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Abstract. In the present note, we deal with small perturbations of
an infinite cylinder in three-dimensional Euclidian space. We find min-
imal disc-type surfaces embedded in the cylinder and intersecting its
boundary perpendicularly. The existence and localization of those mini-
mal discs is a consequence of a non-degeneracy condition for the critical
points of a functional related to the oscillations of the cylinder from the
flat configuration.

1. INTRODUCTION

We define a perturbed cylindrical surface C; parallel to the z-axis paramet-
rized by

C:(0,2) := (1 +¢h(1,0,2))(cosf,sin0,0) + ze3, &> 0,

where h = h(r, 6, z) is a smooth real-valued function expressed in the cylin-
drical coordinates (r,6,z) € (0,00) x (0,27) x R and eg is the unit vector
parallel to the z-direction. It is worth noticing that, if € > 0 is small, then
C. is a regular surface of R3. Hereafter, we define h(6,z) := h(1,6,2) and
we denote by 2. the interior of C.. We recall that a minimal surface is a
surface with mean curvature, H, vanishing everywhere. In particular, we
are interested in finding disc-type minimal surfaces. We will parametrize
the z-level disc-type surface DZ? by

DZ(r,0) :=r(1+¢eh(r,0,2))(cosf,sinb,0) + zes, r € (0,1),0 € (0,27).

The boundary is obviously given by the previous equation with r = 1. The
aim of the present note is to deform D7 for some z in order to find a surface
D such that, for € small, H(D) = 0, whose boundary intersects C. perpendic-
ularly. Fixing z and moving along the es-direction, we can define a smooth
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deformation of DZ, denoted by DZ(t), simply by
FZ(r,0,t) :==r(1 +eh(r,0,z+t))(cos0,sin0,0) + (z + t)es, (1.1)
defined for (r,6,t) € (0,1] x (0,27) x (—to,tp). Since
FZ(1,60,t) = C.(0,z + t),
for any fixed t, FZ(r,6,t) parameterizes a disc whose boundary lies on C¢,
therefore DZ(t) is an admissible deformation of D?.

Let C*® be the standard Holder spaces C¥*(B). We now state our main
result.

Theorem 1.1. Suppose zq is a non-degenerate critical point of the functional

[(z):= fh(@,z)dﬂ. (1.2)

Then, an gy > 0 exists such that for any € € (0,e9) there exist 6. > 0, a
smooth function w. : B — R on the unit ball B C R? and z., satisfying
lwellczie < O and |20 — ze| < 0g, such that the set DX can be smoothly
deformed, through (1.1), to a disc-type minimal surface Dz (w:(B)) C Q.
intersecting C. perpendicularly.

We have to point out that in [18] (Section 3) the existence of closed
geodesics for C. have been studied with a variant of the Ljapunov-Schmidt
reduction scheme. Even in this case the functional I defined in (1.2) deter-
mines the location.

A brief comment on the method is in order. Observe that

H(DZ)=0(e), in DZ, (1.3)

and
(Npz,Nc.) = O(e), on dDZ, (1.4)
where Np:z and N¢, stand for the unit outer normals respectively to DZ and
C.. Hereafter, we use the symbol O(£%) instead of the Landau symbol O(£%)
to indicate that it is also a function defined on B, possibly depending on z
(see the notation below). On the other hand we search for some D satisfying
H(D)=0, in D, (1.5)

and
(Np,N¢c.) =0, on dD, (1.6)
which correspond to the Euler-Lagrange equation associated to the relative

area functional, let us call it £ : D — Area(D N €.), restricted to the
class of admissible ( and orientable, smooth) surfaces S, i.e., those S such
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that S C Q. and 9S C C.. In order to solve (1.5) and (1.6) we localize
the problem considering z € [a,b], and assuming zp is a non-degenerate
critical point of ¢ h(6, z)df and zg € (a,b). Because of (1.3) and (1.4) the set
Z :={D? : z € [a,b]} provides a class of approximate solutions. Consider
the map F defined in (1.1). Because of (1.1), any admissible set DZ near D?
can be parametrized by a function w : B — R such that DZ(w) = FZ(r,0,w).
Define H(z,¢,w) := H(DZ(w)) and B(z,¢,w) := (Np:z(.), Nc.). The idea in
solving (1.5)-(1.6) is then to determine w such that

H(z,e,w) =0 in DZ(w)
B(z,e,w) =0 on 0DZ(w).

Denoting L, L and @, Q respectively, terms linear and quadratic in w and its
derivatives (see the notation below), the previous problem transforms to

{ Aw = ¢eL(w) + Q(w) + O(?), on B

%‘7‘7’ =¢ch.(0,2) +eL(w) + Q(w) + O(¢?), on dB. (1.7)

The problem (1.7) can be formulated in a weak sense, expressed as
(®.,(w),w') =0, V'€ HYB),

and splits in a system of two equations, namely the auxiliary+bifurcation
equations system (see for example [1]). Indeed we can project @, ,(w) to the
space of average-zero functions and its orthogonal complement (1) @ (1)+.
Because of the Poincaré -Wirtinger inequality, £, . defined by (£, .w,w’) :=
[ VwVw' is invertible in (1)*. The auxiliary equation is then solved by a
fixed-point argument. Finally, the bifurcation equation reads as a simple
equation in R and can be solved in a small neighborhood of 2y, using an
elementary argument based on the contraction lemma.

A great deal of work has been devoted to minimal surfaces from the point
of view of existence, uniqueness and topological properties of the solutions.
We refer to the papers [2], [7], [8], [9], [11], [15], [16], [17], [19], [20] and the
references therein. The method we used is perturbative in nature and the
main idea goes back to Ye [21] and was employed by many authors in the
study of constant mean curvature hyper-surfaces, see for example [4], [5], [6],
[10], [12], [13] and [14].

Notation for error terms. Any expression of the form L(w) (respec-
tively L(w)) denotes a linear combination of the function w together with its
derivatives with respect to the function w up to order 2 (respectively order
1). The coefficients of L or L might depend on € and z but, for all k£ € N,
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there exists a constant ¢ > 0 independent of ¢ € (0,1) and z € [a, b] such
that

[L(w)llck.a < cllwller+2a,
and similarly for L. Furthermore, any expression of the form Q(w) (respec-
tively Q(w)) denotes a nonlinear operator in the function w together with
its derivatives with respect to w up to order 2 (respectively 1).
Given k € N, there exists a constant ¢ > 0 independent of € € (0,1) and
z € [a, b] such that
1Q@1) — Qa)llere < ¢ (lorllorea + wnlloraa) fwr — wallorea,

provided ||w;|gk+2.0 < 1,7 = 1,2, and similarly for Q. We also agree that any
term denoted by O(r?) (with r € R possibly depending on z) is a smooth
function on B that might depend on z but satisfies

O(r?)
H |’I"|d HC’“’O‘ <c

for a constant ¢ independent of z.

2. EXPANSIONS OF THE GEOMETRICAL QUANTITIES FOR D?(w)
For the sake of convenience we define hereafter
n := (cos#,sinh,0),
and for every fixed z we use the following parametrization for D?(w) :
X(r,0) :=r(1+eh(r,0,z4+w(r,0))n+ (z + w(r,0))es.

We can expand the last equation in terms of w, yielding

0X
X = X’w:O + 5 o + eQ(w).

ow ‘w:
Then we have
X(r,0) = DZ(r,0) + (e3 + reh,(r,0,2)n)w + eQ(w),
or, equivalently,
X(r,0) =r(l1+¢ch(r,0,z))n+ zes + w(r,0)es + eL(w) + Q(w).

In order to compute the mean curvature of D?(w), some preliminary compu-
tations are in order. We will determine the meaningful geometrical quantities
at a first order of approximation in . We refer, for example, to the book [3]
for notation and terminology.
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2.1. The first fundamental form. We compute the following quantities:

X, =Q+¢e(h+rh))n+ wres + eL(w) + Q(w), (2.1)
E:=|X,|? =14 2e(h +rh,) + O(?) 4 eL(w) + Q(w), (2.2)
Xg :=rehgn +r(1 + eh)ng + wpes + eL(w) + Q(w), (2.3)
G = |Xp|? = r?(1 + 2¢h) + O(e?) + eL(w) + Q(w), (2.4)
F :=(Xy,X,) = rehg + O(e?) + eL(w) + Q(w). (2.5)

Finally, we use the first fundamental form, F, F,G in terms of the basis
X, Xy, to determine the following quantity for later use:

EG — F? = r*(1 4 4¢h) + 2r3ch, + O(e?) + eL(w) + Q(w). (2.6)

2.2. The normal. We are going to expand the Gauss map for D?(w) :
No— X, AN Xy B X, AN Xy
XA Xyl (EG - F2)1/2°

Using (2.1) and (2.3) we compute

N := X, AXg = r(1+2eh)e3 —wyng+r’chres —rwn+0(e?) +eL(w) +Q(w),

and
- 1 1 r
INI™ = e oy = (L~ 260~ gehr + O + eLw) + Q(w)

Therefore, we have

N 1
N = | = €3~ wong —wrn + gehreg +0(?) +eL(w) + Qw). (2.7
Finally, we can compute the derivatives N,., Np:

1 1
N, = (T—zw(;—;wgr)n(;—wwn—i—(%hﬁ—gehrr)eg—i—(’)(sQ)—|—€L(w)+Q(w), (2.8)

1 1
Ny = —(;w(;g—kwr)ng—l—(;wg—wrg)n—kgahrgeg—i-(’)(g)—i-eL(w)+Q(w). (2.9)

2.3. The second fundamental form. As a preliminary step to determin-
ing the mean curvature forD?(w) we expand the second fundamental form
given by the following e, f, g quantities. Using (2.1), (2.3),(2.8) and (2.9) we
can determine the second fundamental form:

~g 1= (No, Xo) = (g + ) + O) + eL(w) + Qw),
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so that
g = wpg + 1w + O(E%) + eL(w) + Q(w) (2.10)
—e = (N;, X;) = —wpr + O(e?) + eL(w) + Q(w)
e =Wy + O0(e?) +eL(w) + Q(w) (2.11)
—f = (Ng, X)) = %we — wrp + O(?) + eL(w) + Q(w). (2.12)

2.4. The mean curvature. Using (2.11),(2.4), (2.10), (2.2), (2.12) and
(2.5), we have
eG = r’wy + O(e?) + eL(w) + Q(w)

9 = ~wnp +p + O(2) +2L(w) + QW)

—fF =0(?) + eL(w) + Q(w).
By equation (2.6) one has that
(EG — F*)7' = r72(1 — 2eh + reh,) + O(?) 4 eL(w) + Q(w).
We now estimate the mean curvature. Through the usual formula
2 leG —2fF +gFE
2 EG-F% ~
we finally compute H(z,e,w) := H(D?(w)),

weo

H(ze,w) = ~(wp + L) L OE) +eL@) 4 Q). (213)

2
3. EXPANSION OF THE ORTHOGONALITY CONDITION ON THE BOUNDARY

In what follows h(#, z) stands for h(1, 6, z). In order to express the orthog-
onality condition we compute the normal to C.(6, z) with parametrization

Y (2,0) := (1+¢€h(0,z))n + zes.
The basis of the tangent space at each point is given by
Y, =¢eh,n + es,
and
Yy = chgn + (1 + €h)ny.
This yields
N :=Y, AYy = ch,ez +chgng — (1 +eh)n + 0(52),

hence,
IN| =1+eh+ O(?)



MINIMAL DISC-TYPE SURFACES 1121

and finally
N, z):= &w = ch,(0,2)e3 + chg(0, 2)ng — (1 +eh(0, 2))n + O(e?).
This yields
N
N,z +w):=—=
[V

=ch, (0,2 +w)es +chg(0, 2 + w)ng — (1 + h(0, z + w))n + O(£?).

From (2.7), we expand the normal of DZ(w) in r = 1:
Np: () = €3 — wgng — wyn + %hreg + O} + eL(w) + Q(w).

Therefore, we get

(Npz(w), N(0, 2 + w)) = eh,(2 + w) + wr + O(e%) + eL(w) + Q(w).
Finally, since

eh,(0,z 4+ w) =¢h,(0,2) + eL(w) + Q(w),

the last equation becomes

B(z,e,w) == wy + eh; + O(?) + eL(w) + Q(w). (3.1)
4. PROOF OF THEOREM 1.1

Collecting equations (2.13) and (3.1) we get the following nonlinear system
of PDE’s:

{ —Aw = ¢eL(w) + Q(w) + O(¢?), on B

g—‘; =¢ch,(0,2) + eL(w) + Q(w) + O(¢?), on B,

(4.1)

where %7} stands for the unit outer normal derivative of w and B is the unit

ball in R2.
We shall introduce the following operators: for any w,w’ € H'(B), let

(L(w),w) = / VwVu';
B
for w € C*°, let

(Fen(w) ) = /B (Qw) +eL(w) + O(2))!

+f (eh, +eL(w) + Q(w) + O(e?))', V' € HY(B).
0B
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With this notation, (4.1) is solved provided
L(w) = F 2 (w). (4.2)

With an abuse of notation, by the Riesz representation theorem, we may
assume that, for any w € C>®, F. ,(w) € C%*. Moreover it satisfies

[Fez(@)llcoe < ce (1 + [|wlle2) + O ([[wllcz.e) [[w]lc2.e; (4.3)
[ Fe (@) = Fez(w2)llcoe < ceflwr — wallg2e (4.4)

FO([willeze + llwallc2.e)lor = wallc2.a-

H::{weﬂl(B):/szo},

szzf—jr/Bf, vf e I2.

From now on, we will assume that w € PC>®. Therefore, we have to solve
the system

L(w) =PF:.(w) auxiliary equation
(Id —P)F:.(w) =0. bifurcation equation .

Now call

and

(4.5)

With a slight abuse of terminology we refer to the system (4.5) as the system
of auxiliary+bifurcation equations.

Notice that the auxiliary equation is equivalent to the following fixed-point
problem:

w=L"PF. (w), in PCH". (4.6)

By the Poincaré-Wirtinger inequality, £ is coercive in H. Furthermore, by
elliptic regularity theory, £ : PC** — PC%% is an isomorphism. Hence, by
(4.3) and (4.4), we have that (4.6) can be readily solved in a small ball in
PC?. More precisely, there exists a positive constant ¢ such that, for any
z and € > 0 small, there exists a unique we » with ||we :||c2.0(5) < ce solving
(4.6). Moreover, reducing ¢ if necessary, we may assume that DZ(w; ) is
embedded in ..

By construction we have also that w. . smoothly depends on z; further-
more, for k > 0 we have

|| akwa,z
0z

le2a < ke, z € [a,b], (4.7)
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where ¢, is independent of z and small €. The bifurcation equation becomes
(Id —P) Fe 2 (we,») = 0 which is equivalent to

/B(Q@)E’z> +eLl(we ) —|—(’)(52)) —i—j{ (eh, +eLl(we.) + Qw:.2) +(’)(52)) =0.

0B
That is,

74 ha(6, 2)d0 = go(2),
0B

where g. is a smooth function in z such that, because of (4.7), ||ge|lcrap <
¢e. Define fo(z) := § h.(0,2)d0 — g-(z). If zy is a non-degenerate critical
point (strict maxima or minima) for ¢ h(6,z)df, then fl(zy) is invertible if
¢ is sufficiently small. Consequently, as above, the bifurcation equation is
equivalent to the fixed-point problem

z— 20 = [fL(z0)] " (f=(20) + O(|z — 20/*)),
which has a unique solution z. such that |z. — zg9| < ce. This concludes the
proof.

Acknowledgments The authors would like to thank Prof. Antonio Am-
brosetti for taking their attention to these questions. They are grateful to
Prof. Antonio Ambrosetti and Prof. Andrea Malchiodi at SISSA/ISAS for
helpful discussions. They have been supported by M.U.R.S.T within the
PRIN 2008 Variational Methods and Nonlinear Differential Equations.

REFERENCES

[1] A. Ambrosetti and G. Prodi, “A Primer of Nonlinear Analysis,” Cambridge Univ.
Press, Cambridge Studies in Advanced Mathematics, No.34 (1993).

[2] W. Biirger and E. Kuwert, Area-minimizing disks with free boundary and prescribed
enclosed volume, Preprint 2005, to appear in J. Reine Angew. Math.

[3] M.P. Do Carmo, “Differential Geometry of Curves and Surfaces,” Prentice Hall, Inc.
(Englewood Cliffs, New Jersey) 1976.

[4] M.M. Fall, Embedded disc-type surfaces with large constant mean curvature and free
boundaries, preprint SISSA 2007, to appear in Com. Cont. Math.

[5] M.M. Fall and F. Mahmoudi, Hypersurfaces with free boundary and large constant
mean curvature: concentration along submanifolds, Ann. Sc. Norm. Super. Pisa Cl.
Sci., (5) Vol. VII (2008).

[6] M.M. Fall and C. Mercuri, Foliations of small tubes in Riemannian manifolds by
capillary minimal discs, Nonlinear Anal., 70 (2009), 4422-4440.

[7] R. Finn, “Equilibrium Capillary Surfaces,” Springer-Verlag, New York, 1986

[8] M. Griiter and J. Jost, On Embedded Minimal Discs in Conver Bodies, Annales de
Iinstitut Henri Poincaré (C) Analyse non linéaire, 3 (1986), 345-390.

[9] J. Jost, Ezistence results for embedded minimal surfaces of controlled, topological type
I, Ann. Sci. Sup. Pisa. Classe di Scienze Ser. 4, 13 (1986), 15-50.



1124 MOUHAMED MOUSTAPHA FALL AND CARLO MERCURI

[10] N. Kapouleas, Compact constant mean curvature surfaces in Euclidean three-space,
J. Differ. Geom., 33 (1991), 683-715.

[11] H.B. Lawson, “Lectures on Minimal Submanifolds,” Vol.I. Second edition. Mathemat-
ics Lecture Series, 9. Pulish or Perish, Wimington, Del., 1980.

[12] F. Mahmoudi, R. Mazzeo, and F. Pacard, Constant mean curvature hypersurfaces
condensing along a submanifold, Geom. Funct. Anal., 16 (2006) 924-958.

[13] R. Mazzeo and F. Pacard, Foliations by constant mean curvature tubes, Comm. Anal.
Geom., 13 (2005), 633—670.

[14] F. Pacard and X. Xu, Constant mean curvature spheres in Riemannian manifolds,
preprint (2005) to appear in Manuscripta Math.

[15] A. Ros, “The Isoperimetric Problem,” Lecture series given during the Caley Math-
ematics Institute Summer School on the Global Theory of Minimal Surfaces at the
MSRI, Berkley, California (2001).

[16] A. Ros and R. Souam, On stability of capillary surfaces in a ball, Pacific J. Math.,
178 (1997) 345-361.

[17] A. Ros and E. Vergasta, Satability for hypersurfaces of constant mean curvature with
free boundary, Geom. Dedicata, 56 (1995), 19-33.

[18] S. Secchi, A note on closed geodesics for a class of non-compact Riemannian mani-
folds, Adv. Nonlinear Stud., 1 (2001), 132-142.

[19] M. Struwe, On a free boundary problem for minimal surfaces, Inv. Math., 75 (1984),
547-560.

[20] M. Struwe, The existence of surfaces of constant mean curvature with free boundaries,
Acta Math., 160 (1988), 19-64.

[21] R. Ye, Foliation by constant mean curvature spheres, Pacific J. Math., 147 (1991),
381-396.



