ε(s)(w) centered at the point γ(ε(s)) with radius ε(s) is given by

(20)
qij = εε′1

(
1− εΓ0

0(El)xl
)
wxjxi − ε3

3 (〈R(X,Ei)Ej , E0〉+ 〈R(X,Ej)Ei, E0〉)

+ O(ε4)− ε2ε′1
(
wxj Γ0

0(Ei) + wxiΓ0
0(Ej)

)
+ ε4L(w) + ε3Q(w).

We recall that if Eα is an orthogonal basis of TpM, then

Ricp(X,Y ) = −〈Rp(X,Eα)Y,Eα〉 ∀X,Y ∈ TpM.

Finally we obtain

qij h
ij = ε′1

ε

(
1− εΓ0

0(X)
)

∆w − 2ε
3 Ricp(X,E0)

+ O(ε2)− 2ε′1 Γ0
0(∇w) + ε2L(w) + εQ(w),

where X = xlEl.

Proposition 4.5 In the above notations, the mean curvature H(s, ρ, w) of Ds,ρ(w) has the fol-
lowing expansions

φ

κ′
H(s, ρ, w) = ∆w − 2ρ

3
φ2

κ′
Ricp(X,E0) +O(ρ2) + ρL(w) + ρQ(w).

In particular if Γ is a geodesic, Γ0
0 = 0 then

φ

κ′
H(s, ρ, w) = ∆w − 2ρ

3
φ2

κ′
Ricp(X,E0) +O(ρ2) + ρ2L(w) + ρQ(w).

4.2 Angle between the normals

By construction, at q = Gs(x) we have F s(w(x), x) = Cε(s + εw(x), ε(s + εw(x))), for every
x ∈ ∂Bn

1 . Recall from § 3.1 and 4.1.1 that

ÑC ρ(s, z) = −ε′1(s)X + ε′(s)Y0 + α0Z
c
0 + αkZ

c
k,

where α0 = φ′ᾱ0 +O(ε3) and αk = O(ε2) also

ÑD = Y0 + akZk.

One easily verifies that

〈ÑD , ρ
−1ÑC ε(s+ εw)〉q = −κ′〈X,Y0〉q + φ′〈Y0, Y0〉q +

α0

ρ
〈Zc

0, Y0〉q +
αk

ρ
〈Zc

k, Y0〉q

− κ′ak〈X,Zk〉q + φ′ak〈Zk, Y0〉q +
ak

ρ
α0〈Zc

0, Zk〉q +
αk

ρ
al〈Zk, Z

c
l 〉q.

We have to expand

κ′(s+ εw) = κ′(s) + εκ′′(s)w + ε2Q(w) φ′(s+ εw) = φ′(s) + εφ′′(s)w + ε2Q(w).

We will also need the following result which uses just the expansions of the metric Lemma 4.1

(21)

〈Zc
0, Zk〉 = O(ε2) + ε2L(w) + ε3Q(w),

〈Zc
l , Zk〉 = O(ε2) + ε2L(w) + ε3Q(w),

〈X,Zk〉q = (ε+ ε′εw)xk + ε3L(w) + ε5Q(w).
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We use the fact that ak〈Zl, Zk〉 = −〈Y0, Zk〉 to have

ρ−1〈ÑD , ÑC ε(s+ εw)〉q = (φ′ + εwφ′′)〈Y0, Y0〉q + (κ′ + ε κ′′w)α0〈Y0, Y0〉q +
αk

ρ
〈Zc

k, Y0〉q

− (κ′ + εκ′′w)ak〈X,Zk〉q − φ′akal〈Zk, Zl〉q +
ak

ρ
α0〈Zc

0, Zk〉q +
αk

ρ
al〈Zk, Z

c
l 〉q

+ ε3L(w) + ε2Q(w).

Now from (21) we get

−φ′akal〈Zk, Zl〉q +
α0

ρ
ak〈Zc

0, Zk〉q +
αk

ρ
al〈Zk, Z

c
l 〉q = O(ε3) + ε3L(w) + ε2Q(w)

and also since
〈Zc

k, Y0〉q = O(ε3) + ε3L(w) + ε4Q(w),

one has

ρ−1〈ÑD , ÑC ε(s+ εw)〉q = (φ′ + εwφ′′)〈Y0, Y0〉q + (κ′ + εwκ′′)ᾱ0〈Y0, Y0〉q

− (κ′ + εκ′′w)ak〈X,Zk〉q +O(ε3) + ε3L(w) + ε2Q(w).

From (21) and recalling the formula for ak in (13) we get

ak〈X,Zk〉q = −ε′1
∂w

∂η
〈Y0, Y0〉q − (1 + ε′w)〈Y0, X〉q +O(ε3) + ε3L(w) + ε2Q(w)

= −ε′1
∂w

∂η
〈Y0, Y0〉q +O(ε3) + ε3L(w) + ε2Q(w)

and then we deduce that

ρ−1〈ÑD , ÑC ε(s+ εw)〉q = φ′ (1 + κ′ᾱ0) 〈Y0, Y0〉q + (εwφ′′ + κ′ε′1)
∂w

∂η
〈Y0, Y0〉q + 2ε2κ′′κ′wΓ0

0(X)

+ O(ε3) + ε3L(w) + ε2Q(w).

Using (14), we have that

ρ−1〈ND , ÑC ε(s+ εw)〉q = φ′ (1 + κ′ᾱ0) |Y0|q + (εwφ′′ + κ′ε′1)
∂w

∂η
|Y0|q + 2ε2κ′′κ′wΓ0

0(X)

+ O(ε3) + ε3L(w) + ε2Q(w).

Since α0 = φ′(s+ εw)ᾱ0 +O(ε3), one has

α0 = (φ′(s) + φ′′(s)ε(s)w)ᾱ0 + ε2Q(w)ᾱ0

so that
α0 = φ′(s)ᾱ0 − 2φ′′(s)ε′1εwΓ0

0(X) + ε3L(w) + ε2Q(w).

Moreover notice that
Γ0

0(X)
∣∣∣
q

= Γ0
0(X) + ε2L(w) + ε3Q(w)

and also
|φ′(s+ εw)|2 = (φ′ + 2εwφ′′)φ′ + ε2Q(w),

we have that

ρ
∣∣∣ÑC ρ(s+ εw)

∣∣∣−1

= 1+(φ′+2εφ′′w+ε′w)εφ′Γ0
0(X)+|φ′(s)|2ε2Hc(X,X)+O(ε3)+ε3L(w)+ε3Q(w)
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from which we deduce that

ρ
∣∣∣ÑC ρ(s+ εw)

∣∣∣−1

q
|Y0|q = 1− (κ′)2εΓ0

0(X) + ε2
(
3− (φ′)2 + (φ′)4 + 2(φ′)2φ4

)
Γ0

0(X)Γ0
0(X)

+
2− (φ′)2

2
〈Rp(X,E0)X,E0〉+ εw (−ε′ + 2εφφ′′ + ε′φ′) Γ0

0(X) + 2ε2U0
0 (X)w

+ O(ε3) + ε3L(w) + ε2Q(w).

Consequently we may expand the angle as

〈ND , NC ε(s+ εw)〉q = ρφ′ (1 + κ′ᾱ0) |Y0|q
∣∣∣ÑC ρ(s+ εw)

∣∣∣−1

q
+ 2ε2κ′′κ′wΓ0

0(X)

+
(
1− (κ′)2εΓ0

0(X)
)(

εwφ′′ + κ′ε′1
∂w

∂η

)
+ O(ε3) + ε3L(w) + ε2Q(w).

〈ND(w), NC ε(s+ εw)〉q = φ′(s)
(
1 + (κ′)2εΓ0

0(X)
)

+
(
1− (κ′)2εΓ0

0(X)
)(

εwφ′′ + κ′ε′1
∂w

∂η

)
+ φ′ε2

(
3− 2(κ′)4 − (φ′)2 + (φ′)4 + 2(φ′)2φ4

)
Γ0

0(X)Γ0
0(X)

+ 2−(φ′)2

2 φ′ε2〈Rp(X,E0)X,E0〉+ εφ′w
(
− ε′ + 2εκ′′κ′ + 2εφφ′′ + ε′φ′

)
Γ0

0(X)

+ 2ε2U0
0 (X)w +O(ε3) + ε3L(w) + ε2Q(w).

We define
B(s, ρ, w) := 〈ND(w), NC ε(s+ εw)〉q.

Now we conclude this section by collecting all these in the following

Proposition 4.6 In the above notations, there holds

B(s, ρ, w) = φ′(s)
(
1 + (κ′)2ρφΓ0

0(X)
)

+ ρ

(
(κ′)2

∂w

∂η
+ φφ′′ w

)
+ O(ρ2) + ρ2L̄(w) + ρ2Q̄(w),

while if φ′(s) = 0, one has

B(s, ρ, w) = ρ(κ′)2
∂w

∂η
+O(ρ3) + ρ3L̄(w) + ρ2Q̄(w).

In particular if Γ is a geodesic, we get precisely

B(s, ρ, w) = φ′(s)
(
1 +

1 + (κ′)2

2
ρ2φ2〈Rp(X,E0)X,E0〉

)
+ ρ

(
(κ′)2

∂w

∂η
+ φφ′′ w

)
+ O(ρ3) + ρ3L̄(w) + ρ2Q̄(w).

5 Existence of capillary minimal submanifolds

5.1 Case where φ(s0)φ
′′(s0) > 0

We may assume that φ(s)φ′′(s) > 0 for all s ∈ Is0(δ) := [s0 − δ, s0 + δ] for some δ > 0 small.
We define the following operator by

(Lsw, v) :=
∫

Bn
1

∇w∇v dx+
φφ′′

(κ′)2

∮
∂Bn

1

wv dσ.
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It is clear that from the inequality (see [22], Theorem A.9)

(22)
∫

Bn
1

w2 dx ≤ C(n)

(∫
Bn

1

|∇w|2 dx+
∮

∂Bn
1

w2 dσ

)
, ∀w ∈ H1,

the operator Ls is coercive if ρ is small. We call ws,ρ
1 the unique solution to the equation

(Lsw1, v) := −φ
∮

∂Bn
1

Γ0
0(X)v dσ.

Namely it solves the problem

−∆w1 = 0 in Bn
1 ,

∂w1

∂η
+

φφ′′

(κ′)2
w1 = −φΓ0

0(X) on ∂Bn
1 .

By elliptic regularity theory, there exist a constant c > 0 (independent of ρ and s) such that

‖ws,ρ
1 ‖C2,α ≤ c ∀s ∈ Is0(δ).

Moreover we have that for all k ≥ 0

‖∂
kws,ρ

1

∂sk
‖C2,α ≤ ck ∀s ∈ Is0(δ),

for some constant ck which does not depend on s nor on ρ small.
Clearly by construction there holds{ H(s, ρ, ws,ρ

1 ) = O(ρ) in Ds,ρ(w
s,ρ
1 ),

B(s, ρ, ws,ρ
1 ) = φ′(s) +O(ρ2) on ∂Ds,ρ(w

s,ρ
1 )

We define the space

C2,α
s,ρ :=

{
w ∈ C2,α(Bn

1 ) :
∂

∂v
B(s, ρ, ws,ρ

1 + v)
∣∣∣
v=0

[w] = 0
}

=
{
w ∈ C2,α(Bn

1 ) :
∂w

∂η
+

φφ′′

(κ′)2
w + ρL̄s(w) = 0

}
We consider the linearized mean curvature operator about Ds,ρ(ws,ρ

1 ) (see Proposition 4.5),
Lρ,s(w) : C2,α(Bn

1 ) → C0,α(Bn
1 ) defined by

Lρ,s(w) := − φ

κ′
∂

∂v
H(s, ρ, ws,ρ

1 + v)
∣∣∣
v=0

[w] = −∆w + ρLs(w).

We define also Φ(s, ρ, x), Qs,ρ(w) ∈ C0,α(Bn
1 ) by duality as

(Φ(s, ρ, x), w′) := − φ

κ′

∫
Bn

1

H(s, ρ, ws,ρ
1 )w′ dx+ ρ−1

∮
∂Bn

1

(B(s, ρ, ws,ρ
1 )− φ′(s))w′ ds

and for every w ∈ C2,α

(Qs,ρ(w), w′) :=
∫

Bn
1

Q(w)w′ dx+
∮

∂Bn
1

Q̄(w)w′ ds, ∀w′ ∈ L2.

Clearly the solvability of the system

(23)

{ H(s, ρ, ws,ρ
1 + w) = 0 in Ds,ρ(w

s,ρ
1 + w),

B(s, ρ, ws,ρ
1 + w) = φ′(s) on ∂Ds,ρ(w

s,ρ
1 + w)
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is equivalent to the fixed point problem

(24) w = −
(

Lρ,s

∣∣∣
C2,α

s,ρ

)−1

{Φ(s, ρ, x) + ρQs,ρ(w)} .

Furthermore one has

‖Qs,ρ(w)‖C0,α = O(‖w‖C2,α) ‖w‖2C2,α ;

‖Qs,ρ(w1)−Qs,ρ(w2)‖C0,α = O(‖w1‖C2,α , ‖w2‖C2,α)‖w1 − w2‖C2,α ,

also by construction, there exist a constant c > 0 (independent of ρ and s) such that

‖Φ(s, ρ, ·)‖C0,α ≤ cρ ∀s ∈ Is0(δ).

By (22) the operator Lρ,s is coercive on C2,α
s,ρ if ρ is small enough and also by elliptic regularity

theory, Lρ,s is an isomorphism from C2,α
s,ρ into C0,α(Bn

1 ) therefore we can solve the fixed point
problem (24) in a ball of C2,α

s,ρ with radius Cρ for some C > 0 which does not depend neither on
ρ small nor s.
And thus for ρ small and s ∈ Is0(δ) there exists a function ws,ρ ∈ C2,α

s,ρ , with ‖ws,ρ‖C2,α ≤ Cρ
such that { H(s, ρ, ws,ρ

1 + ws,ρ) = 0 in Ds,ρ(w
s,ρ
1 + ws,ρ),

B(s, ρ, ws,ρ
1 + ws,ρ) = φ′(s) on ∂Ds,ρ(w

s,ρ
1 + ws,ρ).

Namely Ds,ρ(w
s,ρ
1 +ws,ρ) is a capillary submanifold of Ωρ with constant contact angle arccos φ′(s)

if ρ is small enough by C2,α bound up to the boundary of w̃s,ρ = ws,ρ
1 + ws,ρ. Furthermore it

follows from the construction that, for all k ≥ 0

(25) ‖∂
kw̃s,ρ

∂sk
‖C2,α ≤ ckρ ∀s ∈ Is0(δ),

for some constant ck which does not depend on s nor on ρ small.

5.2 Foliation by minimal discs

Call w̃s,ρ = ws,ρ
1 + ws,ρ. From (8), Lemma 4.1 and (25) the mapping

Is0(δ)×Bn
1 3 (s, x)

Ψρ−→ F s(w̃s,ρ(x), x) = f(ε̄1(s, w̃s,ρ(x)) , ε̄(s, w̃s,ρ(x))x)

has Jacobian determinant which expands as

ρ2n+2
( (

1− |x|2(φ′)2
)
φ2n +Os(ρ)

)
and hence since (φ′)2 ∈ (0, 1) (see section 1), Ψρ is a local homeomorphism if ρ is small enough.
In particular it is a homeomorphism of a neighborhood of (s0, 0) which implies that there exist
0 < δ′ < δ and % > 0 such that

Ψρ(s , Bn
% ) ∩Ψρ(s′ , Bn

% ) = ∅ ∀s 6= s′ ∈ Is0(δ
′),

for every ρ sufficiently small.
In this way the family of discs Ds,ρ%(w̃s,ρ), s ∈ Is0(δ

′) with radius ρ% φ(s) centered at γ(ρ κ(s))
constitutes a foliation of a neighborhood of γ(ρ κ(s0)) for which each leaf Ds,ρ%(w̃s,ρ) is a minimal
disc intersecting C ρ% transversely along its boundary (the angle of contact may not be equal to
arccos φ′(s)).
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5.3 φ ≡ 1 and κ =Id, C ρ is the geodesic tube around Γ

In this situation,
C ρ = {q ∈M : distg(q,Γ) = ρ}

and its interior is
Ωρ = {q ∈M : distg(q,Γ) < ρ}.

By [17], it is well known that (smooth) minimal surfaces D ⊂ Ωρ with ∂D ⊂ C ρ are stationary
for the area functional relative to C ρ which is D 7→ Area(D ∩Ωρ) under variations Ψt : D →M
such that ∂Ψt(D) ⊂ C ρ moreover the Euler-Lagrange equations are given by

(26)
HD = 0 in D,

〈ND, NC ρ〉 = 0 on ∂D.

5.3.1 A finite-dimensional reduction

For every s ∈ [a, b] and X = xiEi, we let ws,ρ
1 be the solution of the following problem:

−∆w1 = − 2
3 Ricp(X,E0) in Bn

1 ,

∂w1

∂η
= 0 on ∂Bn

1 ,

where p = γ(ρ κ(s)).
By elliptic regularity theory, there exist a constant c > 0 (independent of ρ and s) such that

(27) ‖ws,ρ
1 ‖C2,α ≤ c ∀s ∈ [a, b].

As in § 5.1, we let

C2,α
s,ρ :=

{
w ∈ C2,α(Bn

1 ) :
∂

∂v
B(s, ρ, ρws,ρ

1 + v)
∣∣∣
v=0

[w] = 0
}

=
{
w ∈ C2,α(Bn

1 ) :
∂w

∂η
+ ρL̄(w) = 0

}
.

As explained in the first section, the linearized mean curvature operator about Ds,ρ(ρws,ρ
1 ) re-

stricted on C2,α
s,ρ defined by

Lρ,s(w) := − ∂

∂v
H(s, ρ, ρws,ρ

1 + v)
∣∣∣
v=0

[w] = −∆w + ρLs(w).

may have small (possibly zero) eigenvalues hence it may not be invertible on C2,α
s,ρ . However instead

of solving (26), we will prove that there exists a constant λs,ρ ∈ R and a function ws,ρ ∈ C2,α
s,ρ

such that

(28)

{ H(s, ρ, ws,ρ) = λs,ρ in Ds,ρ(ws,ρ),

B(s, ρ, ws,ρ) = 0 on ∂Ds,ρ(ws,ρ).

To achieve this we let P be the L2 projection on the space of functions w ∈ L2 which are orthogonal
to the constant function 1,

∫
Bn

1
w dx = 0. Now if ρ is small enough, the Poincare inequality implies

together with elliptic regularity theory that the operator P ◦ Ls,ρ is an isomorphism from PC2,α
s,ρ

into PC0,α(Bn
1 ). Here letting

(Φ(s, ρ, x), w′) := −
∫

Bn
1

H(s, ρ, ρws,ρ
1 )w′ dx+

∮
∂Bn

1

B(s, ρ, ρws,ρ
1 )w′ ds

one has
‖Φ(s, ρ, ·)‖C0,α ≤ cρ2 ∀s ∈ [a, b].
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Consequently for ρ small, our fixed point problem

w =
(
P ◦ Lρ,s

∣∣∣
C2,α

s,ρ

)−1

{P ◦ Φ(s, ρ, x) + ρP ◦ Qs,ρ(w)}

admits a unique solution ws,ρ ∈ PC2,α
s,ρ , in a ball of radius c ρ2 of PC2,α

s,ρ . More precisely

(29)
∫

Bn
1

ws,ρ dx = 0 and ‖ws,ρ‖C2,α(Bn
1 ) ≤ cρ2 ∀s ∈ [a, b].

Furthermore it follows from the construction that, for all k ≥ 0

‖∂
kws,ρ

∂sk
‖C2,α(Bn

1 ) ≤ ckρ
2 ∀s ∈ [a, b],

for some constant ck which does not depend on s nor on ρ small. We then conclude that
P ◦ H(s, ρ, ρws,ρ

1 + ws,ρ) = 0 hence the existence of a real number λs,ρ ∼ ρ2 such that (28)
is satisfied.

We have to mention that by (29), provided ρ is small, the corresponding disc Ds,ρ := Ds,ρ(w̃s,ρ)
with w̃s,ρ = ρws,ρ

1 + ws,ρ is embedded into Ωρ. This defines a one dimensional manifold of sets
satisfying (28):

Zρ := {Ds,ρ ⊂ Ωρ, ∂Ds,ρ ⊂ ∂Ωρ : s ∈ [a, b]}.

Remark 5.1 We notice that, in section 5.1, the same argument as above implies that when-
ever φ′′(s0) = 0, there will be a capillary disc centered at γ(ρ s0) with constant and small mean
curvature.

Variational argument:
We will show that in fact problem (26) can be reduced to a finite dimensional one. We now

define the reduced functional ϕρ : [a, b] → R by

ϕρ(s) := Area(Ds,ρ)

for any Ds,ρ ∈ Zρ. We have to show the following

Lemma 5.2 There exists ρ0 small such that for any ρ ∈ (0, ρ0) if s is a critical point of ϕρ then
λs,ρ = 0.

Proof. Let λ ∈ R and let q = γ(ρ(s + λ t)). Then provided t is small, it is clear that the
hyper-surface Dq,ρ can be written as a normal graph over Dp,ρ, p = γ(ρs) by a smooth function
gp,ρ,t,λ. This defines the variation vector field

ζp,ρ,λ =
∂gp,ρ,t,λ

∂t

∣∣∣
t=0

NDp,ρ .

Letting Z be the parallel transport of λE0 along geodesics issued from p = γ(ρ s). Then, we can
easily get the estimates:

‖ζ − Z‖ ≤ cρ|λ|.
Assume that s is a critical point of ϕρ then from the first variation of area see [17],

0 =
dϕρ(ρ(s+ λt))

dt

∣∣∣
t=0

= λρϕ′ρ(s)

= n

∫
Ds,ρ

HDs,ρ
〈ζ,NDs,ρ

〉 ds+
∮

∂Ds,ρ

〈ζ,NDs,ρ
∂Ds,ρ

〉,

where NDs,ρ
∂Ds,ρ

∈ TDs,ρ stands for the normal of ∂Ds,ρ in Ds,ρ. Therefore by construction one has

(30) 0 = λs,ρ

∫
Ds,ρ

〈ζ,NDs,ρ
〉 ds.
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Notice that
〈ζ,NDs,ρ

〉 − 〈Z, Y0〉 = 〈ζ − Z,NDs,ρ
〉+ 〈Z,NDs,ρ

− Y0〉,

so using the fact that NDs,ρ
= Y0 +O(ρ), see § 4.1.1, we have∣∣〈ζ,NDs,ρ〉 − λ

∣∣ ≤ cρ|λ|.

Inserting this in (30), we get

−λλs,ρ Area(Ds,ρ) ≤ cρ |λs,ρ| |λ|Area(Ds,ρ)

but since Area(Ds,ρ) = Area(ρBn
1 ) +Os(ρ2+n) by (11); (27) and (29), it follows that

−λλs,ρ ≤ cρ |λs,ρ| |λ| .

Therefore taking λ = −λs,ρ, we see that |λs,ρ|2 ≤ cρ |λs,ρ|2 and this implies that λs,ρ=0.

We shall end the proof of the Theorem 1.3 by giving the expansion of ϕρ. From (29) the first
fundamental form hij of a disc Ds,ρ expands as

ρ−2 hij = δij +
ρ2

3
〈Rp(X,Ei)X,Ej〉+

ρ3

6
〈∇XRp(X,Ei)X,Ej〉+Os(ρ4),

where p = γ(ρs) ∈ Γ.
From the formula √

det(I +A) = 1 +
1
2
tr(A) +O(|A|2),

we obtain the volume form:

ρ−n
√

det(h) = 1− ρ2

6
〈Rp(X,Ei)X,Ei〉+

ρ3

12
〈∇XRp(X,Ei)X,Ei〉+Os(ρ4)

and since by oddness
∫

Bn
1
〈∇XRp(X,Ei)X,Ej〉 dx = 0 we deduce that

ϕρ(s) = Area(Ds,ρ) = Area(Bn
ρ )

1− ρ2

6n

n∑
i,j=1

〈Rp(Ej , Ei)Ej , Ei〉+Os(ρ4)

 .

Thus setting

ψρ(s) :=
6n
ρ2

(
1− ϕρ(s)

Area(Bn
ρ )

)
=

n∑
i,j=1

〈Rp(Ej , Ei)Ej , Ei〉+Os(ρ4)

we get the result.
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