University of Udine

Department of Mathematics and Computer Science

PREPRINT

Hardy-Poincare' inequalities with boundary singularities

Mouhamed Moustapha Fall, Roberta Musina

Preprint nr.: 5/2010
Reports aviable from: http://www.dimi.uniud.it/preprints

Hardy-Poincaré inequalities with boundary singularities

Mouhamed Moustapha Fall* and Roberta Musina ${ }^{\dagger}$

Abstract

Let Ω be a bounded domain in \mathbb{R}^{N} with $0 \in \partial \Omega$ and $N \geq 2$. In this paper we study the Hardy-Poincaré inequality for maps in $H_{0}^{1}(\Omega)$. In particular we give sufficient and some necessary conditions so that the best constant is achieved.

Key Words: Hardy inequality, lack of compactness, nonexistence, supersolutions. 2010 Mathematics Subject Classification: 35J20, 35J57, 35J75, 35B33, 35A01

[^0]
Introduction

Let Ω be a smooth bounded domain in \mathbb{R}^{N}, with $N \geq 2$. In this paper we assume that $0 \in \partial \Omega$ and we study the minimization problem

$$
\begin{equation*}
\mu_{\lambda}(\Omega):=\inf _{\substack{u \in H_{0}^{1}(\Omega) \\ u \neq 0}} \frac{\int_{\Omega}|\nabla u|^{2} d x-\lambda \int_{\Omega}|u|^{2} d x}{\int_{\Omega}|x|^{-2}|u|^{2} d x}, \tag{0.1}
\end{equation*}
$$

where $\lambda \in \mathbb{R}$ is a varying parameter. For $\lambda=0$ the Ω-Hardy constant $\mu_{0}(\Omega) \geq$ $(N-2)^{2} / 4$ is the best constant in the Hardy inequality for maps supported by Ω. If $N=2$ it has been proved in [4], Theorem 1.6, that $\mu_{0}(\Omega)$ is positive.

Problem (0.1) carries some similarities with the questions studied by Brezis and Marcus in [1], where the weight is the inverse-square of the distance from the boundary of Ω. Also the paper [5] by Dávila and Dupaigne is somehow related to the minimization problem (0.1). Indeed, notice that for any fixed $\lambda \in \mathbb{R}$, any extremal for $\mu_{\lambda}(\Omega)$ is a weak solution to the linear Dirichlet problem

$$
\begin{cases}-\Delta u=\mu|x|^{-2} u+\lambda u & \text { on } \Omega \tag{0.2}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\mu=\mu_{\lambda}(\Omega)$. If $\mu_{\lambda}(\Omega)$ is achieved, then $\mu_{\lambda}(\Omega)$ is the first eigenvalue of the operator $-\Delta-\lambda$ on $H_{0}^{1}(\Omega)$. Starting from a different point of view, for $0 \in \Omega$, $N \geq 3$ and $\mu \leq(N-2)^{2} / 4$, Dávila and Dupaigne have proved in [5] the existence of the first eigenfunction φ_{1} of the operator $-\Delta-\mu|x|^{-2}$ on a suitable functional space $H(\Omega) \supseteq H_{0}^{1}(\Omega)$. Notice that φ_{1} solves (0.2), where the eigenvalue λ depends on the datum μ.

The problem of the existence of extremals for the Ω-Hardy constant $\mu_{0}(\Omega)$ was already discussed in [4] in case $N=2$ (with Ω possibly unbounded or singular at $0 \in \partial \Omega$) and in [12], where Ω is a suitable compact perturbation of a cone in \mathbb{R}^{N}. Hardy-Sobolev inequalities with singularity at the boundary have been studied by several authors. We quote for instance [3], [6], [7], [8], [9], [10], and references there-in.

The minimization problem (0.1) is not compact, due to the group of dilations in \mathbb{R}^{N}. Actually it might happen that all minimizing sequences concentrate at 0 . In
this case $\mu_{\lambda}(\Omega)$ is not achieved and $\mu_{\lambda}(\Omega)=\mu^{+}$, where

$$
\mu^{+}=\frac{N^{2}}{4}
$$

is the best constant in the Hardy inequality for maps with support in a half-space. Indeed in Section 2 we first show that

$$
\begin{equation*}
\sup _{\lambda \in \mathbb{R}} \mu_{\lambda}(\Omega)=\mu^{+} \tag{0.3}
\end{equation*}
$$

then we deduce that, provided $\mu_{\lambda}(\Omega)<\mu^{+}$, every minimizing sequence for $\mu_{\lambda}(\Omega)$ converges in $H_{0}^{1}(\Omega)$ to an extremal for $\mu_{\lambda}(\Omega)$.

We recall that Ω is said to be locally concave at $0 \in \partial \Omega$ if it contains a half-ball. That is there exists $r>0$ such that

$$
\begin{equation*}
\left\{x \in \mathbb{R}^{N} \mid x \cdot \nu>0\right\} \cap B_{r}(0) \subset \Omega \tag{0.4}
\end{equation*}
$$

where ν is the interior normal of $\partial \Omega$ at 0 . Notice that if all the principal curvatures of $\partial \Omega$ at 0 , with respect to ν, are strictly negative, then condition (0.4) is satisfied.

Our first main result is stated in the following theorem.
Theorem 0.1 Let $\Omega \in \mathbb{R}^{N}$ be a smooth bounded domain with $0 \in \partial \Omega$. Assume that Ω is locally concave at 0 . Then $\mu_{\lambda}(\Omega)$ is attained if and only if $\mu_{\lambda}(\Omega)<\mu^{+}$.

The "only if" part, which is the most intriguing, is a consequence of Corollary 3.2 in Section 3, where we provide local nonexistence results for problem

$$
\begin{cases}-\Delta u \geq \mu|x|^{-2} u+\lambda u & \text { on } \Omega \tag{0.5}\\ u \geq 0 & \text { in } \Omega\end{cases}
$$

also for negative values of the parameter λ.
Up to now several questions concerning the infimum $\mu_{\lambda}(\Omega)$ are still open. Put

$$
\begin{equation*}
\lambda^{*}:=\inf \left\{\lambda \in \mathbb{R} \mid \mu_{\lambda}(\Omega)<\mu^{+}\right\} \tag{0.6}
\end{equation*}
$$

Since the $\operatorname{map} \lambda \mapsto \mu_{\lambda}(\Omega)$ is non increasing, then $\mu_{\lambda}(\Omega)$ is achieved for any $\lambda>\lambda^{*}$, by the existence Theorem 2.2. If $\lambda^{*} \in \mathbb{R}$, then from (0.3) it follows that $\mu_{\lambda}(\Omega)=\mu^{+}$ for any $\lambda \leq \lambda^{*}$ and hence $\mu_{\lambda}(\Omega)$ is not achieved if $\lambda<\lambda^{*}$. We don't know if there exist domains Ω for which $\lambda^{*}=-\infty$. On the other hand we are able to prove the following facts (see Section 5 for the precise statements):
i) If Ω is locally convex at 0 , that is, if there exists $r>0$ such that $\Omega \cap B_{r}(0)$ is contained in a half-space, then $\lambda^{*}>-\infty$.
ii) If Ω is contained in a half-space then

$$
\begin{equation*}
\lambda^{*} \geq \frac{\lambda_{1}(\mathbb{D})}{|\operatorname{diam}(\Omega)|^{2}} \tag{0.7}
\end{equation*}
$$

where $\lambda(\mathbb{D})$ is the first Dirichlet eigenvalue of the unit ball \mathbb{D} in \mathbb{R}^{2} and $\operatorname{diam}(\Omega)$ is the diameter of Ω.
iii) For any $\delta>0$ there exists $\rho_{\delta}>0$ such that, if

$$
\Omega \supseteq\left\{x \in \mathbb{R}^{N}|x \cdot \nu>-\delta| x|, \alpha<|x|<\beta\}\right.
$$

for some $\nu \in \mathbb{S}^{N-1}, \beta>\alpha>0$ with $\beta / \alpha>\rho_{\delta}$, then $\lambda^{*}<0$. In particular the Hardy constant $\mu_{0}(\Omega)$ is achieved.

The relevance of the geometry of Ω at the origin is confirmed by Theorem 0.1 , by $i)$ and by the existence theorems proved in [8], [9] and [10] for a related superlinear problem. However, it has to be noticed that also the (conformal) "size" of Ω (even far away from the origin) has some impact on the existence of compact minimizing sequences. Actually, no requirement on the curvature of Ω at 0 is needed in iii). In particular, there exist smooth domains having strictly positive principal curvatures at 0 , and such that the Hardy constant $\mu_{0}(\Omega)$ is achieved.

The paper is organized as follows.
In Section 1 we point out few remarks on the Hardy inequality on dilationinvariant domains.

In Section 2, Theorem 2.2, we give sufficient conditions for the existence of minimizers for (0.1).

In Section 3 we prove some nonexistence theorems for solutions to (0.5) that might have an independent interest.

To prove inequality (0.7) in case Ω is contained in a half space, in Section 4 we provide computable remainder terms for the Hardy inequality on half-balls. We adopt here an argument by Brezis-Vázquez [2], where bounded domains $\Omega \subset \mathbb{R}^{N}$, with $N \geq 3$ and $0 \in \Omega$, are considered.

In Section 5 we estimate λ^{*} from below and form above, under suitable assumptions on Ω.

Notation

- \mathbb{R}_{+}^{N} and \mathbb{S}_{+}^{N-1} denote any half space and any hemisphere, respectively. More precisely,

$$
\mathbb{R}_{+}^{N}=\left\{x \in \mathbb{R}^{N} \mid x \cdot \nu>0\right\}, \quad \mathbb{S}_{+}^{N-1}=\mathbb{S}^{N-1} \cap \mathbb{R}_{+}^{N}
$$

where ν is any unit vector in \mathbb{R}^{N}.

- $B_{R}(x)$ is the open ball in \mathbb{R}^{N} of radius r centered at x. If $x=0$ we simply write B_{R}. If $N=2$ we shall often write \mathbb{D}_{R} and \mathbb{D} instead of B_{R}, B_{1}, respectively.
- We denote by $H^{1}\left(\mathbb{S}^{N-1}\right)$ the standard Sobolev space of maps on the unit sphere and by $\nabla_{\sigma}, \Delta_{\sigma}$ the gradient and the Laplace-Beltrami operator on \mathbb{S}^{N-1}, respectively.
- Let Σ be a domain in \mathbb{S}^{N-1}. We denote by $H_{0}^{1}(\Sigma)$ the closure of $C_{c}^{\infty}(\Sigma)$ in the $H^{1}\left(\mathbb{S}^{N-1}\right)$ space and by $\lambda_{1}(\Sigma)$ the fist Dirichlet eigenvalue on Σ.
- For any domain $\Omega \subset \mathbb{R}^{N}$, we denote by $L^{2}\left(\Omega ;|x|^{-2} d x\right)$ the space of measurable maps on Ω such that $\int_{\Omega}|x|^{-2}|u|^{2} d x<\infty$. We put also

$$
\widehat{H}^{1}(\Omega):=H^{1}(\Omega) \cap L^{2}\left(\Omega ;|x|^{-2} d x\right),
$$

where $H^{1}(\Omega)$ is the standard Sobolev space of maps on Ω.

1 Preliminaries

In this section we collect a few remarks on the Hardy inequality on dilation-invariant domains that are partially contained for example in [4] (in case $N=2$) and in [12].

Via polar coordinates, to any domain Σ in \mathbb{S}^{N-1} we associate a cone $\mathcal{C}_{\Sigma} \subset \mathbb{R}^{N-1}$ and a (half) cylinder $\mathcal{Z}_{\Sigma} \subset \mathbb{R}^{N+1}$ by setting

$$
\mathcal{C}_{\Sigma}:=\{t \sigma \mid t>0, \sigma \in \Sigma\}, \quad \mathcal{Z}_{\Sigma}:=\mathbb{R}_{+} \times \Sigma
$$

If Σ is a smooth domain in \mathbb{S}^{N-1}, then \mathcal{C}_{Σ} is a Lipschitz, dilation-invariant domain in \mathbb{R}^{N-1}. In particular, if Σ is a half-sphere, then \mathcal{C}_{Σ} is a half-space. The map

$$
\mathbb{R}^{N-1} \backslash\{0\} \rightarrow \mathbb{R}^{N+1}, \quad x \mapsto\left(-\log |x|, \frac{x}{|x|}\right)
$$

is an homeomorphism $\mathcal{C}_{\Sigma} \rightarrow \mathcal{Z}_{\Sigma}$. It induces the Emden-Fowler transform

$$
T: C_{c}^{\infty}\left(\mathcal{C}_{\Sigma}\right) \rightarrow C_{c}^{\infty}\left(\mathcal{Z}_{\Sigma}\right), \quad u(x)=|x|^{\frac{2-N}{2}}(T u)\left(-\log |x|, \frac{x}{|x|}\right)
$$

A direct computation based on the divergence theorem gives

$$
\begin{align*}
\int_{\mathcal{C}_{\Sigma}}|\nabla u|^{2} d x & =\frac{(N-2)^{2}}{4} \int_{0}^{\infty} \int_{\Sigma}|T u|^{2} d s d \sigma+\int_{0}^{\infty} \int_{\Sigma}\left|\nabla_{s, \sigma} T u\right|^{2} d s d \sigma \tag{1.1}\\
& \int_{\mathcal{C}_{\Sigma}}|x|^{-2}|u|^{2} d x=\int_{0}^{\infty} \int_{\Sigma}|T u|^{2} d s d \sigma \tag{1.2}
\end{align*}
$$

where $\nabla_{s, \sigma}=\left(\partial_{s}, \nabla_{\sigma}\right)$ denotes the gradient on $\mathbb{R}_{+} \times \mathbb{S}^{N-1}$.
Now we introduce the Hardy constant on the cone \mathcal{C}_{Σ} :

$$
\begin{equation*}
\mu_{0}\left(\mathcal{C}_{\Sigma}\right):=\inf _{\substack{u \in C_{c}^{\infty}\left(\mathcal{C}_{\Sigma}\right) \\ u \neq 0}} \frac{\int_{\mathcal{C}_{\Sigma}}|\nabla u|^{2} d x}{\int_{\left.\mathcal{C}_{\Sigma}\right)}|x|^{-2}|u|^{2} d x} \tag{1.3}
\end{equation*}
$$

In the next proposition we notice that the Hardy inequality on \mathcal{C}_{Σ} is equivalent to the Poincaré inequality for maps supported be the cylinder \mathcal{Z}_{Σ}.

Proposition 1.1 Let \mathcal{C}_{Σ} be a cone. Then

$$
\mu_{0}\left(\mathcal{C}_{\Sigma}\right)=\frac{(N-2)^{2}}{4}+\lambda_{1}(\Sigma)
$$

Proof. By (1.1), (1.2) it turns out that

$$
\mu_{0}\left(\mathcal{C}_{\Sigma}\right)-\frac{(N-2)^{2}}{4}=\inf _{\substack{v \in C_{c}^{\infty}\left(\mathcal{Z}_{\Sigma}\right) \\ v \neq 0}} \frac{\int_{0}^{\infty} \int_{\Sigma}\left|\nabla_{s, \sigma} v\right|^{2} d s d \sigma}{\int_{0}^{\infty} \int_{\Sigma}|v|^{2} d s d \sigma}=: \lambda_{1}\left(\mathcal{Z}_{\Sigma}\right)
$$

The result follows by noticing that $\lambda_{1}\left(\mathcal{Z}_{\Sigma}\right)=\lambda_{1}(\Sigma)$.

The eigenvalue $\lambda_{1}(\Sigma)$ is explicitly known in few cases. For example, if $\Sigma=\mathbb{S}_{+}^{N-1}$ is a half-sphere then $\lambda_{1}\left(\mathbb{S}_{+}^{N-1}\right)=N-1$. Thus, the Hardy constant of a half space is given by

$$
\begin{equation*}
\mu_{0}\left(\mathbb{R}_{+}^{N}\right)=\mu^{+}:=\frac{N^{2}}{4} \tag{1.4}
\end{equation*}
$$

If $N=2$ and if $\mathcal{C}_{\Sigma_{\theta}} \subset \mathbb{R}^{2}$ is a cone of amplitude $\theta \in(0,2 \pi]$ then $\lambda_{1}\left(\Sigma_{\theta}\right)$ coincide with the Dirichlet eigenvalue on the interval $(0, \theta)$. Hence we get the conclusion, which was first pointed out in [4]:

$$
\begin{equation*}
\mu_{0}\left(\mathcal{C}_{\Sigma_{\theta}}\right)=\frac{\pi^{2}}{\theta^{2}} \geq \frac{1}{4} \tag{1.5}
\end{equation*}
$$

Let Σ be a domain in \mathbb{S}^{N-1}. If $N \geq 3$ the space $\mathcal{D}^{1,2}\left(\mathcal{C}_{\Sigma}\right)$ is defined in a standard way as a close subspace of $\mathcal{D}^{1,2}\left(\mathbb{R}^{N-1}\right)$. Notice that in case $\Sigma=\mathbb{S}^{N-1}$ it turns out that

$$
\mathcal{D}^{1,2}\left(\mathcal{C}_{\mathbb{S}^{N-1}}\right)=\mathcal{D}^{1,2}\left(\mathbb{R}^{N} \backslash\{0\}\right)=\mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)
$$

by a known density result.
If $N=2$ and if Σ is properly contained in \mathbb{S}^{1}, then $\mu_{0}\left(\mathcal{C}_{\Sigma}\right)>0$ by (1.5). In this case we can introduce the space $\mathcal{D}^{1,2}\left(\mathcal{C}_{\Sigma}\right)$ by completing $C_{c}^{\infty}\left(\mathcal{C}_{\Sigma}\right)$ with respect to the Hilbertian norm $\left(\int_{\mathcal{C}_{\Sigma}}|\nabla u|^{2} d x\right)^{1 / 2}$.

The next result is an immediate consequence of the fact that the Dirichlet eigenvalue problem of $-\Delta$ in the strip \mathcal{Z}_{Σ} is never achieved. The same conclusion was already noticed in [4] in case $N=2$ and in [12].

Proposition 1.2 Let Σ be a domain in \mathbb{S}^{N-1}. Then $\mu_{0}\left(\mathcal{C}_{\Sigma}\right)$ is not achieved in $\mathcal{D}^{1,2}\left(\mathcal{C}_{\Sigma}\right)$.

2 Existence

In this Section we show that the condition $\mu_{\lambda}(\Omega)<\mu^{+}=N^{2} / 4$ is sufficient to guarantee the existence of a minimizer for $\mu_{\lambda}(\Omega)$. We notice that throughout this section, the regularity of Ω can be relaxed to Lipschitz domains which are of class C^{2} at 0 . We start with a preliminary result.

Lemma 2.1 Let Ω be a smooth domain with $0 \in \partial \Omega$. Then

$$
\sup _{\lambda \in \mathbb{R}} \mu_{\lambda}(\Omega)=\mu^{+}
$$

Proof. The proof will be carried out in two steps.
Step 1. We claim that $\sup _{\lambda \in \mathbb{R}} \mu_{\lambda}(\Omega) \geq \mu^{+}$.
We denote by ν the interior normal of $\partial \Omega$ at 0 . For $\delta>0$, we consider the cone

$$
\mathcal{C}_{-}^{\delta}:=\left\{x \in \mathbb{R}^{N-1}|x \cdot \nu>-\delta| x \mid\right\}
$$

Now fix $\varepsilon>0$. If δ is small enough then $\mu_{0}\left(\mathcal{C}_{-}^{\delta}\right) \geq \mu^{+}-\varepsilon$. Since Ω is smooth at 0 then there exists a small radius $r>0$ (depending on δ) such that $\Omega \cap B_{r_{\delta}}(0) \subset \mathcal{C}_{-}^{\delta}$.

Next, let $\psi \in C^{\infty}\left(B_{r}(0)\right)$ be a cut-off function, satisfying

$$
0 \leq \psi \leq 1, \quad \psi \equiv 0 \text { in } \mathbb{R}^{N} \backslash B_{\frac{r}{2}}(0), \quad \psi \equiv 1 \text { in } B_{\frac{r}{4}}(0)
$$

We write any $u \in H_{0}^{1}(\Omega)$ as $u=\psi u+(1-\psi) u$, to get

$$
\begin{equation*}
\int_{\Omega}|x|^{-2}|u|^{2} d x \leq \int_{\Omega}|x|^{-2}|\psi u|^{2} d x+c \int_{\Omega}|u|^{2} d x \tag{2.1}
\end{equation*}
$$

where the constant c do not depend on u. Since $\psi u \in \mathcal{D}^{1,2}\left(\mathcal{C}_{-}^{\delta}\right)$ then

$$
\begin{equation*}
\left(\mu^{+}-\varepsilon\right) \int_{\Omega}|x|^{-2}|\psi u|^{2} d x \leq \mu_{0}\left(\mathcal{C}_{-}^{\delta}\right) \int_{\Omega}|x|^{-2}|\psi u|^{2} d x \leq \int_{\Omega}|\nabla(\psi u)|^{2} d x \tag{2.2}
\end{equation*}
$$

by our choice of the cone \mathcal{C}_{-}^{δ}. In addition, we have

$$
\int_{\Omega}|\nabla(\psi u)|^{2} d x \leq \int_{\Omega}|\nabla u|^{2} d x+\frac{1}{2} \int_{\Omega} \nabla\left(\psi^{2}\right) \cdot \nabla\left(u^{2}\right) d x+c \int_{\Omega}|u|^{2} d x
$$

using integration by parts we get

$$
\int_{\Omega}|\nabla(\psi u)|^{2} d x \leq \int_{\Omega}|\nabla u|^{2} d x-\frac{1}{2} \int_{\Omega} \Delta\left(\psi^{2}\right)|u|^{2} d x+c \int_{\Omega}|u|^{2} d x
$$

Comparing with (2.1) and (2.2) we infer that there exits a positive constant c depending only on δ such that

$$
\begin{equation*}
\left(\mu^{+}-\varepsilon\right) \int_{\Omega}|x|^{-2}|u|^{2} d x \leq \int_{\Omega}|\nabla u|^{2} d x+c \int_{\Omega}|u|^{2} d x \quad \forall u \in H_{0}^{1}(\Omega) \tag{2.3}
\end{equation*}
$$

Hence we get $\left(\mu^{+}-\varepsilon\right) \leq \mu_{-c}(\Omega)$. Consequently $\left(\mu^{+}-\varepsilon\right) \leq \sup _{\lambda} \mu_{\lambda}(\Omega)$, and the conclusion follows by letting $\varepsilon \rightarrow 0$.

Step 2: We claim that $\sup _{\lambda} \mu_{\lambda}(\Omega) \leq \mu^{+}$.
For $\delta>0$ we consider the cone

$$
\mathcal{C}_{+}^{\delta}:=\left\{x \in \mathbb{R}^{N-1}|x \cdot \nu>\delta| x \mid\right\} .
$$

As in the first step, for any $\delta>0$ there exists $r_{\delta}>0$ such that $\mathcal{C}_{+}^{\delta} \cap B_{r}(0) \subset \Omega$ for all $r \in\left(0, r_{\delta}\right)$. Clearly by scale invariance, $\mu_{0}\left(\mathcal{C}_{+}^{\delta} \cap B_{r}(0)\right)=\mu_{0}\left(\mathcal{C}_{+}^{\delta}\right)$. For $\varepsilon>0$, we let $\phi \in H_{0}^{1}\left(\mathcal{C}_{+}^{\delta} \cap B_{r}(0)\right)$ such that

$$
\frac{\int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|\nabla \phi|^{2} d x}{\int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|x|^{-2}|\phi|^{2} d x} \leq \mu_{0}\left(\mathcal{C}_{+}^{\delta}\right)+\varepsilon .
$$

From this we deduce that

$$
\begin{aligned}
\mu_{\lambda}(\Omega) & \leq \frac{\int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|\nabla \phi|^{2} d x-\lambda \int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|\phi|^{2} d x}{\int_{\mathcal{C}_{+}^{\delta} \cap B_{r_{\delta}}(0)}|x|^{-2}|\phi|^{2} d x} \\
& \leq \mu_{0}\left(\mathcal{C}_{+}^{\delta}\right)+\varepsilon+|\lambda| \frac{\int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|\phi|^{2} d x}{\int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|x|^{-2}|\phi|^{2} d x}
\end{aligned}
$$

Since $\int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|x|^{-2}|\phi|^{2} d x \geq r^{-2} \int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)}|\phi|^{2} d x$, we get

$$
\mu_{\lambda}(\Omega) \leq \mu_{0}\left(\mathcal{C}_{+}^{\delta}\right)+\varepsilon+r^{2}|\lambda| .
$$

The conclusion follows immediately, since $\mu_{0}\left(\mathcal{C}_{+}^{\delta}\right) \rightarrow \mu^{+}$when $\delta \rightarrow 0$.
Notice that if Ω is bounded then by (2.3) and Poincaré inequality

$$
\begin{equation*}
\mu_{0}(\Omega)>0 . \tag{2.4}
\end{equation*}
$$

For $N=2$ this was shown in [4] and for more general domains. We are in position to prove the main result of this section.

Theorem 2.2 Let $\lambda \in \mathbb{R}$ and let Ω be a smooth bounded domain of \mathbb{R}^{N} with $0 \in \partial \Omega$. If $\mu_{\lambda}(\Omega)<\mu^{+}$then $\mu_{\lambda}(\Omega)$ is attained.

Proof. Let $u_{n} \in H_{0}^{1}(\Omega)$ be a minimizing sequence for $\mu_{\lambda}(\Omega)$. We can normalize it to have

$$
\begin{gather*}
\int_{\Omega}\left|\nabla u_{n}\right|^{2}=1 \tag{2.5}\\
1-\lambda \int_{\Omega}\left|u_{n}\right|^{2}=\mu_{\lambda}(\Omega) \int_{\Omega}|x|^{-2}\left|u_{n}\right|^{2}+o(1) \tag{2.6}
\end{gather*}
$$

We can assume that $u_{n} \rightharpoonup u$ weakly in $H_{0}^{1}(\Omega),|x|^{-1} u_{n} \rightharpoonup|x|^{-1} u$ weakly in $L^{2}(\Omega)$, and $u_{n} \rightarrow u$ in $L^{2}(\Omega)$, by (2.4) and by Rellich Theorem. Putting $\theta_{n}:=u_{n}-u$, from (2.5) and (2.6) we get

$$
\begin{gather*}
\int_{\Omega}\left|\nabla \theta_{n}\right|^{2}+\int_{\Omega}|\nabla u|^{2}=1+o(1) \\
1-\lambda \int_{\Omega}|u|^{2}=\mu_{\lambda}(\Omega)\left(\int_{\Omega}|x|^{-2}\left|\theta_{n}\right|^{2}+\int_{\Omega}|x|^{-2}|u|^{2}\right)+o(1) \tag{2.7}
\end{gather*}
$$

By Lemma 2.1, for any fixed positive $\delta<\mu^{+}-\mu_{\lambda}(\Omega)$, there exists $\lambda_{\delta} \in \mathbb{R}$ such that $\mu_{\lambda_{\delta}}(\Omega) \geq \mu^{+}-\delta$. Hence

$$
\int_{\Omega}\left|\nabla \theta_{n}\right|^{2}+o(1) \geq\left(\mu^{+}-\delta\right) \int_{\Omega}|x|^{-2}\left|\theta_{n}\right|^{2}
$$

as $\theta_{n} \rightarrow 0$ in $L^{2}(\Omega)$. Testing $\mu_{\lambda}(\Omega)$ with u we get

$$
\begin{aligned}
\mu_{\lambda}(\Omega) \int_{\Omega}|x|^{-2}|u|^{2} & \leq \int_{\Omega}|\nabla u|^{2}-\lambda \int_{\Omega}|u|^{2} \leq 1-\int_{\Omega}\left|\nabla \theta_{n}\right|^{2}-\lambda \int_{\Omega}|u|^{2}+o(1) \\
& \leq 1-\left(\mu^{+}-\delta\right) \int_{\Omega}|x|^{-2}\left|\theta_{n}\right|^{2}-\lambda \int_{\Omega}|u|^{2}+o(1) \\
& \leq\left(\mu_{\lambda}(\Omega)-\mu^{+}+\delta\right) \int_{\Omega}|x|^{-2}\left|\theta_{n}\right|^{2}+\mu_{\lambda}(\Omega) \int_{\Omega}|x|^{-2}|u|^{2}+o(1)
\end{aligned}
$$

by (2.7). Therefore $\int_{\Omega}|x|^{-2}\left|\theta_{n}\right|^{2} \rightarrow 0$, since $\mu_{\lambda}(\Omega)-\mu^{+}+\delta<0$. In particular,

$$
\mu_{\lambda}(\Omega) \int_{\Omega}|x|^{-2}|u|^{2}=\int_{\Omega}|\nabla u|^{2}-\lambda \int_{\Omega}|u|^{2}
$$

and $u \neq 0$ by (2.7). Thus u achieves $\mu_{\lambda}(\Omega)$.

We conclude this section with a corollary of Theorem 2.2.

Corollary 2.3 Let Ω be a smooth bounded domain of \mathbb{R}^{N} with $0 \in \partial \Omega$. Then

$$
\frac{(N-2)^{2}}{4}<\mu_{0}(\Omega) \leq \frac{N^{2}}{4}
$$

Proof. It has been already proved in Lemma 2.1 that $\mu_{\lambda}(\Omega) \leq \frac{N^{2}}{4}$. If the strict inequality holds, then there exists $u \in H_{0}^{1}(\Omega)$ that achieves $\mu_{0}(\Omega)$, by Theorem 2.2. But then $\frac{(N-2)^{2}}{4}<\mu_{0}(\Omega)$, otherwise a null extension of u outside Ω would achieve the Hardy constant on \mathbb{R}^{N}.

Remark 2.4 Following [4], for non smooth domains Ω we can introduce the "limiting" Hardy constant

$$
\hat{\mu}_{0}(\Omega)=\sup _{r>0} \mu_{0}\left(\Omega \cap B_{r}\right)
$$

Using similar arguments it can be proved that $\sup _{\lambda} \mu_{\lambda}(\Omega)=\hat{\mu}_{0}(\Omega)$, and that $\mu_{\lambda}(\Omega)$ is achieved provided $\mu_{\lambda}(\Omega)<\hat{\mu}_{0}(\Omega)$.

3 Nonexistence

The main result in this section is stated in the following theorem.

Theorem 3.1 Let Ω be a domain in $\mathbb{R}^{N}, N \geq 2$, and let $\lambda \in \mathbb{R}$. Assume that there exist $R>0$ and a Lipschitz domain $\Sigma \subset \mathbb{S}^{N-1}$ such that $B_{R} \cap \mathcal{C}_{\Sigma} \subset \Omega$. If $u \in \widehat{H}^{1}(\Omega)$ solves

$$
\left\{\begin{array}{l}
-\Delta u \geq\left(\frac{(N-2)^{2}}{4}+\lambda_{1}(\Sigma)\right)|x|^{-2} u+\lambda u \quad \text { in } \mathcal{D}^{\prime}(\Omega \backslash\{0\}) \tag{3.1}\\
u \geq 0
\end{array}\right.
$$

then $u \equiv 0$ in Ω.

Before proving Theorem 3.1 we point out some of its consequences.

Corollary 3.2 Let Ω be a smooth bounded domain containing a half-ball and such that $0 \in \partial \Omega$. If $\mu_{\lambda}(\Omega)=\mu^{+}$then $\mu_{\lambda}(\Omega)$ is not achieved.

Proof. Assume that u achieves $\mu_{\lambda}(\Omega)=\mu^{+}$. Then u is a weak solution to

$$
\begin{equation*}
-\Delta u=\mu^{+}|x|^{-2} u+\lambda u . \tag{3.2}
\end{equation*}
$$

Test (3.2) with the negative and the positive part of u to conclude that u has constant sign. Now by the maximum principle $u>0$ in Ω, contradicting Theorem 3.1, since $\Omega \supset B_{R} \cap \mathcal{C}_{\mathbb{S}_{+}^{N-1}}$ and $\lambda_{1}\left(\mathbb{S}_{+}^{N-1}\right)=N-1$.

We also point out the following consequence to Theorem 3.1, that holds for smooth domains Ω with $0 \in \partial \Omega$.

Theorem 3.3 Let Ω be a smooth domain in $\mathbb{R}^{N}, N \geq 2$ with $0 \in \partial \Omega$ and let $\lambda \in \mathbb{R}$. If $u \in \widehat{H}^{1}(\Omega)$ solves

$$
\left\{\begin{array}{l}
-\Delta u \geq \mu|x|^{-2} u+\lambda u \quad \text { in } \mathcal{D}^{\prime}(\Omega) \\
u \geq 0
\end{array}\right.
$$

for some $\mu>\mu^{+}$, then $u \equiv 0$ in Ω.
Proof. We start by noticing that there exists a geodesic ball $\Sigma \subset \mathbb{S}^{N-1}$ contained in a hemisphere, and such that $\lambda_{1}(\Sigma) \leq N-1+\mu-\mu^{+}$. Since $0 \in \partial \Omega$ and since $\partial \Omega$ is smooth then, up to a rotation, we can find a small radius $r>0$ such that $B_{r} \cap \mathcal{C}_{\Sigma} \subset \Omega$. The conclusion follows from Theorem 3.1, as $\mu \geq(N-2)^{2} / 4+\lambda_{1}(\Sigma)$.

Remark 3.4 Theorem 3.1 applies also when the origin lies in the interior of the domain. More precisely, let Ω be any domain in \mathbb{R}^{N}, with $N \geq 2$ and $0 \in \Omega$. If $u \in \widehat{H}_{\mathrm{loc}}^{1}(\Omega)$ is a nonnegative solution to

$$
-\Delta u \geq \frac{(N-2)^{2}}{4}|x|^{-2} u+\lambda u \quad \text { in } \mathcal{D}^{\prime}(\Omega \backslash\{0\})
$$

for some $\lambda \in \mathbb{R}$, then $u \equiv 0$ in Ω.

In order to prove Theorem 3.1 we need few preliminary results about maps of two variables. Recall that $\mathbb{D}_{R} \subset \mathbb{R}^{2}$ is the open disk of radius R centered at 0 .

Lemma 3.5 Let $\psi \in \widehat{H}^{1}\left(\mathbb{D}_{R}\right)$ and $f \in L_{\text {loc }}^{1}\left(\mathbb{D}_{R}\right)$ for some $R>0$. If ψ solves

$$
\begin{equation*}
-\Delta \psi \geq f \quad \text { in } \mathcal{D}^{\prime}\left(\mathbb{D}_{R} \backslash\{0\}\right) \tag{3.3}
\end{equation*}
$$

then $-\Delta \psi \geq f$ in $\mathcal{D}^{\prime}\left(\mathbb{D}_{R}\right)$.
Proof. We start by noticing that from

$$
\infty>\int_{\mathbb{D}_{R}}|z|^{-2}|\psi|^{2}=\int_{0}^{R} \frac{1}{r}\left(r^{-1} \int_{\partial B_{r}}|\psi|^{2}\right)
$$

it follows that there exists a sequence $r_{h} \rightarrow 0, r_{h} \in(0, R)$ such that

$$
\begin{equation*}
r_{h}^{-1} \int_{\partial B_{r_{h}}}|\psi|^{2} \rightarrow 0, \quad r_{h}^{-2} \int_{\partial B_{r_{h}^{2}}}|\psi|^{2} \rightarrow 0 \tag{3.4}
\end{equation*}
$$

as $h \rightarrow \infty$. Next we introduce the following cut-off functions:

$$
\eta_{h}(z)= \begin{cases}0 & \text { if }|z| \leq r_{h}^{2} \\ \frac{\log |z| / r_{h}^{2}}{\left|\log r_{h}\right|} & \text { if } r_{h}^{2}<|z|<r_{h} \\ 1 & \text { if } r_{h} \leq|z| \leq R\end{cases}
$$

Let $\varphi \in C_{c}^{\infty}\left(\mathbb{D}_{R}\right)$ be any nonnegative function. We test (3.3) with $\eta_{h} \varphi$ to get

$$
\int \nabla \psi \cdot \nabla\left(\eta_{h} \varphi\right) \geq \int f \eta_{h} \varphi .
$$

Since $\psi \in H^{1}\left(\mathbb{D}_{R}\right)$ and since $\eta_{h} \rightharpoonup 1$ weakly* in L^{∞}, it is easy to check that

$$
\int f \eta_{h} \varphi=\int f \varphi+o(1), \quad \int \eta_{h} \nabla \psi \cdot \nabla \varphi=\int \nabla \psi \cdot \nabla \varphi+o(1)
$$

as $h \rightarrow \infty$. Therefore

$$
\begin{equation*}
\int \nabla \psi \cdot \nabla \varphi+\int \varphi \nabla \psi \cdot \nabla \eta_{h} \geq \int f \varphi+o(1) . \tag{3.5}
\end{equation*}
$$

To pass to the limit in the left-hand side we notice that $\nabla \eta_{h}$ vanishes outside the annulus $A_{h}:=\left\{r_{h}^{2}<|z|<r_{h}\right\}$, and that η_{h} is harmonic on A_{h}. Thus

$$
\begin{aligned}
\int \varphi \nabla \psi \cdot \nabla \eta_{h} & =\int_{A_{h}} \nabla(\psi \varphi) \cdot \nabla \eta_{h}-\int_{A_{h}} \psi \nabla \varphi \cdot \nabla \psi \\
& =\mathcal{R}_{h}-\int_{A_{h}} \psi \nabla \varphi \cdot \nabla \eta_{h}
\end{aligned}
$$

where

$$
\mathcal{R}_{h}:=-r_{h}^{-2} \int_{\partial B_{r_{h}^{2}}}\left(\nabla \eta_{h} \cdot z\right) \psi \varphi+r_{h}^{-1} \int_{\partial B_{r_{h}}}\left(\nabla \eta_{h} \cdot z\right) \psi \varphi
$$

Now

$$
\left|\mathcal{R}_{h}\right| \leq c\left(r_{h}\left|\log r_{h}\right|\right)^{-1} \int_{\partial B_{r_{h}}}|\psi|+c\left(r_{h}^{2}\left|\log r_{h}\right|\right)^{-1} \int_{\partial B_{r_{h}^{2}}}|\psi|
$$

where $c>0$ is a constant that does not depend on h, and

$$
\left(r_{h}\left|\log r_{h}\right|\right)^{-1} \int_{\partial B_{r_{h}}}|\psi| \leq c\left|\log r_{h}\right|^{-1}\left(r_{h}^{-1} \int_{\partial B_{r_{h}}}|\psi|^{2}\right)^{1 / 2}=o(1)
$$

by Hölder inequality and by (3.4). In the same way, also

$$
\left(r_{h}^{2}\left|\log r_{h}\right|\right)^{-1} \int_{\partial B_{r_{h}^{2}}}|\psi| \leq c\left|\log r_{h}\right|^{-1}\left(r_{h}^{-2} \int_{\partial B_{r_{h}^{2}}}|\psi|^{2}\right)^{1 / 2}=o(1)
$$

and hence $\mathcal{R}_{h}=o(1)$. Moreover from $\psi \in L^{2}\left(\mathbb{D}_{R} ;|z|^{-2} d z\right)$ it follows that

$$
\left|\int_{A_{h}} \psi \nabla \varphi \cdot \nabla \eta_{h}\right| \leq\left|\log r_{h}\right|^{-1} \int|z|^{-1} \psi|\nabla \varphi|=o(1)
$$

In conclusion, we have proved that $\int \varphi \nabla \psi \cdot \nabla \eta_{h}=o(1)$ and therefore (3.5) gives

$$
\int \nabla \psi \cdot \nabla \varphi \geq \int f \varphi
$$

Since φ was an arbitrary nonnegative function in $C_{c}^{\infty}\left(\mathbb{D}_{R}\right)$, this proves that $-\Delta \psi \geq f$ in the distributional sense on \mathbb{D}_{R}, as desired.

The same proof gives a similar result for subsolutions.
Lemma 3.6 Let $\varphi \in \widehat{H}^{1}\left(\mathbb{D}_{R}\right)$ and $f \in L_{\text {loc }}^{1}\left(\mathbb{D}_{R}\right)$ for some $R>0$. If φ solves

$$
\Delta \varphi \geq f \quad \text { in } \mathcal{D}^{\prime}\left(\mathbb{D}_{R} \backslash\{0\}\right)
$$

then $\Delta \varphi \geq f$ in $\mathcal{D}^{\prime}\left(\mathbb{D}_{R}\right)$.
The next result is crucial in our proof. We state it is a more general form than needed, as it could have an independent interest. Notice that we do not need any a priori knowledge of the sign of ψ in the interior of its domain.

Lemma 3.7 For any $\lambda \in \mathbb{R}$ there exists $R_{\lambda}>0$ such that for any $R \in\left(0, R_{\lambda}\right)$, $\varepsilon>0$, problem

$$
\begin{cases}-\Delta \psi \geq \lambda \psi & \text { in } \mathcal{D}^{\prime}\left(\mathbb{D}_{R} \backslash\{0\}\right) \tag{3.6}\\ \psi \geq \varepsilon & \text { on } \partial \mathbb{D}_{R}\end{cases}
$$

has no solution $\psi \in \widehat{H}^{1}\left(\mathbb{D}_{R}\right)$.
Proof. We fix $R_{\lambda}<1 / 3$ small enough, in such a way that

$$
\begin{equation*}
\lambda<\lambda_{1}\left(\mathbb{D}_{R_{\lambda}}\right) \quad \text { if } \lambda \geq 0 \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
\left.|\lambda||z|^{2}|\log | z\right|^{2} \leq \frac{3}{4} \quad \text { for any } z \in \mathbb{D}_{R_{\lambda}}, \text { if } \lambda<0 \tag{3.8}
\end{equation*}
$$

We claim that the conclusion in Lemma 3.7 holds with this choice of R_{λ}. We argue by contradiction. Let $R<R_{\lambda}$ and $\varepsilon>0, \psi \in \widehat{H}^{1}\left(\mathbb{D}_{R}\right)$ as in (3.6).

For any $\delta \in(1 / 2,1)$ we introduce the following radially symmetric function on \mathbb{D}_{R} :

$$
\varphi_{\delta}(z)=\left.|\log | z\right|^{-\delta}
$$

By direct computation one can easily check that $\varphi_{\delta} \in \widehat{H}^{1}\left(\mathbb{D}_{R}\right)$, and in particular

$$
\begin{equation*}
(2 \delta-1) \int_{\mathbb{D}_{R}}|z|^{-2}\left|\varphi_{\delta}\right|^{2}=2 \pi+o(1) \quad \text { as } \delta \rightarrow \frac{1}{2} \tag{3.9}
\end{equation*}
$$

Since $\delta>1 / 2$ then φ_{δ} is a smooth solution to

$$
\begin{equation*}
\Delta \varphi_{\delta} \geq\left.\frac{3}{4}|z|^{-2}|\log | z\right|^{-2+\delta}=\left.\frac{3}{4}|z|^{-2}|\log | z\right|^{-2} \varphi_{\delta} \tag{3.10}
\end{equation*}
$$

in $\mathbb{D}_{R} \backslash\{0\}$. By Lemma 3.6 we infer that φ_{δ} solves (3.10) in the dual of $\hat{H}^{1}\left(\mathbb{D}_{R}\right)$. Next we put

$$
v:=\varepsilon \varphi_{\delta}-\psi \in \widehat{H}^{1}\left(\mathbb{D}_{R}\right)
$$

and we notice that $v \leq 0$ on $\partial \mathbb{D}_{R}$, as $R<1 / 3$. Notice also that

$$
\begin{aligned}
\Delta v & \geq \frac{3}{4}|z|^{-2}|\log | z| |^{-2}\left(\varepsilon \varphi_{\delta}\right)+\lambda \psi \\
& =\left[\frac{3}{4}|z|^{-2}|\log | z| |^{-2}+\lambda\right]\left(\varepsilon \varphi_{\delta}\right)-\lambda v
\end{aligned}
$$

on the dual of $\widehat{H}^{1}\left(\mathbb{D}_{R}\right)$, by (3.8). We use as test function $v^{+}:=\max \{v, 0\} \in$ $H_{0}^{1}\left(\mathbb{D}_{R}\right) \cap \widehat{H}^{1}\left(\mathbb{D}_{R}\right)$ to get

$$
-\int_{\mathbb{D}_{R}}\left|\nabla v^{+}\right|^{2} \geq \int_{\mathbb{D}_{R}}\left[\left.\frac{3}{4}|z|^{-2}|\log | z\right|^{-2}+\lambda\right]\left(\varepsilon \varphi_{\delta}\right) v^{+}-\lambda \int_{\mathbb{D}_{R}}\left|v^{+}\right|^{2} .
$$

If $\lambda \geq 0$ we infer that

$$
\int_{\mathbb{D}_{R}}\left|\nabla v^{+}\right|^{2} \leq \lambda \int_{\mathbb{D}_{R}}\left|v^{+}\right|^{2}
$$

and hence $v^{+} \equiv 0$ on \mathbb{D}_{R} by (3.7). If $\lambda<0$ we get

$$
0 \geq-\int_{\mathbb{D}_{R}}\left|\nabla v^{+}\right|^{2} \geq|\lambda| \int_{\mathbb{D}_{R}}\left|v^{+}\right|^{2},
$$

hence again $v^{+}=0$ on \mathbb{D}_{R}, by (3.8). Thus $\psi \geq \varepsilon \varphi_{\delta}$ on \mathbb{D}_{R} and therefore

$$
\infty>\int_{\mathbb{D}_{R}}|z|^{-2}|\psi|^{2} \geq \varepsilon \int_{\mathbb{D}_{R}}|z|^{-2}\left|\varphi_{\delta}\right|^{2},
$$

which contradicts (3.9).

Proof of Theorem 3.1. Without loss of generality, we may assume that $\lambda<0$. Let $\Phi>0$ be the first eigenfunction of $-\Delta_{\sigma}$ on Σ. Thus Φ solves

$$
\left\{\begin{array}{ll}
-\Delta_{\sigma} \Phi=\lambda_{1}(\Sigma) \Phi & \text { in } \Sigma \tag{3.11}\\
\Phi=0, & \frac{\partial \Phi}{\partial \eta} \leq 0
\end{array} \quad \text { on } \partial \Sigma,\right.
$$

where $\eta \in T_{\sigma}\left(\mathbb{S}^{N-1}\right)$ is the exterior normal to Σ at $\sigma \in \partial \Sigma$.
By density and the trace theorem, we can define the radially symmetric map ψ in $\mathbb{D}_{R} \backslash\{0\}$ as

$$
\begin{equation*}
\psi(z)=|z|^{\frac{N-2}{2}} \int_{\Sigma} u(|z| \sigma) \Phi(\sigma) d \sigma=|z|^{\frac{N-2}{2}} \int_{|z| \Sigma} u\left(\sigma^{\prime}\right) \Phi_{|z|}\left(\sigma^{\prime}\right) d \sigma^{\prime}, \tag{3.12}
\end{equation*}
$$

where $\Phi_{r}\left(\sigma^{\prime}\right)=\Phi\left(\frac{\sigma^{\prime}}{r}\right)$ for all $\sigma^{\prime} \in r \Sigma$. Since in polar coordinates $(r, \sigma) \in(0, \infty) \times$ \mathbb{S}^{N-1} it holds that

$$
u_{r r}=-(N-1) r^{-1} u_{r}-r^{-2} \Delta_{\sigma} u,
$$

direct computations based on (3.1) lead to

$$
-\Delta \psi \geq \lambda \psi \text { in } \mathcal{D}^{\prime}\left(\mathbb{D}_{R} \backslash\{0\}\right) .
$$

We claim that $\psi \in \widehat{H}^{1}\left(\mathbb{D}_{R}\right)$. Indeed, for $r=|z|$,

$$
\left|\psi^{\prime}\right| \leq c r^{\frac{N-2}{2}-1} \int_{\Sigma}|u(r \sigma)|+c r^{\frac{N-2}{2}} \int_{\Sigma}|\nabla u(r \sigma)|,
$$

and, by Hölder inequality,

$$
\begin{aligned}
& \int_{\mathbb{D}_{R}}\left(r^{\frac{N-2}{2}-1} \int_{\Sigma}|u(r \sigma)|\right)^{2}=c \int_{0}^{R} \int_{\Sigma} r^{N-3} u^{2} \leq c \int_{\Omega}|x|^{-2} u^{2}<\infty, \\
& \int_{\mathbb{D}_{R}}\left(r^{\frac{N-2}{2}} \int_{\Sigma}|\nabla u(r \sigma)|\right)^{2} \leq c \int_{0}^{R} r^{N-1} \int_{\Sigma}|\nabla u|^{2} \leq c \int_{\Omega}|\nabla u|^{2}<\infty .
\end{aligned}
$$

Finally, $\psi \in L^{2}\left(R_{R}^{2} ;|z|^{-2} d z\right)$ as

$$
\int_{\mathbb{D}_{R}}|z|^{-2}|\psi|^{2}=2 \pi \int_{0}^{R} r^{-1}|\psi|^{2} \leq c \int_{0}^{R} r^{N-3} \int_{\Sigma}|u|^{2}=c \int_{\Omega}|x|^{-2}|u|^{2}<\infty .
$$

Thus Lemma 3.7 applies and since ψ is radially symmetric we get $\psi \equiv 0$ in a neighborhood of 0 . Hence $u \equiv 0$ in $B_{r} \cap \mathcal{C}_{\Sigma}$, for $r>0$ small enough. To conclude the proof in case Ω strictly contains $B_{r} \cap \mathcal{C}_{\Sigma}$, take any domain Ω^{\prime} compactly contained in $\Omega \backslash\{0\}$ and such that Ω^{\prime} intersects $B_{r} \cap \mathcal{C}_{\Sigma}$. Via a convolution procedure, approximate u in $H^{1}\left(\Omega^{\prime}\right)$ by a sequence of smooth maps u_{ε} that solve

$$
-\Delta u_{\varepsilon}+|\lambda| u_{\varepsilon} \geq 0 \quad \text { in } \Omega^{\prime} .
$$

Since $u_{\varepsilon} \geq 0$ and $u_{\varepsilon} \equiv 0$ on $\Omega^{\prime} \cap B_{r} \cap \mathcal{C}_{\Sigma}$, then $u_{\varepsilon} \equiv 0$ on Ω^{\prime} by the maximum principle. Thus also $u \equiv 0$ in Ω^{\prime}, and the conclusion follows.

4 Remainder terms

We prove here some inequalities that will be used in the next section to estimate the infimum λ^{*} defined in (0.6).

Brezis and Vázquez proved in [2] the following improved Hardy inequality:

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{2}-\frac{(N-2)^{2}}{4} \int_{\Omega}|x|^{-2}|u|^{2} \geq \omega_{N} \frac{\lambda(\mathbb{D})}{|\Omega|} \int_{\Omega}|u|^{2}, \tag{4.1}
\end{equation*}
$$

that holds for any $u \in C_{c}^{\infty}(\Omega)$. Here $\Omega \subset \mathbb{R}^{N}$ is any bounded domain, $\lambda(\mathbb{D})$ is the first Dirichlet eigenvalue of the unit ball \mathbb{D} in \mathbb{R}^{2}, and $\omega_{N},|\Omega|$ denote the measure
of the unit ball in \mathbb{R}^{N} and of Ω, respectively. If $0 \in \Omega$ then $(N-2)^{2} / 4$ is the Hardy constant $\mu_{0}(\Omega)$ relative to the domain Ω, by the invariance of the ratio

$$
\frac{\int_{\Omega}|\nabla u|^{2} d x}{\int_{\Omega}|x|^{-2}|u|^{2} d x}
$$

with respect to dilations in \mathbb{R}^{N}.
We show that a Brezis-Vázquez type inequality holds in case the singularity is placed at the boundary of the domain. We start with conic domains

$$
\mathcal{C}_{R, \Sigma}=\{t \sigma \mid t \in(0, R), \sigma \in \Sigma\},
$$

where $\Sigma \subset \mathbb{S}^{N-1}$ and $R>0$.

Proposition 4.1 Let Σ be a domain in \mathbb{S}^{N-1}. Then
(4.2) $\int_{\mathcal{C}_{R, \Sigma}}|\nabla u|^{2}-\mu_{0}\left(\mathcal{C}_{\Sigma}\right) \int_{\mathcal{C}_{R, \Sigma}}|x|^{-2}|u|^{2} \geq \frac{\lambda_{1}(\mathbb{D})}{R^{2}} \int_{\mathcal{C}_{R, \Sigma}}|u|^{2}, \quad \forall u \in C_{c}^{\infty}\left(\mathcal{C}_{1, \Sigma}\right)$.

Proof. By homogeneity, it suffices to prove the proposition for $R=1$. Fix $u \in$ $C_{c}^{\infty}\left(\mathcal{C}_{1, \Sigma}\right)$ and compute in polar coordinates $t=|x|, \sigma=x /|x|$:

$$
\begin{aligned}
\int_{\mathcal{C}_{1, \Sigma}}|\nabla u|^{2}= & \int_{0}^{1} \int_{\Sigma}\left|\frac{\partial u}{\partial t}\right|^{2} t^{N-1} d t d \sigma+\int_{0}^{1} \int_{\Sigma}\left|\nabla_{\sigma} u\right|^{2} t^{N-3} d t d \sigma \\
& \int_{\mathcal{C}_{1, \Sigma}}|x|^{-2}|u|^{2}=\int_{0}^{1} \int_{\Sigma}|u|^{2} t^{N-3} d t d \sigma
\end{aligned}
$$

Since for every $t \in(0,1)$ it holds that

$$
\int_{\Sigma}\left|\nabla_{\sigma} u\right|^{2} t^{N-3} d \sigma \geq \lambda_{1}(\Sigma) \int_{\Sigma}|u|^{2} t^{N-3} d \sigma
$$

then by Proposition 1.1 we only have to show that

$$
\begin{equation*}
\int_{0}^{1}\left|\frac{\partial u}{\partial t}\right|^{2} t^{N-1} d t-\frac{(N-2)^{2}}{4} \int_{0}^{1}|u|^{2} t^{N-3} d t \geq \lambda_{1}(\mathbb{D}) \int_{0}^{1}|u|^{2} t^{N-1} d t \tag{4.3}
\end{equation*}
$$

for any fixed $\sigma \in \Sigma$. For that, we put $w(t)=t^{\frac{N-2}{2}} u(t \sigma)$, and we compute

$$
\begin{aligned}
\int_{0}^{1}\left|\frac{\partial u}{\partial t}\right|^{2} t^{N-1} d t & -\mu_{0}\left(\mathbb{R}^{N}\right) \int_{0}^{1}|u|^{2} t^{N-3} d t \\
& =\int_{0}^{1}\left|\frac{\partial w}{\partial t}\right|^{2} t d t+(2-N) \int_{0}^{1} \frac{\partial w}{\partial t} w d t \\
& =\int_{0}^{1}\left|\frac{\partial w}{\partial t}\right|^{2} t d t+\frac{(2-N)}{2} \int_{0}^{1} \frac{\partial w^{2}}{\partial t} d t=\int_{0}^{1}\left|\frac{\partial w}{\partial t}\right|^{2} t d t \\
& \geq \lambda_{1}(\mathbb{D}) \int_{0}^{1} w^{2} t d t=\lambda_{1}(\mathbb{D}) \int_{0}^{1}|u|^{2} t^{N-1} d t .
\end{aligned}
$$

This gives (4.3) and the proposition is proved.
The main result in this section is contained in the next theorem.
Theorem 4.2 Let Ω be a bounded domain of \mathbb{R}^{N} with $0 \in \partial \Omega$. If Ω is contained in a half-space then

$$
\int_{\Omega}|\nabla u|^{2}-\mu^{+} \int_{\Omega}|x|^{-2}|u|^{2} \geq \frac{\lambda_{1}(\mathbb{D})}{|\operatorname{diam}(\Omega)|^{2}} \int_{\Omega}|u|^{2} \quad \forall u \in H_{0}^{1}(\Omega)
$$

Proof. Let $R>0$ be the diameter of Ω. Then $\Omega \subset B_{R}^{+}$, where B_{R}^{+}is a half ball of radius R centered at the origin. Take Σ to be a half sphere in \mathbb{S}^{N-1} in Proposition 4.1, so that \mathcal{C}_{Σ} is an half-space. Recalling (1.4), we conclude that

$$
\int_{B_{R}^{+}}|\nabla u|^{2}-\mu^{+} \int_{B_{R}^{+}}|x|^{-2}|u|^{2} \geq \frac{\lambda_{1}(\mathbb{D})}{R^{2}} \int_{B_{R}^{+}}|u|^{2}
$$

for any $R>0, u \in C_{c}^{\infty}(\Omega)$ and the theorem readily follows.

Remark 4.3 Let Ω be a bounded domain of \mathbb{R}^{2} with $0 \in \partial \Omega$ and assume that Ω does not intersect an half-line emanating from the origin. Then (1.5) and Proposition 4.1 imply the following improved Hardy inequality:

$$
\int_{\Omega}|\nabla u|^{2}-\frac{1}{4} \int_{\Omega}|x|^{-2}|u|^{2} \geq \frac{\lambda_{1}(\mathbb{D})}{|\operatorname{diam}(\Omega)|^{2}} \int_{\Omega}|u|^{2} \quad \forall u \in H_{0}^{1}(\Omega) .
$$

Remark 4.4 As pointed out by Brezis-Vázquez in [2], Extension 4.3, the following Hardy-Sobolev inequality holds

$$
\int_{\mathcal{C}_{1, \Sigma}}|\nabla u|^{2}-\mu_{0}\left(\mathcal{C}_{1, \Sigma}\right) \int_{\mathcal{C}_{1, \Sigma}}|x|^{-2}|u|^{2} \geq c_{p}\left(\int_{\mathcal{C}_{1, \Sigma}}|u|^{p}\right)^{\frac{2}{p}}, \quad \forall u \in C_{c}^{\infty}\left(\mathcal{C}_{1, \Sigma}\right)
$$

for all $p \in\left(2, \frac{2 N}{N-2}\right)$, where c_{p} is a positive constant depending on p and N.

5 Estimates on λ^{*}

In this section we provide sufficient conditions to have $\lambda^{*}>-\infty$ or $\lambda^{*}<0$.

5.1 Estimates from below

Let Ω be a smooth domain in \mathbb{R}^{N} with $0 \in \partial \Omega$. We say that Ω is locally convex at 0 if exists a ball B centered at 0 such that $\Omega \cap B$ is contained in a half-space. In essence, for domains of class C^{2} this means that all the principal curvatures of $\partial \Omega$ (with respect to the interior normal) at 0 are strictly positive.

In the case where Ω is locally convex at $0 \in \partial \Omega$, the supremum in Lemma 2.1 is attained.

Proposition 5.1 If Ω is locally convex at 0 , then there exists $\lambda^{*}(\Omega) \in \mathbb{R}$ such that

$$
\begin{array}{ll}
\mu_{\lambda}(\Omega)=\mu^{+}, & \forall \lambda \leq \lambda^{*}(\Omega), \\
\mu_{\lambda}(\Omega)<\mu^{+}, & \forall \lambda>\lambda^{*}(\Omega) .
\end{array}
$$

Proof. The locally convexity assumption at 0 means that there exists $r>0$ such that $B_{r}(0) \cap \Omega$ is contained in a half space. We let $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ with $0 \leq \psi \leq 1$, $\psi \equiv 0$ in $\mathbb{R}^{N} \backslash B_{\frac{r}{2}}(0)$ and $\psi \equiv 1$ in $B_{\frac{r}{4}}(0)$. Arguing as in the proof of Lemma 2.1, for every $u \in H_{0}^{1}(\Omega)$ we get

$$
\begin{equation*}
\int_{\Omega}|x|^{-2}|u|^{2} d x \leq \int_{\Omega}|x|^{-2}|\psi u|^{2} d x+c \int_{\Omega}|u|^{2} d x \tag{5.1}
\end{equation*}
$$

for some constant $c=c(r)>0$. Since $\psi u \in H_{0}^{1}\left(B_{r}(0) \cap \Omega\right)$, from the definition of μ^{+}we infer

$$
\mu^{+} \int_{\Omega}|x|^{-2}|\psi u|^{2} d x \leq \int_{\Omega}|\nabla(\psi u)|^{2} d x
$$

As in Lemma 2.1 we get

$$
\int_{\Omega}|\nabla(\psi u)|^{2} d x \leq \int_{\Omega}|\nabla u|^{2} d x+c \int_{\Omega}|u|^{2} d x
$$

Comparing with (5.1), we infer that there exits a positive constant c such that

$$
\mu^{+} \int_{\Omega}|x|^{-2}|u|^{2} d x \leq \int_{\Omega}|\nabla u|^{2} d x+c \int_{\Omega}|u|^{2} d x
$$

This proves that $\mu_{-c}(\Omega) \geq \mu^{+}$. Thus $\mu_{-c}(\Omega)=\mu^{+}$by Lemma 2.1. Finally, noticing that $\mu_{\lambda}(\Omega)$ is decreasing in λ, we can set

$$
\begin{equation*}
\lambda^{*}(\Omega):=\sup \left\{\lambda \in \mathbb{R} \quad: \quad \mu_{\lambda}(\Omega)=\mu^{+}\right\} \tag{5.2}
\end{equation*}
$$

so that $\mu_{\lambda}(\Omega)<\mu^{+}$for all $\lambda>\lambda^{*}(\Omega)$.
Finally, we notice that by Lemma 2.1, if Ω is contained in a half-space, then $\mu_{0}(\Omega)=\mu^{+}$, and therefore $\lambda^{*}(\Omega) \geq 0$. Thus, From Theorem 4.2 we infer the following result.

Theorem 5.2 Let Ω be a bounded smooth domain with $0 \in \partial \Omega$. If Ω is contained in a half-space then

$$
\lambda^{*}(\Omega) \geq \frac{\lambda_{1}(\mathbb{D})}{|\operatorname{diam}(\Omega)|^{2}}
$$

It would be of interest to know if it is possible to get lower bounds depending only on the measure of Ω, as in [2] and [11].

5.2 Estimates from above

The local convexity assumption of Ω at 0 does not necessary implies that $\lambda^{*}(\Omega) \geq 0$. Indeed the following remark holds.

Proposition 5.3 For any $\delta>0$ there exists $\rho_{\delta}>0$ such that if Ω is a smooth domain with $0 \in \partial \Omega$ and

$$
\Omega \supseteq\left\{x \in \mathbb{R}^{N}|x \cdot \nu>-\delta| x|, \alpha<|x|<\beta\}\right.
$$

for some $\nu \in \mathbb{S}^{N-1}, \beta>\alpha>0$ with $\beta / \alpha>\rho_{\delta}$, then $\lambda^{*}<0$. In particular the Hardy constant $\mu_{0}(\Omega)$ is achieved.

Proof. Since the cone

$$
\mathcal{C}_{\delta}=\left\{x \in \mathbb{R}^{N}|x \cdot \nu>-\delta| x \mid\right\}
$$

contains a hemispace, then its Hardy constant is smaller than μ^{+}. Thus there exists $u \in C_{c}^{\infty}\left(\mathcal{C}_{\delta}\right)$ such that

$$
\frac{\int_{\mathcal{C}_{\delta}}|\nabla u|^{2} d x}{\int_{\mathcal{C}_{\delta}}|x|^{-2}|u|^{2} d x}<\mu^{+} .
$$

Assume that the support of u is contained in an annulus of radii $b>a>0$. Then the conclusion in Proposition 5.3 holds, with $\rho:=b / a$.

Notice that Ω can be locally strictly convex at 0 .
Remark 5.4 A similar remark holds for the following minimization problem, which is related to the Caffarelli-Kohn-Nirenberg inequalities:

$$
\begin{equation*}
\inf _{\substack{u \in H_{0}^{1}(\Omega) \\ u \neq 0}} \frac{\int_{\Omega}|\nabla u|^{2} d x}{\left(\int_{\Omega}|x|^{-b}|u|^{p} d x\right)^{2 / p}}, \tag{5.3}
\end{equation*}
$$

where $2<p<2^{*}, b:=N-p(N-2) / 2$. In case $0 \in \partial \Omega$, the minimization problem (5.3) was studied in [8], [9] and [10].

Remark 5.5 We do not know wether the strict local concavity of Ω at 0 can implies that $\mu_{0}(\Omega)<\mu^{+}$. See the paper [8] by Ghoussoub and Kang for the minimization problem (5.3).

References

[1] Brezis H., Marcus M., Hardy's inequalities revisited. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 217-237 (1998).
[2] Brezis H., Vázquez J.L., Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid 10 (1997), no. 2, 443-469.
[3] Caldiroli P., Musina R., On a class of 2-dimensional singular elliptic problems. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 479-497.
[4] Caldiroli P., Musina R., Stationary states for a two-dimensional singular Schrödinger equation. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 4-B (2001), 609-633.
[5] Dávila J., Dupaigne L., Comparison results for PDEs with a singular potential. Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), 61-83.
[6] Demyanov A.V., Nazarov A.I., On the solvability of the Dirichlet problem for the semilinear Schrödinger equation with a singular potential. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 336 (2006), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 37, 25-45, 274; translation in J. Math. Sci. (N.Y.) 143 (2007), no. 2, 2857-2868.
[7] Egnell H., Positive solutions of semilinear equations in cones. Trans. Amer. Math. Soc. 330 (1992), no. 1, 191-201.
[8] Ghoussoub N., Kang X.S., Hardy-Sobolev critical elliptic equations with boundary singularities. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 6, 767-793.
[9] Ghoussoub N., Robert F., Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth. IMRP Int. Math. Res. Pap. 21867 (2006), 1-85.
[10] Ghoussoub N., Robert F., Multiple solutions for quasi-linear PDES involving the critical Hardy and Sobolev exponents. Trans. Amer. Math. Soc. 352 (2000), 5703-5743.
[11] Hoffmann-Ostenhof M., Hoffmann-Ostenhof T.L.A., A geometrical version of Hardy's inequality. J. Funct. Anal. 189 (2002), no. 2, 539-548.
[12] Pinchover Y., Tintarev K., Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy's inequality. Indiana Univ. Math. J. 54 (2005), 1061-1074.
[13] Smets, D., Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities Trans. Amer. Math. Soc. 357 (2005), 2909-2938.

[^0]: *Université Chatolique de Louvain-La-Neuve, département de mathématique. Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgique. E-mail: mouhamed.fall@uclouvain.be. Work partially supported by FIRB "Analysis and Beyond", 2009-2012.
 ${ }^{\dagger}$ Dipartimento di Matematica ed Informatica, Università di Udine, via delle Scienze, 206-33100 Udine, Italy. E-mail: musina@dimi.uniud.it.

