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Abstract

Letting I' be an embedded curve in a Riemannian manifold M, we prove the existence of
minimal disc-type surfaces centered at I' inside surface of revolution of M around I', having
small radius, and intersecting it with constant angles. In particular we obtain that small
tubular neighborhoods can be foliated by minimal discs.

1 Introduction

Minimal surfaces are surfaces with mean curvature vanishing everywhere. These include, but are
not limited to, surfaces of minimal area subjected to various constraints.

In this paper we are interested in minimal surfaces which intersect a given hyper-surface with a
constant angle. Such surfaces, called capillary minimal surfaces, are critical points of an energy
functional under some constraints, see (3) below.

Capillary surfaces correspond to the physical problem of describing of an incompressible liquid
in a container in the absence of gravity. A great deal of work has been devoted to capillarity
phenomena from the point of view of existence, uniqueness and topological properties of solutions
mainly in the non-parametric case and in the more general situation of presence of gravity (see
the book of R. Finn, [7], for an account of the subject). Some answers to these questions have
been obtained by many authors. We refer for example to the papers [9], [10], [4] [12], [16], [18]
[17], [20],[21] and the references therein.

Here we prove existence results of capillary surfaces with prescribed topology in Riemannian man-
ifolds. Roughly speaking, we first show the existence of a class of capilary (minimal) disc-type
surfaces embedded in a Riemannian surface of revolution (see below). In particular, shrinking
enough the thickness of the surface of revolution, this class constitutes a foliation. Secondly we
have existence of minimal disc-type surfaces embedded in a geodesic tube of a curve which inter-
sect perpendicularly the boundary of the tube.

The method we use is perturbative in nature and the main idea goes back to R. Ye, [23], sub-
sequently employed with success by many authors to obtain existence of (large) constant mean
curvature hyper-surfaces. For example, one can see [5], [6] [13], [14] and [15]. Before stating our
results, some preliminaries are required.

A surface of revolution is a surface created by rotating a parametric curve [a,b] > s —
(k(s), ¢(s)) € R? lying on some plane around a straight line (the axis of rotation) in the same
plane.

The resulting surface ¢! therefore always has azimuthal symmetry. Examples of surfaces of
revolution include cylinder (excluding the ends), hyperboloid, paraboloid, sphere, torus, etc.

In more generality one can obtain surfaces of revolution in R™*!, n > 2 using the standard
parametrization
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S(s,2) = (k(s), ¢(s) ©(2)),

where z — O(z) € S"71, ¢(s) #0 Vs € [a,b].
Assuming that the rotating curve is parameterized by arc length namely

clearly the disc Z;1 centered at (k(s), 0) (on the axis of rotation) with radius ¢(s) parame-
terized by
B 3z (k(s), o(s)x),

has zero mean curvature and intersects the above surface of revolution with a constant angle
equal to arccos ¢'(s), where B} stands for the unit ball of R centered at the origin, namely % ;
is a capillary surface.

Motivated by capillarity problems, for questions of stability, see [7], it is not restrictive to assume
that the angle of contact is in (0, 7), namely ¢'(s) € (=1, 1) or equivalently

K'(s) # 0.

We shall extend these definitions of surface of revolution in a Riemannian setting.

Let (M™*1 g) be Riemannian manifold, and I' an embedded curve parameterized by a map
v :[0,1] — M. We consider a local parallel orthogonal frame Ej,--- , F, of NI along . This
determines a coordinate system by

[07 1] xR" > (man) = f(x(),y) = exp'y(xg)(yiEi) € M.

For a small parameter p > 0, consider the Riemannian surface of revolution ¢* around I' in M
parameterized by

(5,2) — f(pS(s,2)) = [(pr(s), pd(s)O(2)) = XDy, (s (0 H(5)O(2) Er),

where z — O(z) € S"7!, and call its interior 2, := int4” which is nothing but a tubular
neighborhood for T' if p is small enough. Here we are assuming always that ¢(s) # 0 and that
(¢'(5))* + (+'(s))? = 1.

For any s € [a,b], we consider the following set

D, = f(pr(s), po(s) BY),

it is clear that 0D, , C €* and we have that the mean curvature Hp, , of D; ,, see § 4.1, satisfies

(1) HDS,p = O(p> in DS,P

while the angle between the unit outer normals (see also § 4.2) can be expanded as
(2) (Np,,,, Ne¢r) = ¢'(s) + O(p) ~ on 0D,

Our aim is to perturb D, , to a capillary minimal submanifold, Z; ,, of Q, centered on I' with
contact angle arccos ¢'(s) along 0%, , C €*, as it happens in R" 1.

Theorem 1.1 Suppose we are in the situation described above. Let [a', V'] C [a,b] be such that
d(s)9" (s) > 0 for every s € [a’,V']. Then there exists pg > 0 such that for any s € [a’,V'] and
p € (0,p0), there exists an embedded minimal disc D5, C Q,, intersecting €° by an angle equal
to ¢'(s) along its boundary. Moreover s, is a normal graph over the set Dy , for which the
norm (in the C*%-topology) of this function defining the graph tends to zero uniformly as p tends
to zero.

Furthermore there exists a tubular neighborhood O, of v([a’,b']) foliated by such minimal discs
for which each leaf intersects 00, transversally along its boundary.



Remark 1.2 o When we parameterize in particular €° with k(s) = s, and if we require the
capillary discs to be perpendicular to €°, we obtain the conditions ¢ =0 and ¢" # 0. This
means that non-degenerate extrema of the width ¢ determine the location of such surfaces.

o An example is the hyperboloid, ¢(s) = cosh s and k(s) = sinh s. Here one may see M
as a Lorentzian manifold modeled on the Minkowski space RY. Letting ¢ € M and Ey a
unit time-like vector of TyM and ~(zo) = exp,(woEo) so one can see %, as a space-like
minimal disc in the geodesic sphere of radius p.

An interesting particular case which is not covered by Theorem 1.1 is when ¢ = 1 and x =Id,
namely when we deal with geodesic tubes. In this situation (recall that in this case the angle
of contact is 7) it is the geometry of the manifold to determine the position of the discs. More
precisely, we have that €* is the geodesic tube of radius p > 0 around T,

¢’ ={qgeM : disty(q,T) = p},
and its interior is nothing but
Q,={geM : disty(q,T) < p}.

In this case due to invariance by translations along the axis of rotation, we reduced our problem
of finding minimal surfaces to a finite-dimensional one. Namely we have obtained the following

Theorem 1.3 There exists a smooth function ¢, : [a,b] — R such that, for p small, if s is a
critical point of 1, the set D, , can be smoothly perturbed to an embedded minimal hyper-surface
Dso,p C Q, intersecting €° perpendicularly along its boundary. Furthermore, for any integer k,
there exists a constant ¢, (independant on p) such that

||7Z}P - Z <Rp(Ej7 E7)EJ7 El> ”Ck[a,b] < Cka,
4,J
where Ry, is the Riemann tensor of M at p =~(ps).

Some remarks are due: let I' > p — W(p) = 31, (R, (Ej, Ei) Ej, E;) any strict maxima or minima
of ¥ imply the existence of minimal surfaces. In particular suppose at some point py = v(p s¢)
interior to I', there hold

d¥(po)[¥(pso)) =0  and  |d*®(po)[¥(ps0),F(pso)]| > c,

for some constant ¢ independent on p. By the implicit function theorem, there exits a curve
(0,p0) 2 p — s, with s, — s¢ such that s, is a critical point of 1),. Hence for every p € (0, po),
there exits an embedded minimal disc %, ,, centered at v(ps,), contained in €, that intersects
09}, perpendicularly along its boundary.

Remark 1.4 e We have that
U(p) =Y _(Ry(Ej, E))E;, E;) = S(p) + 2 Ricy(¥(ps),¥(ps)),
4,7

where
n

S(p)z Z <RP(EOMEB)EOME3>
«,3=0

is the scalar curvature of M at p=~(ps), Eo = Y(ps) and Ric, is the Ricci tensor of M
at p. From Theorem 1.3, we have that if s — Ric,(¥(ps),¥(ps)) is locally constant along
T" then stable critical points the scalar curvature yields existence of minimal discs.



e Recall that if (M7, g1) and (M52, g2) are two manifolds, the Riemann tensor R of the
(Riemannian) Cartesian product M™+™2 ;= (My x Ma, g1 & g2) decomposes as R =
R' @ R? since the connection V is given by Vx,+x,(Y1 + Y2) = Vlel + V%QYQ for any
X1, Yy (resp. Xa, Ya) vector fields of My (resp. Ms), where V' is the connection of
M;. Clearly for any ps € My, the set (My)(p2) := {(p1,p2) E M : p1 € M1} isa
submanifold of M, diffeomorphic to M.

In particular if my = 1, R' =0, by Theorem 1.3 we obtain that stable critical points of the

mapping S’( o) yield existence of minimal discs inside (small) geodesic tubes around
Mai)(p2
the curve (M1)(p2), where as before S is the scalar curvature of M.

o As a simple byproduct of our analysis, we find that if T’ is a closed curve, we have at
least 2 (equal to the Lusternik-Schnierelman category of T, see [3] ) solutions (without any
assumptions on the curvature of M ).

o We believe that this result might be generalized to higher codimensions namely if N¢, 1 <
0 < n, is an (-dimensional submanifold of M"™* and considering the following surface of
revolution with azis of rotation R

5(57 Z) = (Hl(s)a s ,%E(S), ¢(5) 6(2))7

where z — O(z) € S"7¢, one could obtain (n — £ + 1)-dimensional minimal disc-type sub-
manifolds of M centered on N*.

Let us describe the proof of the theorems above. We first recall, see [17], that Capillary
hyper-surfaces with constant contact angle arccos ¢’(s) are stationary for the energy functional

(3) E(D) = Area(D N Q,) — ¢'(s) Area(Q}),

among (orientable smooth) surfaces D C Q, with 9D C 99, and O], C 9, is the part (on one
side of D) for which the angle is measured. Moreover the Euler-Lagrange equations is nothing
but

Hp = 0 inD,

(4)
(Np,Naq,) = ¢'(s) on OD.

Here Hp is the mean curvature of D while Np and Npq, are outer unit normals of D and 92,
respectively. Since we look for stationary surfaces with a given profile for this energy functional,
clearly by (1)-(2) a manifold of approximate solutions is given by Z, := {D,, : s € [a,b]}.
For any given hyper-surface D; , € Z,, we parametrize (locally) a neighborhood of D, , (in the
manifold in M) by a mapping F** : R x B — M for which F*(t,0B}) C 09, for every ¢, while
the direction F?(9;) is nearly normal to D; ,, and moreover Dy, = F*(0, B}'), see (8). This
allows to parametrize any set & nearby D, , satisfying 02 C 09, by a function w : Bff — R
such that 2(w) = F*(w, BY"). We call H(s, p, w) the mean curvature of 2(w) and B(s, p,w) the
angle between the normals Nyg () and Ng» of 0%(w) and 02, respectively.

One of the main features in this work in the (technical) Sections 4.1, § 4.2 is to calculate H(s, p, w)
as a nonlinear elliptic partial differential operator, depending on p and s acting on w coupled
with the mixed boundary operator which we denote by B(s, p,w). In these calculations it is
important to gather various different types of error terms, some of which depend linearly and
some nonlinearly on w, and some of which are inhomogeneous terms vanishing to some order in
p. It turns out to be helpful to rescale the local coordinates y by €(s) = p¢(s) which is the radius
of the discs. The final expression, Proposition 4.5, for the mean curvature of 2(w) then is

¢ .
— H(s, p,w) = =L, s(w) + O(p*) + pQ(w)  in Z(w),
where L, is the linearized mean curvature operator about 2(0) = D, ,:

Lp,s(w) = —Aw+ pLs(w) in Z(w);



also the angle between the normals satisfies (see Proposition 4.6)
P~ (B(s,p,w) = ¢/(5)) = Bys(w) + O(1) + pQ(w),

where
5 Ow

B, s(w) = ((/4(5)) o + gbqﬁ”w) + p Ls(w) on 09 (w).

Here L, (resp. L) is a second order (resp. first order) differential operator and Q(w), Q(w) are
quadratic in w, see also the end of Section 2 for more precise definitions.

It turns out that the problem of finding w such that Z(w) solves (4) namely
H(s,p,w) = 0 in 7(w),
Bs,pw) = #(s) ond9(w),

can be transformed to a fixed point problem for which the solvability is based on the invertibility
of L, s on a suitable space of functions w such that B, ;(w) = 0. If ¢¢” > 0, the operator L, ,
(resp. —L, ) is invertible by means of usual Sobolev inequalities. Hence after suitable adjustment
of the disc 2(w), we readily prove the first theorem. This program is carried out in § 5.1.

Now in the situation where ¢ = 1 and k =Id, it is clear that the linearized mean curvature
L, s about any D € Z, may have small (possibly zero) eigenvalues on the space of functions for
which B, (w) = %} + pLs(w) = 0. This is related to the invariance by translations along the
axis of rotation in the "flat” case. Hence L, may not be invertible on such space. However
restricting again ourselves on space of function orthogonal to the constant function 1, we can
perturb Z, to a manifold Z, (constituted by sets having constant and small mean curvatures,

see § 5.3.1) which turns out to be a natural constraint for £ namely critical point of £| is also

stationary for £. For that we use an argument from Kapouleas in [11] which was sucgessfully
employed in [15]. We will follow the argument of the latter, we refer to § 5.3.1.

It is worth noticing that this method is also closely related to variational-perturbative methods
introduced by Ambrosetti and Badiale in [1] and subsequently used with success to get existence
and multiplicity results for a wide class of variational problems in some perturbative setting we
refer to the book by Ambrosetti Malchiodi [2] for more details and related applications.

Remark 1.5 o If ¢ =0, namely when ¢(s) = cs +d, S parameterizes the cone we cannot
conclude. However we notice that the proof of Theorem 1.3 highlights that near a point
v(p s0) for which ¢"(sp) = 0, there will be capillary surfaces with constant and small mean
curvatures, see Remark 5.1.

e An interesting question is also to perturb the set
XDy (p K(é))(p ¢(8)Sn_1)
to a closed minimal submanifold of €P. One can see also the work by S.Secchi [19].

e Another problem can be set as follows. Let U be a smooth bounded domain of M, and
[ — dU be a smooth curve. We let § = (y*,...,y") and Nay be a unit interior normal
field along OU. Choosing an oriented orthogonal frame (Ey ..., E,_1) along T in OU, one
obtains a coordinate system by letting, for any y = (g,y™) = (v*,...,y" L, y"),

F(xo,9,y") = expé\fp%o)(ymi) (y" Nou).-

Now consider the set
F(pr(s), po(s)BL),

where B} = {z = (z',...,2" 1,2") e R" : |z|=1, 2" > 0}. One may be tempted
to perturb the set above into capillary minimal surfaces that meet the "half”-surface of
revolution

F(pr(s),pd(s)S1™")



by an angle equal to arccos ¢’'. In this case, as we believe, a result like Theorem 1.1 would
carry over. On the other hand one would need maybe to impose some conditions on the
principal curvature of U along T in order to obtain a variant of Theorem 1.3.
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2 Preliminaries and notations

We consider (¢, k) : [a,b] — R? smooth with x'(s), ¢(s) # 0 for every s € [a,b] moreover we
assume that s is the arc length of the rotating curve s — (¢(s), k(s)) precisely

(@'())* + (5 () =1 Vs € [a,0].

We also assume that xg is the arc length of v, and we will let Ey := «'. We choose a parallel
(local) orthonormal frame Fi,--- , E, of NT" along I'. This determines a coordinate system by
defining .

f(@o,y) == exp oy (W' Ei)  fory=(y',--,y")
which therefore defines coordinates vector fields :

Yo := fe(0no), Y := f.(0y,)

We will adopt the convention that the indices 4,75, k,--- € {1,...,n} while a, 8,--- € {0,...,n}
with Y, = Yy when oo = 0.
By construction, V; YO‘ € TT so that we can define

r

(Vx, Yo, Yo) L= —TY(E;).
There also holds

(5) Vy.Yj(y) = Oy, Y5

If ¢ = f(zo,y) € M near the point p = f(z9,0) € I', we can expand the metric go5(q) =
(Yo, Y3) in y, (we refer to [13] Proposition 2.1 for the proof).

Lemma 2.1 In the above coordinates (xo,y), for any i,j = 1,...,n, we have
9i(q@) =06+ 3 (Rp(Y,E)Y, Ej) + £ (VyR,(Y, E)Y, E;) + Oy(ly|*);
90i(@) =3 (Bp(Y. E0)Y, Ej) + Op(Iy);
goo(q) =1-2T0(Y) + (Ry(Y, Eo)Y, Eo) + Op(lyP),

where Y = y'E;.

Notation for error terms: Any expression of the form L(w) (resp. L(w)) denotes a linear
combination of the function w together with its derivatives with respect to the vector fields Y; up
to order 2 (resp. order 1). The coefficients of L or L might depend on p and s but, for all k¥ € N,
there exists a constant ¢ > 0 independent of p € (0,1) and s € [a, b] such that

||L(W)||ck,n(379) < C””Hekﬂn(?y):

||Es(W)Hck,a(BTL) < C||W|‘ck+1,a(37;;)~



Similarly, any expression of the form Q(w) (resp Q(w)) denotes a nonlinear operator in the
function w together with its derivatives with respect to the vector fields Y; up to order 2 (resp.
1). The coefficients of the Taylor expansion of Q*(w) in powers of w and its partial derivatives
might depend on p and s and, given k € N, there exists a constant ¢ > 0 independent of p € (0,1)
and s € [a, b] such that

||Q(w1) - Q(WQ)”ck,a(B*{z) <c (leuckﬁ-za(??) + Hw2||ck+2,a(3711)> HW1 - w2||ck+2,o¢(37{h)7

provided [[wi[grsz.0@r) < 1,4 =1,2. Also

1Qwn) = Qw2)llernzp) < € (Iwtllernazp) + lwzlleriiaag) ) Tt = w2llonssagap),

provided [|lwi[lgit2.0FF) < 1. We also agree that any term denoted by O(r?) ( with r € R may
depend on s) is a smooth function on B} that might depend on s but satisfies

O(rd)
HWIICM@) <c

for a constant ¢ independent of s.

3 On the surface of revolution around T

We start by fixing the following notations which will be useful later.
Notations:

Through the following of this paper,

e(s) = po(s) and e1(s) = pk(s) for every s € [a,b].

In terms of cylindrical coordinates, letting ©(z) : R*~! — S"~1  the surface of revolution ¢*
around I' can be parameterized by

C*(s,2) = f(e1(5),e(5)O(2)) = exPy(c, (o)) (€(5)0'(2) Ei).-

The tangent plane is spanned by the vector fields

Zi = C0,) = eYo+eT,
AR Cr(d,) = ey, j=1,---,n,
where _
T = 0'Y;.

We recall also from [13]

Lemma 3.1 Let ¢ = CP(s,z) € €, there hold

1), = 1,
<T7}f0>q = 07
(1,75), = 0



Lemma 3.2 In the notations above, the first fundamental form of € has the following expan-
stons

62

(Z5,25) = 7 — 2¢|e4|PTH(0) + 2|1 [*(R(O, Eo)©, Eo) 4 O(&°),
(Z8,Z8) = €200} +0(h),
(Z§,Z) = O(Y).

PRrROOF. Recalling that
2

3
41 + ') = ol

hence we obtain, using also the Lemmas 3.1, 2.1, that
(Z§,25) = |el]? (1 —2eT4(0) + e*(R(O, Eo)0, Eo) + O(e%)) + |€|?
2
% — 2¢¢}[2D9(©) + €2[e} [2(R(O, Fo)®, Eo) + O()

The other expansions are easy consequences of the Lemmas 3.1 2.1. &

3.1 The unit normal field to the surface of revolution

Call
M :=&Xg—€T

and set

Ne(s,2) = M 4 aoZ§ + a Z§.

Note that this vector filed is normal (not necessary unitary) to the surface whenever we can
determined oy, so that (N, Zf) = (N, Z§) = 0 for all k = 1,...,n. This therefore leads to
solving a linear system.

Observe that

<M7ZS> = 5/15/<YE37YO>_5/15/<T>T>

ele’ (1 —2eI§(0) + e*(R(O, )0, Ey) — 1+ O(e?)) ,

hence
(M, Z5) = —2€'€'eT3(©) + £1e’e*(R(0©, Ey)O, Ey) + O(e°).

Also we have
(M, Z) = g€’ (X0, Y3) — €1e(Y,Y,) = O(e?).

If we use Lemma 3.2, we have
Oéo<Z8,Z§> = *Oék<Z;§,Zg> - <M7Zg>

= apO(e?) + 266/’ TY(O) — 261/ (R(O, Ey)O, Eg) + O(e°)

’ ot 713
(6) a0 = —16? (2:T6(0) — [<1[2(R(6, E0)©, En)) +4¢2'%J6T8<®>F8<@> +0(e%) + arO(").

ar(Zi, Zf) + aolZg, 21) = —(M, Zf)



and using (6)
i (ZE, ZF) + apO(e%) + O(e%) = O(e?)

we get
ay (£%(01,01) + O(e)) = 0(Y),

therefore

ap = 0(62).
Recalling that € = p ¢ while £ = p k we define &g by the relation
g = (b/(jéo + 0(63).

Namely
o = 261 6TS(0) — '€} 6(R(O, Fo), Fo) + 4¢, 1/ TY(O)TY(6).

Now let us compute the norm of this normal vector field. Since
1\70(5, 2) =M+ apZ§ + ap Z;,
we have by construction
(Ney N = (M, M) 4 a2(Z§, Z5) + awaq(Z5, ZF) + 2000(M, ZE) + 20 (M, ZE) + 2a000(Z5, ZE).
Notice that

O‘0<Z87Z(§> = _<M7206>_ak<ZI§vZ(C)>

= —(M,Z5) + O(%)

and
O‘(2)<Z(§= Z(§> = —050<M, Zé) + 0(56)7

hence o
(Ne, Ne) = (M, M) + ao(M, Z§) + O(e°).

Now observe that

(M, M) = |£'*(Xo, Xo) + |4 (0, 1)
= ;Z +|e'1? (—2eTH(O) + e2(R(©, Eo)0, Eo) + O(e?))
and 5
o (M, Z§) = —2£)'T)(0)ag + O(ch)ag = —4;|a'|2|sa\2r8<e>r8<e> +O().
So we have
CNL N = 1+ 292 (-2:T9(0) + 2(R(6, By)O, Eo)) — 4% |/ 2|4 PTE(O)TY() + O(=?)
Finally we conclude that
SN = 14 ERgrg(e) + (310002 + 2SR Pot) TY@)TE®©) - L (RO, Fe, By + ()
and, setting
i1.0.0) = (3L + 258 ) srrgonrtio) - L rie. me, o).
€ € 2

we can simply write
~ 1
%u\u—1 =1+ [|*¢? Lrg(@) + H.(0,0)| + O(e?).

We collect all these in the following



Proposition 3.3 There exists an interior (non unit) normal vector field of € which has the
following expansions

Neo(s,2) = =i T + €'Yy + (¢'ao + O(E*)) ZE + ap Z5,

e o = 261016(0) — '€1¢(R(O, Eo)®, Eo) + 4e1#'eTp(0)I'5(0);
ar, = O(e?).
Moreover .
p|Neo| = 1410/ (eT(0) + £2H.(0,0)) + O,
where

H,(0,0) = (1¢/* + 26) TR(O)TE(6) ~ 5 (RO, E)6, Fo) + O(=).

4 Discs centered on I' with boundary on %7

For § > 0, B} will denote the ball of R® with radius ¢ centered at the origin. For any s, we
consider the disc 2% of radius € centered at y(e(s)) given by

2°° = f(ei(s), e(s) BY),

parameterized by
Bl 3>z — D%(x) = f(e1, ex).

Notations
E(s,t) :=e(s+e(s)t) g1(s,t) :=e1(s +e(s)t);

g (s,t) := Oe(s +e(s)t) = e(s)e’ (s + e(s)t) g1(s,t) := Ose1(s +e(s)t) = e(s)el (s + e(s)t).

Notice that
(7) g (s,t) = (e + et +30(t?))e, g (s,t) = () +eel t +30(t?))e.

A parametrization of the neighborhood of the disc (in M) centered at p = v(e1(s)) € T with
radius € ( p small) can be defined by

(8) F(t,z) := f(e1(s,1), (s, t) x) Vr e BT, |t <1

note that by construction,
F*(t, 0BY) C €, Vit < 1

and more precisely, for every |t| < 1
Fi(t,x) =CP(s+et,e(s+et)x) Vo € OBY = S" L.
We consider the following vector fields induced by F*®
eTy = F.(8) = &Yo@ +&X({1),
ETy; = F.(0y) = E£&Yj(1).
Here X = 2'E;.

10



Lemma 4.1 At g = F*(t,z),we have
(Yi(1),Y;(t), =0ij + ; (Ry)(X,E)X, Ej) + g (VxRy(X,E)X,E;) + Op(e*) + 30(t) + 2O, (t%);

(Yo(t),Y;(1)),
(Yo(t),Yo(t)), =1—2e05(X) +22Ug(X)t +&® (R, (X, Eo) X, Eo) + Op(e®) + 30, (1) + 20, (1?),

2% (Ry(X, Eo) X, Ej) + Op(?) + 30, (t) + 10, (2);

where p=~y(e1(s)) € T and
eUp (X) = 10y — €'TH(X).

PROOF. There holds

d

£<Y0(t)7 Yo(t)),

2(Ver, Yo, Yo) | _

t=0

- 25"1<VYOYO,YO>L 28 (Vx Y5, 1)

= t=0
= 2e(e1lG — €TH(X)) + Op(€”).
we have used (7). Hence the last expansion follows. On the other hand one has

d

< (Yo(t), Yi(0)),

7 + (Yo, Ve, Y3)

<VETOY03 }/Z>

t=0 = _

== §I1<VY0}f03Y;>

0 + 25/<VXY07Y;>

0 + 6_/1 <Yba VY0K> —o + 2§/<Y0, VXy;>

Since by construction (Vg, Ey, E;) + (Eo, Vg, E;) = 0 and also (VxFEy, E;) + (Ey,VxE;) =0 on
T', we infer that

SO0V, [ = 0.

In the same vain, the first expansions follows similarly. B
Using the above lemma, and (7) we get
Lemma 4.2 The following expansions hold
(TiTy) =65+ 5 (Ro(X, E)X, ) + 5 (VxRp(X, E)X, Ej) + Op(eh) +£20(t) + 10, (12);
(To, Tj) =ea"+ Op(e®) +e0,(t) + 2O, (+%);
(T, To) = ;—Z + (1] (—2eT(X) + 222U (X)t) + Op(e®) + 50, (t) + 0, (t2),
where p = ~y(e1(s)) € T.

Observe that all disc-type surfaces nearby %; , with boundary contained in € can be param-
eterized by

9) G*(x) = F*(w(z), x),

for some smooth function w : B — R. We will call 25°()(w) = G*(B}).

4.1 Mean curvature of Perturbed disc Z(w)

It is not difficult to see that the tangent plane of Z(w) = 2°°()(w) is spanned by the vector
fields
Z; = G5(04) = ewyiTy + E(s,w) T;.
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From Lemma 4.2, it is clear that at the point ¢ = G*(x) = F*(w(z), x) there hold
(10)
(TiTy), =0+ 5 (Rp(X, E)X, E)) + 5 (Vx Ryp(X, E) X, Ej) + O(e%) + &2 L(w) + £*Q(w);

(To, Tj), = el 4+ O(?) + e*L(w) + £5Q(w);
(To,To), = %= +|eh[? (—28T9(X) + 262U (X )w) + Op(e%) + £ L(w) + 5Q(w).

Observing that &(s,w) = € + eg’ w + £3Q(w) and using (10), we get the first fundamental form

hij == (Zi, Zj),
(11)
6_2]11‘]‘ = (1 + 2¢' w) 0ij + 6’(wmixj + ’wmjl‘l) + % <RP(X, E)X, Ej> + % <VxRp(X, E)X, Ej>

+ Ot + 3L(w) + £2Q(w).

4.1.1 The normal vector field

Considering the vector field 3
Ng =Yy + arpZg.

Observe that it is normal (not necessary unitary) to the disc whenever we can find ay such that
(Ng, Z) =0 for any k = 1,...,n. Namely a;, satisfies

(12) 2% (w) ag hir, = —(Yo, Zi).

Since
(Yo, Z;) = & 1w, (Yo, Yo) + &'w,i (Yo, X) + (Y0, Vi)

then from (11) and (7), we get the formula
(13) e2ay, = echwyr (Yo, Yo) + e(Yo, Vi) + O(e*) + e*L(w) + £3Q(w).
And also since & = ¢ + e2L(w), & = €1 + 2L(w), we get

e?ay = —ee (1 — 2eTH(X))wyr — ? (R(X, Fo)X, Ey) + O(e*) 4+ * L(w) + £3Q(w)

and thus
2e

ay = —%(1 — 2T (X))wyi — 3 (R(X, E0)X, E;) + O(?) + *L(w) + £Q(w).
Moreover using also (12) we have
(Ng,Ng) = (Yo,Yo) — axa; hy
= (¥0,Y0) — ax(O(e%) + e’ L(w) + ' Q(w))
= (¥0,Y0) — (O(e) + L(w) +£°Q(w)) (O(e?) + e*L(w) + £*Q(w))

= (Yo, Yo) + O(e") + 2 L(w) + £2Q(w).

Hence

(14) (R )| = 10, Y0 ™ + O + *L(w) + Q)
Therefore

(15) ‘<N@, No) ‘71 =1+ 2T9(X) + O(2) + 2L (w) + 2Q(w).
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We then conclude that the unit normal has the following expansions:
Ny = (14eT)(X)+ 0(?) +2L(w) + £2Q(w)) Yo

(16) + (~E 1+ T wa — F (R(X, Bo) X, By) + O(2) + 2L (w) +Q(w) ) Zy.

Sometimes we will simply need to write Ng in the more compact form
N@ = YE) + (0(82) + €L(’LU) + €2Q(w))a Ya.

4.1.2 The Second Fundamental Form

Observe that in the scaled variables y = ez, since the functions O(¢™), L(w) and Q(w) are
depending on = whereas the vector fields Y, depend on y = € x, we have for any

Ei(O(™) = 0™, Ei(e"L(w)) ="' L(w),  Ei(e"Qw)) =" Q(w).
Having this in mind, we state the following
Lemma 4.3 There holds
(To, V2, Ng) = O(e*) + eL(w) + £*Q(w).

PROOF. Using (16) and recall that Tp = &Yy + &’ X + eL(w)aYa, we have

(To,Vz,Ng) = (To, Vey, (1 + eI5(X))Yo) + O(%)

w=0
= eIY(Ei)(To, Yo) + (1 + Lo (X))(To, Vy, Yo) + O(e?)

eeh TS (E;) (Yo, Yo) 4 ech (1 + eT9(X)) (Yo, Vy, Yo) + O(e%)

e\ [(E:) — ey g(Ei) + O(e”).
Hence we get the result. B
Let us now estimate the second fundamental form of 2(w).

Lemma 4.4
(V2.Zj,Ng) = e(1—eT)(E)z") wyipi +*(VyiY;, Yo) + O(e?)
— & (wuTH(E:) + weTY(E;)) + e L(w) + £2Q(w).
PROOF. we have
(Vz,Zj, Ng) = e(Vz,(weiTh), N) + (Vz,(€T}), Ng).

We first estimate (Vz, (w.i1o), Ng).
Observe that

0
5t Wi To, No) = (Vz, (0 To), No) + (wi To, Vz, No),

which implies that

0
(Vz,(wyiTy), Ng) = @(wamN@) — wyi (To,Vz,Ng).

The formula (12) shows that

~ ~ 12
(Yo, No) = (Yo, Yo) + ax (20, Yo) = (Yo, Yo) — anan(Ze, Z1) = [N

13



and then ~
(Yo, Ng) = |Ng| .

From the fact that (Yp, X) = 0 when w = 0 and that
(Zy, X) = ex® + O(e") + e L(w) + £°Q(w)
we obtain ax(Zy, X) = O(e?) + eL(w) + £2Q(w), from which the following hold

(eTo,Ng) = & (Yo,Ng)+&(X,Ng)

= g’l

N@‘ (2 + eL(w) + £2Q(w))

= ecf(1—elp(X)) + O(e") + £°L(w) + ' Q(w).

From this, we deduce that

0
@@WTO, Ng) =&} (1 = eT)(X)) wyipi — el T E;)wyi + 2 L(w) + £2Q(w).
We conclude using also Lemma 4.3 that

(17) (V2 (0 To), No) = €} (1= eT0(X)) wyigs — ey T0(Ei)wys + £°Lw) + 2Q(w).

It remains the term (Vz, (¢T}), Ng) = cw,:(V1,(€1}), Ng) + E(V1,(€T}), No).
Since

(18) £(s,w) = (s) +eL(w) + £°Q(w),
we can write

(Vr,(eTj),Ng) = e(V5,T;,N)+ (Vr,((e°L +£°Q)T}), No).
Recalling that Vy,Y; = (O(¢) + L + 2Q)a Y, also (T;, Ng) = e + L + €%Q thus

(Vr,(eT;), No) = &(Vy,Y}, Yo) O+@(€3)+53L(w)+€3Q(w)-

Moreover (7) and (18) yield

(Vr,(€T}), Ng) = eeci(Vy,Y;, Ng) +eec’(VxY;, Ng) = —eceiT) + O(e*).

w=0
This implies that
(Vr1,(€T};), Ng) = —eee| T + O(e*) + 2 L(w) + 2 Q(w).

Finally, collecting these and using (18) it turns out that

(19)  (Vz(eT;), Ng) = ee(Vy.Yj, Yo) |+ O(e") — e\ TG (Ej)wye + &' L(w) + £°Q(w).

The result follows from (17) and (19). m

We need also to expand more precisely (Vy, Y, Yy) . By construction it vanish on I' and
w=0

Yi(Vy, Y}, Yo) = (Vy, Vv, Y}, Yo) + (V. Y, Vy, o)

Furthermore by (5) and since (see for instance [8] Lemma 9.20)

1
VviVniYj| =~ 3 (BB E)E; + R(E, Ej)Er),
v(z
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it follows that

(Vv,Y;, Yo) = =< ((R(X, B) E;, o) + (R(X, E}) By, Eo)) + O(c?)

We conclude that from Lemma 4.4 that the Second fundamental form 1I;; = (Vz,Z;, N7) of

i

the perturbed disc 2°°(*) (w) centered at the point v(£(s)) with radius &(s) is given by
(20) M = ech (1—eT§(E)a!) wyw — 5 (R(X, B)Ej, Bo) + (R(X, E;) Ei, Eo))

+ 0(e") — €%} (wp TH(E:) + weTG(E))) + &' L(w) + £°Q(w).
We recall that if E, is an orthogonal basis of T}, M, then

Ric,(X,Y) = —(R,(X, E.)Y, Ey) VX,Y € T,M.
Finally we obtain
M;hY = 2 (1—eTY(X)) Aw— ZRic, (X, Eo)
+ O(e?) — 26/ TH(Vw) + €2 L(w) + eQ(w),

where X = 2'E.

Proposition 4.5 In the above notations, the mean curvature H(s,p,w) of P ,(w) has the fol-
lowing expansions

¢ 2p ¢*

o H(s,p,w) = Aw-— 3 Ricy(X, Eo) + O(p*) + pL(w) + pQ(w).
In particular if T is a geodesic, T = 0 then

O Hispw) = D222 Rie,(X,Ey) + O(p) + p*Liw) + pQLu)

! S, Py, W - w 3 W 1Cp s 40 P P w P \W).

4.2 Angle between the normals

By construction, at ¢ = G*(z) we have F*(w(z),z) = C°(s + ew(z),e(s + ew(x))), for every
x € O0BT. Recall from § 3.1 and 4.1.1 that

Neo(s,2) = =l (s)X +€'(5)Yy + 0 Z§ + arZf,
where ag = ¢’ag + O(e?) and ay = O(g?) also
Ng =Yy + aipZy.
One easily verifies that

S

N7 —1 n7 Q c c
(Ng,p ' Nege (s + ew)), = —n’<X,Yo>q+¢’<mm>q+;0<Zo,yo>q+ (20 Y),

a a :
— Kap(X, Zx), + ¢ ax(Zk, Yo), + f%(z& Zi), + fal<Zk:7 )y

We have to expand
K (s +ew) = &' (s) +er(s)w +2Q(w)  ¢'(s +ew) = ¢/(s) + ¢ (s)w + £°Q(w).

We will also need the following result which uses just the expansions of the metric Lemma 4.1

(26,2x) = O(e?) +e*L(w) +°Q(w),
(21) (Zf,Zk) = O(?) +e’L(w) +°Q(w),
(X,Zk), = (e+eew)ab +L(w)+°Qw).
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We use the fact that ax(Z;, Zx) = — (Yo, Zx) to have

p NN, Nge(s +ew)), = (¢ +ewd”)(Yo,Yo), + (K +er"w)aog(Yo, Yo), + %(Zﬁa Yo),

+ e L(w) +£2Q(w).
Now from (21) we get

(&% «
—d ara(Zy, Z1), + f@k(Z& Zr) g + famzk, Z)y = O(e%) + &’ L(w) + £*Q(w)

and also since

(Z,Yo)y = O(€%) + *L(w) + £*Q(w),

one has

p Y (Ng, Ng= (s + ew)), = (¢ +ewd”)(Yo,Yo), + (& + cwr")ao (Yo, Yo),

— (K +erw)ap(X, Zk>q + 0% 4+ 3 L(w) + £2Q(w).

From (21) and recalling the formula for ay in (13) we get

ap(X, Zy), = *6’1%}%, Yo)g = (1+'w)(Yo, X), + O(®) + €°L(w) + 2 Q(w)
- _5'1?;:%, Yo), + O() + 8 L(w) + £2Q(w)

and then we deduce that

- 0
o (g Ne(s 2wl = o (14 o) (Yo Yo, + (eud” + K'20) o (Yo, Yo, + 2% W0 §(X)
+ O+ L(w) +£2Q(w).
Using (14), we have that
- ow
p Y Ng,Ng=(s +ew)), = ¢ (1++ao)|Yol, + (cwe” + ’f/ﬁi)afn Yol + 2" K wIG(X)

+ 0@E®) +L(w) + 2Q(w).
Since ag = ¢'(s + ew)ag + O(e?), one has
ag = (¢'(s) + ¢ (s)e(s)w)ao + £2Q(w)ao

so that
ap = ¢'(s)ag — 29" (s)eewlY(X) + 3 L(w) + 2Q(w).

Moreover notice that
[9(X)| =TH(X) +e*L(w) +£°Q(w)

q
and also

¢/ (s + cw)|* = (¢' + 2cwg”)¢’ + £2Q(w),

we have that

-1

p|Ngo(s +ew)| = 14(¢'+2e¢" wte'w)ed TH(X) +[¢' (s)[*e* Ho(X, X)+0(®) +e* L(w) +£>Q(w)

16
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from which we deduce that

p | Nego (s + ew) ;1 Yol, = 1= (8)%eT0(X) +e” (3= (¢)* + (¢)* + 2(¢)?¢") THX)TH(X)

2 (¢)?

N 2

(Ry(X, E0) X, Eo) + ew (—¢' +2e¢¢" + £'¢) T (X) + 22U (X)w

+ 03 + 3 L(w) + £2Q(w).

Consequently we may expand the angle as

~ —1
(No, Ng=(s +ew)), = pd' (1+'ao)|Yol, ’Ncgp(s v 5w)‘ + 2e2k" K w9 (X)
q

+  (1— ()%eIH(X)) <5w¢” + n'e'lé;:l;)

+ 03 + 3 L(w) + 2Q(w).

(Nou), Ne= (s +2w), = ¢/(s) (14 ()?T8(X)) + (1= (#)2TH(X) ) <5w¢”+/<;'5’1((§;>

+ ¢ (3= 20)t = ()2 + (¢)* + 2004 )THX)TY(X)
%qﬁ’EQ(Rp(X, Eg) X, Eq) + 6¢’w< — &' +2er"K +2e¢¢” + 6’¢’>F8(X)
2e2U(X)w + O(?) + 3 L(w) + £2Q(w).
We define
B(s, p,w) :== (Ng(u), Ne= (s + ew)),.
Now we conclude this section by collecting all these in the following

Proposition 4.6 In the above notations, there holds

Bls.pw) = ¢/(s) (1+ (W)2poTH(X)) +p (<n'>2 g—‘; + 4" w)
+ 0(p?) + p*L(w) + p*Q(w),
while if ¢'(s) =0, one has

B(s, pyuw) = p(n’>2§%‘]’ L OGP + PP L(w) + PQ(w).

In particular if I' is a geodesic, we get precisely

K')? w
09 (1 R g, 06 ) X, ) o (025 + 00 w)

+ 0(p*) + p°L(w) + p*Q(w).

B(s, p,w)

5 Existence of capillary minimal submanifolds

5.1 Case where ¢(s9)¢"(s9) >0

We may assume that ¢(s)¢”(s) > 0 for all s € I,,(8) := [so — 0, so + I] for some § > 0 small.
We define the following operator by

¢¢/I
(Lsw,v) ::/ VuVvdr + — % wv do.
By (K) OB}
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It is clear that from the inequality (see [22], Theorem A.9)

(22) / w? dz < C(n) (/ \Vw\gdm—&—j{ w2do> , Yw e HY,
I’I, :'{7, 8BI’I,

the operator L is coercive if p is small. We call w;** the unique solution to the equation

(Lswy,v) :=—¢ I'Y(X)vdo.

dBY
Namely it solves the problem
—Aw, = 0 in BT,
Owy P¢" n
o + 3 )2 wy = —¢TH(X) on 0BF.

By elliptic regularity theory, there exist a constant ¢ > 0 (independent of p and s) such that
W) ||oze <€ Vs € I (0).
Moreover we have that for all k > 0
ak
s k

for some constant ¢, which does not depend on s nor on p small.
Clearly by construction there holds

Hca,a < ck Vs € I, (0),

H(s,p,wy”) = O(p) in - I ,(wi”),
{B(S,p,w?”) = ¢(s)+0(p*) on 9%, (w"’)
We define the space
ctp = fucer@D g Bl -0}
= {w6C2’”‘(B{‘) : +¢¢Hw+pL() 0}
an " (K)?

We consider the linearized mean curvature operator about 2°°(w;”) (see Proposition 4.5),

L, s(w) : C>*(B}) — C%*(BY) defined by

0 s
L,s(w) = —% a—H(s p,w’ +v)

We define also ®(s, p, ), Q, ,(w) € C%*(B}) by duality as

[w] =-Aw+ pLs(w)'

v=0

@p)u)i= =5 [ Hepui i datp™ Bl =) ds

and for every w € C*®

(Qs.p(w),w') := Q(w)w' dx Jrj{ Q(w)w' ds, vw' € L2
By oB7
Clearly the solvability of the system
H(s, p,wi” +w) = 0 in Ds,p(wy? + w),
(23)
B(s,p,wi” +w) = ¢'(s) on 0% ,(wy” + w)
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is equivalent to the fixed point problem

(24) w= (L. )4{M&m@+pwa%~

ey
Furthermore one has

O([[wliez.) llwl]|gz.«

1Qs,0(w)]lco.e

1Qs.p(w1) = Qs p(wa)llcoe = O(fwrlle2e; [wallez.e) [wr — walle2.e,
also by construction, there exist a constant ¢ > 0 (independent of p and s) such that
15,0, )lco.e Scp Vs € L5y (9).

By (22) the operator L, is coercive on Cf;g if p is small enough and also by elliptic regularity
theory, L, s is an isomorphism from C2:% into C%*(BT) therefore we can solve the fixed point
problem (24) in a ball of C?:g‘ with radius Cp for some C' > 0 which does not depend neither on
p small nor s.

And thus for p small and s € I,,(8) there exists a function w®? € C2%, with ||w®?||cz.a < Cp

50
such that ,
{ H(s, pywi” +w*P) = 0 in s ,(wi” +wsr),

B(s,p,w]” +w*?) = ¢'(s) on 0% ,(wy” +w*r).

Namely Z; ,(wy” +w*?) is a capillary submanifold of 2, with constant contact angle arccos ¢'(s)
if p is small enough by C?® bound up to the boundary of @w*? = wj” + w*”. Furthermore it
follows from the construction that, for all £k > 0

i

ds*

(25) |52 ez <erp Vs € I, (9),

for some constant ¢, which does not depend on s nor on p small.

5.2 Foliation by minimal discs

Call w*? = w"” + w*”. From (8), Lemma 4.1 and (25) the mapping

L,,(8) x B 3 (s,3) ~5 F*(@*"(x),2) = f(E1(s, @ (x)) , &(s, 5" (x)) x)

has Jacobian determinant which expands as
o2 (1= [oP(#)?) 62+ O,(p))

and hence since (¢')? € (0,1) (see section 1), ¥, is a local homeomorphism if p is small enough.
In particular it is a homeomorphism of a neighborhood of (sg,0) which implies that there exist
0 < " < § and p > 0 such that

U,(s, By)NW,(s", By) =0 Vs # s €I,(0),

for every p sufficiently small.

In this way the family of discs Zs ,o(W°?), s € I,,(6") with radius po¢(s) centered at y(pk(s))
constitutes a foliation of a neighborhood of v(p k(sg)) for which each leaf Z; ,,(w**) is a minimal
disc intersecting ¢ transversely along its boundary (the angle of contact may not be equal to

arccos ¢'(s)).
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5.3 ¢ =1 and k =Id, ¥” is the geodesic tube around I'

In this situation,

¢’ ={qeM : disty(q,T) =p}
and its interior is

Q,={geM : disty(q,T) < p}.

By [17], it is well known that (smooth) minimal surfaces D C €, with 9D C €* are stationary
for the area functional relative to € which is D — Area(D N§,) under variations ¥, : D — M
such that OW,(D) C €” moreover the Euler-Lagrange equations are given by

Hp - 0 D,
(26)
(Np,Nge) = 0 on d0D.

5.3.1 A finite-dimensional reduction

For every s € [a,b] and X = 2'E;, we let w}” be the solution of the following problem:

—Aw; = —ZRicy(X, Ep) in BY,
ow
87171 =0 on 0BT,

where p = v(p k(8)).
By elliptic regularity theory, there exist a constant ¢ > 0 (independent of p and s) such that

(27) W) || o2 < € Vs € [a, b].

Asin § 5.1, we let

[e] [e] n a S,
¢y = {wec @D« Bt ul-0)
i ow _

As explained in the first section, the linearized mean curvature operator about 2% (pw;”) re-
stricted on CSQ;S‘ defined by

9 s
Lp,s(w) = 77H(57p7pw1?p =+ ’U)

5 [w] = —Aw + pLg(w).

v=0

may have small (possibly zero) eigenvalues hence it may not be invertible on CSQ;;X. However instead
of solving (26), we will prove that there exists a constant As;, € R and a function w*” € Cf;g
such that

H(Sapv ,ws,p) = )‘Saﬂ il’l QS’P(wS’p%
(28)

B(s,p,ws*) = 0 on 0%, ,(w”).

To achieve this we let P be the L? projection on the space of functions w € L? which are orthogonal
to the constant function 1, |, g wdz = 0. Now if p is small enough, the Poincare inequality implies
1

together with elliptic regularity theory that the operator P ol , is an isomorphism from PC?;F‘?‘
into PC%®(BT). Here letting

(®(s,p,2),w') == — [ H(s,p, pwi”)w’ da + B(s, p, pwy”)w' ds
B oBY

one has
D5, p5 )l coe < cp? Vs € [a, b].
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Consequently for p small, our fixed point problem

-1
w = (P oL, CM) {Po®(s,p,z)+ pPo Qs ,(w)}
s,p

admits a unique solution w®” € PC?;S‘, in a ball of radius ¢ p? of PC?:F‘?‘. More precisely

(29) /B w*? dx =0 and ||ws’p|\62)a(3f?) < ¢p? Vs € [a,b].
1

Furthermore it follows from the construction that, for all £ > 0

akws,p
HWHc%a(W) < cpp? Vs € [a,b],

for some constant c¢;, which does not depend on s nor on p small. We then conclude that
P o H(s,p,pwy” + wP) = 0 hence the existence of a real number )\, , ~ p? such that (28)
is satisfied.

We have to mention that by (29), provided p is small, the corresponding disc Z; , := Zs,,(W0°")
with @*? = pw)” + w*? is embedded into Q,. This defines a one dimensional manifold of sets
satisfying (28):

Z, =1{Ds, CQp, 095, C0Q, : s€]a,bl}.

Remark 5.1 We notice that, in section 5.1, the same argument as above implies that when-
ever ¢ (sg) = 0, there will be a capillary disc centered at y(p so) with constant and small mean
curvature.

Variational argument:
We will show that in fact problem (26) can be reduced to a finite dimensional one. We now
define the reduced functional ¢, : [a,b] — R by

©p(s) := Area(%s,p)
for any %;,, € Z,. We have to show the following

Lemma 5.2 There exists pg small such that for any p € (0, po) if s is a critical point of ¢, then
As,p =0.

PrROOF. Let A € R and let ¢ = v(p(s + At)). Then provided ¢ is small, it is clear that the
hyper-surface 9, , can be written as a normal graph over 2, ,, p = v(ps) by a smooth function
Gp,p.e.x- This defines the variation vector field

9Gp,p,t\
Cppr = ot t:oN@w'

Letting Z be the parallel transport of AEy along geodesics issued from p = vy(p s). Then, we can

easily get the estimates:
¢ = Z| < cplAl.

Assume that s is a critical point of ¢, then from the first variation of area see [17],

dpp(p(s + At))

0 = dt

= A (s)

t=0

n/ H@S‘p@,N@S,[)dS—I—% <<,Na@@s;pp>’
-@s,/] 8'@&0 |

where N, a@g;;p €T stands for the normal of d%; , in Z; . Therefore by construction one has

(30) 0=, / (¢, Ng, ) ds.

s,p
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Notice that
(¢,Ng,,) —(Z,Yo) =((—Z,Ng,,) +{Z,Ng, , — Yo),

so using the fact that Ng, , = Yo + O(p), see § 4.1.1, we have
(¢ Ng,,) = Al < eplA|.
Inserting this in (30), we get
—A s p Area(Zs,,) < cp |As,p| [N Area(Zs )
but since Area(Z;,,) = Area(pB}) + O, (p*>™) by (11); (27) and (29), it follows that
A <ep s pl [A]-

Therefore taking A = —\; ,, we see that |)\S7p|2 <cp |/\S)p|2 and this implies that A ,—o. B

We shall end the proof of the Theorem 1.3 by giving the expansion of ¢,. From (29) the first
fundamental form h;; of a disc % , expands as

P’ P
p 2 hij =6 + 3 (Rp(X, E4) X, Ej) +

o (VxR (X, E)X, Bj) + 04 (p"),

where p = vy(ps) € T.
From the formula

VAT +A) = 1+ Stx(4) + O(1AP),

we obtain the volume form:

2 3
P Vdet(h) = 1= 5 (R (X, B)X, B + 15 (VxRy (X, E)X, Bi) + O (p")

and since by oddness [, (Vx R, (X, E;)X, E;) dx = 0 we deduce that

2 n

pols) = Area(Z,) = Area(B}) | 1= £ 37 (R, (E;, B)Ej, Bi) + Oy (p")

i,j=1
Thus setting
6n ©,(s "
bp(s) == — (1 p()n)> = Y (Ry(Ej, Ei)Ej, Ei) + Os(p")
ij=1

we get the result.
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