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Abstract. In the present note, we deal with small perturbations of
an infinite cylinder in three-dimensional Euclidian space. We find min-
imal disc-type surfaces embedded in the cylinder and intersecting its
boundary perpendicularly. The existence and localization of those mini-
mal discs is a consequence of a non-degeneracy condition for the critical
points of a functional related to the oscillations of the cylinder from the
flat configuration.

1. Introduction

We define a perturbed cylindrical surface Cε parallel to the z-axis paramet-
rized by

Cε(θ, z) := (1 + εh(1, θ, z))(cos θ, sin θ, 0) + ze3, ε > 0,

where h = h(r, θ, z) is a smooth real-valued function expressed in the cylin-
drical coordinates (r, θ, z) ∈ (0,∞) × (0, 2π) × R and e3 is the unit vector
parallel to the z-direction. It is worth noticing that, if ε > 0 is small, then
Cε is a regular surface of R3. Hereafter, we define h(θ, z) := h(1, θ, z) and
we denote by Ωε the interior of Cε. We recall that a minimal surface is a
surface with mean curvature, H, vanishing everywhere. In particular, we
are interested in finding disc-type minimal surfaces. We will parametrize
the z-level disc-type surface Dz

ε by

Dz
ε(r, θ) := r(1 + εh(r, θ, z))(cos θ, sin θ, 0) + ze3, r ∈ (0, 1), θ ∈ (0, 2π).

The boundary is obviously given by the previous equation with r = 1. The
aim of the present note is to deform Dz

ε for some z in order to find a surface
D such that, for ε small, H(D) = 0, whose boundary intersects Cε perpendic-
ularly. Fixing z and moving along the e3-direction, we can define a smooth
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deformation of Dz
ε , denoted by Dzε(t), simply by

F zε (r, θ, t) := r(1 + εh(r, θ, z + t))(cos θ, sin θ, 0) + (z + t)e3, (1.1)

defined for (r, θ, t) ∈ (0, 1]× (0, 2π)× (−t0, t0). Since

F zε (1, θ, t) = Cε(θ, z + t),

for any fixed t, F zε (r, θ, t) parameterizes a disc whose boundary lies on Cε,
therefore Dzε(t) is an admissible deformation of Dz

ε .
Let Ck,α be the standard Hölder spaces Ck,α(B̄). We now state our main

result.

Theorem 1.1. Suppose z0 is a non-degenerate critical point of the functional

Γ(z) :=
∮
h(θ, z)dθ. (1.2)

Then, an ε0 > 0 exists such that for any ε ∈ (0, ε0) there exist δε > 0, a
smooth function ωε : B → R on the unit ball B ⊂ R2 and zε, satisfying
‖ωε‖C2,α < δε and |z0 − zε| < δε, such that the set Dz0

ε can be smoothly
deformed, through (1.1), to a disc-type minimal surface Dzεε (ωε(B)) ⊂ Ωε

intersecting Cε perpendicularly.

We have to point out that in [18] (Section 3) the existence of closed
geodesics for Cε have been studied with a variant of the Ljapunov-Schmidt
reduction scheme. Even in this case the functional Γ defined in (1.2) deter-
mines the location.

A brief comment on the method is in order. Observe that

H(Dz
ε) = O(ε), in Dz

ε , (1.3)

and
〈NDzε , NCε〉 = O(ε), on ∂Dz

ε , (1.4)
where NDzε and NCε stand for the unit outer normals respectively to Dz

ε and
Cε. Hereafter, we use the symbol O(εα) instead of the Landau symbol O(εα)
to indicate that it is also a function defined on B, possibly depending on z
(see the notation below). On the other hand we search for some D satisfying

H(D) = 0, in D, (1.5)

and
〈ND, NCε〉 = 0, on ∂D, (1.6)

which correspond to the Euler-Lagrange equation associated to the relative
area functional, let us call it E : D → Area(D ∩ Ωε), restricted to the
class of admissible ( and orientable, smooth) surfaces S, i.e., those S such
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that S ⊂ Ωε and ∂S ⊂ Cε. In order to solve (1.5) and (1.6) we localize
the problem considering z ∈ [a, b], and assuming z0 is a non-degenerate
critical point of

∮
h(θ, z)dθ and z0 ∈ (a, b). Because of (1.3) and (1.4) the set

Z := {Dz
ε : z ∈ [a, b]} provides a class of approximate solutions. Consider

the map F defined in (1.1). Because of (1.1), any admissible set Dzε near Dz
ε

can be parametrized by a function ω : B → R such that Dzε(ω) = F zε (r, θ, ω).
Define H(z, ε, ω) := H(Dzε(ω)) and B(z, ε, ω) := 〈NDzε (ω), NCε〉. The idea in
solving (1.5)-(1.6) is then to determine ω such that

H(z, ε, ω) = 0 in Dzε(ω)

B(z, ε, ω) = 0 on ∂Dzε(ω).

Denoting L, L̄ and Q, Q̄ respectively, terms linear and quadratic in ω and its
derivatives (see the notation below), the previous problem transforms to{

∆ω = εL(ω) +Q(ω) +O(ε2), on B

∂ω
∂η = εhz(θ, z) + εL̄(ω) + Q̄(ω) +O(ε2), on ∂B.

(1.7)

The problem (1.7) can be formulated in a weak sense, expressed as

(Φε,z(ω), ω′) = 0, ∀ω′ ∈ H1(B),

and splits in a system of two equations, namely the auxiliary+bifurcation
equations system (see for example [1]). Indeed we can project Φε,z(ω) to the
space of average-zero functions and its orthogonal complement 〈1〉 ⊕ 〈1〉⊥.
Because of the Poincaré -Wirtinger inequality, Lz,ε defined by (Lz,εω, ω′) :=∫
B∇ω∇ω

′ is invertible in 〈1〉⊥. The auxiliary equation is then solved by a
fixed-point argument. Finally, the bifurcation equation reads as a simple
equation in R and can be solved in a small neighborhood of z0, using an
elementary argument based on the contraction lemma.

A great deal of work has been devoted to minimal surfaces from the point
of view of existence, uniqueness and topological properties of the solutions.
We refer to the papers [2], [7], [8], [9], [11], [15], [16], [17], [19], [20] and the
references therein. The method we used is perturbative in nature and the
main idea goes back to Ye [21] and was employed by many authors in the
study of constant mean curvature hyper-surfaces, see for example [4], [5], [6],
[10], [12], [13] and [14].
Notation for error terms. Any expression of the form L(ω) (respec-
tively L̄(ω)) denotes a linear combination of the function ω together with its
derivatives with respect to the function ω up to order 2 (respectively order
1). The coefficients of L or L̄ might depend on ε and z but, for all k ∈ N,
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there exists a constant c > 0 independent of ε ∈ (0, 1) and z ∈ [a, b] such
that

‖L(ω)‖Ck,α ≤ c ‖ω‖Ck+2,α ,

and similarly for L̄. Furthermore, any expression of the form Q(ω) (respec-
tively Q̄(ω)) denotes a nonlinear operator in the function ω together with
its derivatives with respect to ω up to order 2 (respectively 1).

Given k ∈ N, there exists a constant c > 0 independent of ε ∈ (0, 1) and
z ∈ [a, b] such that

‖Q(ω1)−Q(ω2)‖Ck,α ≤ c (‖ω1‖Ck+2,α + ‖ω2‖Ck+2,α) ‖ω1 − ω2‖Ck+2,α ,

provided ‖ωi‖Ck+2,α ≤ 1, i = 1, 2, and similarly for Q̄. We also agree that any
term denoted by O(rd) (with r ∈ R possibly depending on z) is a smooth
function on B that might depend on z but satisfies

‖O(rd)
|r|d

‖Ck,α ≤ c,

for a constant c independent of z.

2. Expansions of the geometrical quantities for Dzε(ω)

For the sake of convenience we define hereafter

n := (cos θ, sin θ, 0),

and for every fixed z we use the following parametrization for Dzε(ω) :

X(r, θ) := r(1 + εh(r, θ, z + ω(r, θ)))n+ (z + ω(r, θ))e3.

We can expand the last equation in terms of ω, yielding

X = X
∣∣
ω=0

+
∂X

∂ω

∣∣∣
ω=0

ω + εQ(ω).

Then we have

X(r, θ) = Dz
ε(r, θ) + (e3 + rεhz(r, θ, z)n)ω + εQ(ω),

or, equivalently,

X(r, θ) = r(1 + εh(r, θ, z))n+ ze3 + ω(r, θ)e3 + εL(ω) +Q(ω).

In order to compute the mean curvature of Dzε(ω), some preliminary compu-
tations are in order. We will determine the meaningful geometrical quantities
at a first order of approximation in ε. We refer, for example, to the book [3]
for notation and terminology.
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2.1. The first fundamental form. We compute the following quantities:

Xr = (1 + ε(h+ rhr))n+ ωre3 + εL(ω) +Q(ω), (2.1)

E := |Xr|2 = 1 + 2ε(h+ rhr) +O(ε2) + εL(ω) +Q(ω), (2.2)

Xθ := rεhθn+ r(1 + εh)nθ + ωθe3 + εL(ω) +Q(ω), (2.3)

G := |Xθ|2 = r2(1 + 2εh) +O(ε2) + εL(ω) +Q(ω), (2.4)

F := 〈Xθ, Xr〉 = rεhθ +O(ε2) + εL(ω) +Q(ω). (2.5)

Finally, we use the first fundamental form, E,F,G in terms of the basis
Xr, Xθ, to determine the following quantity for later use:

EG− F 2 = r2(1 + 4εh) + 2r3εhr +O(ε2) + εL(ω) +Q(ω). (2.6)

2.2. The normal. We are going to expand the Gauss map for Dzε(ω) :

N :=
Xr ∧Xθ

|Xr ∧Xθ|
=

Xr ∧Xθ

(EG− F 2)1/2
.

Using (2.1) and (2.3) we compute

N̄ := Xr∧Xθ = r(1+2εh)e3−ωθnθ+r2εhre3−rωrn+O(ε2)+εL(ω)+Q(ω),

and

|N̄ |−1 =
1

(EG− F 2)1/2
=

1
r

(1− 2εh)− r

2
εhr +O(ε2) + εL(ω) +Q(ω).

Therefore, we have

N =
N̄

|N̄ |
= e3 −

1
r
ωθnθ − ωrn+

r

2
εhre3 +O(ε2) + εL(ω) +Q(ω). (2.7)

Finally, we can compute the derivatives Nr, Nθ:

Nr = (
1
r2
ωθ−

1
r
ωθr)nθ−ωrrn+(

ε

2
hr+

r

2
εhrr)e3+O(ε2)+εL(ω)+Q(ω), (2.8)

Nθ = −(
1
r
ωθθ+ωr)nθ+(

1
r
ωθ−ωrθ)n+

r

2
εhrθe3+O(ε2)+εL(ω)+Q(ω). (2.9)

2.3. The second fundamental form. As a preliminary step to determin-
ing the mean curvature forDzε(ω) we expand the second fundamental form
given by the following e, f, g quantities. Using (2.1), (2.3),(2.8) and (2.9) we
can determine the second fundamental form:

−g := 〈Nθ, Xθ〉 = −r(1
r
ωθθ + ωr) +O(ε2) + εL(ω) +Q(ω),
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so that
g = ωθθ + rωr +O(ε2) + εL(ω) +Q(ω) (2.10)

−e := 〈Nr, Xr〉 = −ωrr +O(ε2) + εL(ω) +Q(ω)

e = ωrr +O(ε2) + εL(ω) +Q(ω) (2.11)

−f := 〈Nθ, Xr〉 =
1
r
ωθ − ωrθ +O(ε2) + εL(ω) +Q(ω). (2.12)

2.4. The mean curvature. Using (2.11),(2.4), (2.10), (2.2), (2.12) and
(2.5), we have

eG = r2ωrr +O(ε2) + εL(ω) +Q(ω)

gE =
1
r
ωθθ + ωr +O(ε2) + εL(ω) +Q(ω)

−fF = O(ε2) + εL(ω) +Q(ω).
By equation (2.6) one has that

(EG− F 2)−1 = r−2(1− 2εh+ rεhr) +O(ε2) + εL(ω) +Q(ω).

We now estimate the mean curvature. Through the usual formula

H =
1
2
eG− 2fF + gE

EG− F 2
,

we finally compute H(z, ε, ω) := H(Dzε(ω)),

H(z, ε, ω) =
1
2

(ωrr +
ωr
r

+
ωθθ
r2

) +O(ε2) + εL(ω) +Q(ω). (2.13)

3. Expansion of the orthogonality condition on the boundary

In what follows h(θ, z) stands for h(1, θ, z). In order to express the orthog-
onality condition we compute the normal to Cε(θ, z) with parametrization

Y (z, θ) := (1 + εh(θ, z))n+ ze3.

The basis of the tangent space at each point is given by

Yz = εhzn+ e3,

and
Yθ = εhθn+ (1 + εh)nθ.

This yields

N̄ := Yz ∧ Yθ = εhze3 + εhθnθ − (1 + εh)n+O(ε2),

hence,
|N̄ | = 1 + εh+O(ε2)
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and finally

N(θ, z) :=
N̄

|N̄ |
= εhz(θ, z)e3 + εhθ(θ, z)nθ − (1 + εh(θ, z))n+O(ε2).

This yields

N(θ, z + ω) :=
N̄

|N̄ |
= εhz(θ, z + ω)e3 + εhθ(θ, z + ω)nθ − (1 + εh(θ, z + ω))n+O(ε2).

From (2.7), we expand the normal of Dzε(ω) in r = 1:

NDzε (ω) = e3 − ωθnθ − ωrn+
ε

2
hre3 +O(ε2) + εL(ω) +Q(ω).

Therefore, we get

〈NDzε (ω), N(θ, z + ω)〉 = εhz(z + ω) + ωr +O(ε2) + εL(ω) +Q(ω).

Finally, since

εhz(θ, z + ω) = εhz(θ, z) + εL(ω) +Q(ω),

the last equation becomes

B(z, ε, ω) := ωr + εhz +O(ε2) + εL(ω) +Q(ω). (3.1)

4. Proof of Theorem 1.1

Collecting equations (2.13) and (3.1) we get the following nonlinear system
of PDE’s: {

−∆ω = εL(ω) +Q(ω) +O(ε2), on B

∂ω
∂η = εhz(θ, z) + εL̄(ω) + Q̄(ω) + Ō(ε2), on ∂B,

(4.1)

where ∂ω
∂η stands for the unit outer normal derivative of ω and B is the unit

ball in R2.
We shall introduce the following operators: for any ω, ω′ ∈ H1(B), let

(L(ω), ω′) :=
∫
B
∇ω∇ω′;

for ω ∈ C2,α, let

(Fε,z(ω), ω′) :=
∫
B

(Q(ω) + εL(ω) +O(ε2))ω′

+
∮
∂B

(εhz + εL̄(ω) + Q̄(ω) + Ō(ε2))ω′, ∀ω′ ∈ H1(B).
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With this notation, (4.1) is solved provided

L(ω) = Fε,z(ω). (4.2)

With an abuse of notation, by the Riesz representation theorem, we may
assume that, for any ω ∈ C2,α, Fε,z(ω) ∈ C0,α. Moreover it satisfies

‖Fε,z(ω)‖C0,α ≤ cε (1 + ‖ω‖C2,α) +O (‖ω‖C2,α) ‖ω‖C2,α ; (4.3)

‖Fε,z(ω1)−Fε,z(ω2)‖C0,α ≤ cε‖ω1 − ω2‖C2,α (4.4)

+O(‖ω1‖C2,α + ‖ω2‖C2,α)‖ω1 − ω2‖C2,α .
Now call

H :=
{
ω ∈ H1(B) :

∫
B
ω = 0

}
,

and

Pf := f − 1
π

∫
B
f, ∀f ∈ L2.

From now on, we will assume that ω ∈ PC2,α. Therefore, we have to solve
the system{

L(ω) = PFε,z(ω) auxiliary equation

(Id− P)Fε,z(ω) = 0. bifurcation equation .
(4.5)

With a slight abuse of terminology we refer to the system (4.5) as the system
of auxiliary+bifurcation equations.

Notice that the auxiliary equation is equivalent to the following fixed-point
problem:

ω = L−1PFε,z(ω), in PC2,α. (4.6)

By the Poincaré-Wirtinger inequality, L is coercive in H. Furthermore, by
elliptic regularity theory, L : PC2,α → PC0,α is an isomorphism. Hence, by
(4.3) and (4.4), we have that (4.6) can be readily solved in a small ball in
PC2,α. More precisely, there exists a positive constant c such that, for any
z and ε > 0 small, there exists a unique ωε,z with ‖ωε,z‖C2,α(B̄) ≤ cε solving
(4.6). Moreover, reducing ε if necessary, we may assume that Dzε(ωε,z) is
embedded in Ωε.

By construction we have also that ωε,z smoothly depends on z; further-
more, for k ≥ 0 we have

‖∂
kωε,z
∂zk

‖C2,α ≤ ckε, z ∈ [a, b], (4.7)
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where ck is independent of z and small ε. The bifurcation equation becomes
(Id− P)Fε,z(ωε,z) = 0 which is equivalent to∫
B

(Q(ωε,z) + εL(ωε,z) +O(ε2)) +
∮
∂B

(εhz + εL̄(ωε,z) + Q̄(ωε,z) + Ō(ε2)) = 0.

That is, ∮
∂B
hz(θ, z)dθ = gε(z),

where gε is a smooth function in z such that, because of (4.7), ‖gε‖Ck[a,b] ≤
c′kε. Define fε(z) :=

∮
hz(θ, z)dθ − gε(z). If z0 is a non-degenerate critical

point (strict maxima or minima) for
∮
h(θ, z)dθ, then f ′ε(z0) is invertible if

ε is sufficiently small. Consequently, as above, the bifurcation equation is
equivalent to the fixed-point problem

z − z0 = [f ′ε(z0)]−1(fε(z0) +O(|z − z0|2)),

which has a unique solution zε such that |zε − z0| < cε. This concludes the
proof.
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