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Sharp nonexistence results for a linear elliptic inequality

involving Hardy and Leray potentials
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Abstract. In this paper we deal with non-negative distributional supersolutions for a class of

linear elliptic equations involving inverse-square potentials and logarithmic weights. We prove

sharp nonexistence results.
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Introduction

In recent years a great deal work has been made to find necessary and sufficient

conditions for the existence of distributional supersolutions to semilinear elliptic

equations with inverse-square potentials. We quote for instance [7] (and the refer-

ences therein), where a problem related to the Hardy and Sobolev inequalities has

been studied. In the present paper we are interested in a class of linear elliptic

equations.

Let N ≥ 2 be an integer, R ∈ (0, 1] and let BR be the ball in R
N of radius R

centered at 0. We focus our attention on non-negative distributional solutions to

(0.1) −∆u− (N − 2)2

4
|x|−2 u ≥ α|x|−2 |log |x||−2 u in D′(BR \ {0}),

where α ∈ R is a varying parameter. By a standard definition, a solution to (0.1) is

a function u ∈ L1
loc(BR \ {0}) such that

−
∫

BR

u∆ϕ dx− (N − 2)2

4

∫

BR

|x|−2uϕ dx ≥ α

∫

BR

|x|−2 |log |x||−2 uϕ dx

for any non-negative ϕ ∈ C∞
c (BR\{0}). Problem (0.1) is motivated by the inequality

(0.2)

∫

B1

|∇u|2 dx− (N − 2)2

4

∫

B1

|x|−2|u|2 ≥ 1

4

∫

B1

|x|−2 |log |x||−2 |u|2 dx ,

which holds for any u ∈ C∞
c (B1\{0}) (see for example [2], [5], [8], [12] and Appendix

A). Notice that (0.2) improves the Hardy inequality for maps supported by the

unit ball if N ≥ 3. Inequality (0.2) was firstly proved by Leray [14] in the lower

dimensional case N = 2.

Due to the sharpness of the constants in (0.2), a necessary and sufficient condition

for the existence of non-trivial and non-negative solutions to (0.1) is that α ≤ 1/4

(compare with Theorem B.2 in Appendix B and with Remark 1.5).

In case α ≤ 1/4 we provide necessary conditions on the parameter α to have the

existence of non-trivial solutions satisfying suitable integrability properties.

Theorem 0.1 Let R ∈ (0, 1] and let u ≥ 0 be a distributional solution to (0.1).

Assume that there exists γ ≤ 1 such that

u ∈ L2
loc(BR; |x|−2 |log |x||−2γ dx) , α ≥ 1

4
− (1− γ)2 .

Then u = 0 almost everywhere in BR.
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We remark that Theorem 0.1 is sharp, in view of the explicit counter-example in

Remark 1.5.

Let us point out some consequences of Theorem 0.1. We use the Hardy-Leray

inequality (0.2) to introduce the space H̃1
0 (B1) as the closure of C∞

c (B1 \ {0}) with
respect to the scalar product

〈u, v〉 =
∫

B1

∇u · ∇v dx− (N − 2)2

4

∫

B1

|x|−2uv dx

(see for example [9]). It turns out that H̃1
0 (B1) strictly contains the standard Sobolev

space H1
0 (B1), unless N = 2.

Take γ = 1 in Theorem 0.1. Then problem (0.1) has no non-trivial and non-

negative solutions u ∈ L2
loc(BR; |x|−2 |log |x||−2 dx) if α = 1/4. Therefore, if in the

dual space H̃1
0 (BR)

′, a function u ∈ H̃1
0 (BR) solves




−∆u− (N − 2)2

4
|x|−2 u ≥ 1

4
|x|−2 |log |x||−2 u in BR

u ≥ 0 ,

then u = 0 in BR.

Next take γ = 0 and α ≥ −3/4. From Theorem 0.1 it follows that problem (0.1)

has no non-trivial and non-negative solutions u ∈ L2
loc(BR; |x|−2 dx). In particular,

if N ≥ 3 and if u ∈ H1
0 (BR) →֒ L2(BR; |x|−2 dx) is a weak solution to




−∆u− (N − 2)2

4
|x|−2 u ≥ −3

4
|x|−2 |log |x||−2 u in BR

u ≥ 0 ,

then u = 0 in BR. Thus Theorem 0.1 improves some of the nonexistence results in

[1] and in [13].

The case of boundary singularities has been little studied. In Section 2 we prove

sharp nonexistence results for inequalities in cone-like domains in R
N , N ≥ 1, having

a vertex at 0. A special case concerns linear problems in half-balls. For R > 0 we

let B+
R = BR ∩ R

N
+ , where R

N
+ is any half-space. Notice that B+

R = (0, R) or

B+
R = (−R, 0) if N = 1. A necessary and sufficient condition for the existence of

non-negative and non-trivial distributional solutions to

(0.3) −∆u− N2

4
|x|−2 u ≥ α|x|−2 |log |x||−2 u in D′(B+

R )
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is that α ≤ 1/4 (see Theorem B.3 and Remark 2.3), and the following result holds.

Theorem 0.2 Let R ∈ (0, 1], N ≥ 1 and let u ≥ 0 be a distributional solution to

(0.3). Assume that there exists γ ≤ 1 such that

u ∈ L2(B+
R ; |x|−2 |log |x||−2γ dx) , α ≥ 1

4
− (1− γ)2 .

Then u = 0 almost everywhere in B+
R .

The key step in our proofs consists in studying the ordinary differential inequality

(0.4)




−ψ′′ ≥ αs−2ψ in D′(a,∞)

ψ ≥ 0 ,

where a > 0. In our crucial Theorem 1.3 we prove a nonexistence result for (0.4),

under suitable weighted integrability assumptions on ψ. Secondly, thanks to an

”averaged Emden-Fowler transform”, we show that distributional solutions to prob-

lems of the form (0.1) and (0.3) give rise to solutions of (0.4), see Section 1.2 and

2 respectively. Our main existence results readily follow from Theorem 1.3. A sim-

ilar idea, but with a different functional change, was already used in [6] to obtain

nonexistence results for a large class of superlinear problems.

In Appendix A we give a simple proof of the Hardy-Leray inequality for maps

with support in cone-like domains that includes (0.2) and that motivates our interest

in problem (0.3).

Appendix B deals in particular with the case α > 1/4. The nonexistence Theo-

rems B.2 and B.3 follow from an Allegretto-Piepenbrink type result (Lemma B.1).

In the last appendix we point out some related results and some consequences

of our main theorems.

Notation

We denote by R+ the half real line (0,∞). For a > 0 we put Ia = (a,∞).

We denote by |Ω| the Lebesgue measure of the domain Ω ⊂ R
N . Let q ∈ [1,+∞) and let

ω be a non-negative measurable function on Ω. The weighted Lebesgue space Lq(Ω;ω(x)dx)

is the space of measurable maps u in Ω with finite norm
(∫

Ω
|u|qω(x) dx

)1/q
. For ω ≡ 1 we

simply write Lq(Ω). We embed Lq(Ω;ω(x) dx) into Lq(RN ;ω(x) dx) via null extension.
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1 Proof of Theorem 0.1

The proof consists of two steps. In the first one we prove a nonexistence result for

a class of linear ordinary differential inequalities that might have some interest in

itself.

1.1 Nonexistence results for problem (0.4)

We start by fixing some terminologies. Let D1,2(R+) be the Hilbert space obtained

via the Hardy inequality

(1.1)

∫ ∞

0
|v′|2 ds ≥ 1

4

∫ ∞

0
s−2|v|2 ds , v ∈ C∞

c (R+)

as the completion of C∞
c (R+) with respect to the scalar product

〈v,w〉 =
∫ ∞

0
v′w′ ds .

Notice that D1,2(R+) →֒ L2(R+; s
−2 ds) with a continuous embedding and moreover

D1,2(Ia) ⊂ C0(R+) by Sobolev embedding theorem. By Hölder inequality, the space

L2(R+; s
2 ds) is continuously embedded into the dual space D1,2(R+)

′.

Finally, for any a > 0 we put Ia = (a,∞) and

D1,2(Ia) = {v ∈ D1,2(R+) | v(a) = 0 } .

We need two technical lemmata.

Lemma 1.1 Let f ∈ L2(Ia; s
2 ds) and v ∈ C2(R+) ∩ L2(Ia; s

−2 ds) be a function

satisfying v(a) = 0 and

(1.2) −v′′ ≤ f in Ia .

Put v+ := max{v, 0}. Then v+ ∈ D1,2(Ia) and

(1.3)

∫ ∞

a
|(v+)′|2 ds ≤

∫ ∞

a
fv+ ds .
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Proof. We first show that (v+)′ ∈ L2(R) and that (1.3) holds. Let η ∈ C∞
c (R) be

a cut-off function satisfying

0 ≤ η ≤ 1 , η(s) ≡ 1 for |s| ≤ 1 , η(s) ≡ 0 for s ≥ 2

and put ηh(s) = η(s/h). Then ηhv
+ ∈ D1,2(Ia) and ηhv

+ ≥ 0. Multiply (1.2) by

ηhv
+ and integrate by parts to get

(1.4)

∫ ∞

a
ηh|(v+)′|2 ds−

1

2

∫ ∞

a
η′′h|v+|2 ds ≤

∫ ∞

a
ηhfv

+ ds .

Notice that for some constant c depending only on η it results

∣∣∣∣
∫ ∞

a
η′′h|v+|2 ds

∣∣∣∣ ≤ c

∫ 2h

h
s−2|v+|2 ds→ 0

as h→ ∞, since v+ ∈ L2(Ia; s
−2 ds). Moreover,

∫ ∞

a
ηhfv

+ ds→
∫ ∞

a
fv+ ds

by Lebesgue theorem, as fv+ ∈ L1(Ia) by Hölder inequality. In conclusion, from

(1.4) we infer that

(1.5)

∫ h

a
|v′+|2 ds ≤

∫ ∞

a
fv+ ds+ o(1)

since ηh ≡ 1 on (a, h). By Fatou’s Lemma we get that (v+)′ ∈ L2(Ia) and (1.3)

readily follows from (1.5). To prove that v+ ∈ D1,2(Ia), it is enough to notice that

ηhv
+ → v+ in D1,2(Ia). Indeed,

∫ ∞

a
|1− ηh|2|(v+)′|2 ≤

∫ ∞

h
|(v+)′|2 ds = o(1)

∫ ∞

a
|η′h|2|v+|2 ds ≤ c

∫ ∞

h
s−2|v+|2 ds = o(1)

as (v+)′ ∈ L2(Ia) and v
+ ∈ L2(Ia; s

−2 ds).
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Through the paper we let (ρn) to be a standard mollifier sequence in R, such

that the support of ρn is contained in the interval (− 1
n ,

1
n).

Lemma 1.2 Let a > 0 and ψ ∈ L2(Ia; s
−2 ds). Then ρn ⋆ ψ ∈ L2(Ia; s

−2 ds) and

ρn ⋆ ψ → ψ in L2(Ia; s
−2 ds),(1.6)

gn := ρn ⋆ (s
−2ψ)− s−2(ρn ⋆ ψ) → 0 in L2(Ia; s

2 ds) .(1.7)

Proof. We start by noticing that ρn ⋆ ψ → ψ almost everywhere. Then we use

Hölder inequality to get

s−2|(ρn ⋆ ψ)(s)|2 = s−2

∣∣∣∣
∫
ρn(s− t)1/2ρn(s− t)1/2ψ(t) dt

∣∣∣∣
2

≤ s−2

(
1

n
+ s

)2 ∫
ρn(s− t)t−2|ψ(t)|2 dt

≤
(
1 +

1

na

)2
|(ρn ⋆ (s−2ψ2))(s)|

for any s > a > 0. Since s−2ψ2 ∈ L1(Ia) then ρn ⋆(s
−2ψ2) → s−2ψ2 in L1(Ia). Thus

s−1(ρn ⋆ ψ) → s−1ψ in L2(Ia) by the (generalized) Lebesgue Theorem, and (1.6)

follows.

To prove (1.7) we first argue as before to check that

s2
∣∣∣∣
∫
ρn(s− t)t−2ψ(t) dt

∣∣∣∣
2

≤
(
1− 1

na

)−2

|(ρn ⋆ (s−2ψ2))(s)|

for any s > a > 0. Thus ρn⋆(s
−2ψ) converges to s−2ψ in L2(Ia; s

2 ds) by Lebesgue’s

Theorem. In addition, s−2(ρn ⋆ ψ) → s−2ψ in L2(Ia; s
2 ds) by (1.6). Thus gn → 0

in L2(Ia; s
2 ds) and the Lemma is completely proved.

The following result for solutions to (0.4) is a crucial step in the proofs of our

main theorems.

Theorem 1.3 Let a > 0 and let ψ be a distributional solution to (0.4). Assume

that there exists γ ≤ 1 such that

ψ ∈ L2(Ia; s
−2γ ds) , α ≥ 1

4
− (1− γ)2 .

Then ψ = 0 almost everywhere in Ia.
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Proof. We start by noticing that L2(Ia; s
−2γ ds) →֒ L2(Ia; s

−2 ds) with a continuous

immersion for any γ < 1. In addition, we point out that we can assume

(1.8) α =
1

4
− (1− γ)2 .

Let ρn be a standard sequence of mollifiers, and let

ψn = ρn ⋆ ψ , gn = ρn ⋆ (s
−2ψ)− s−2(ρn ⋆ ψ) .

Then ψn → ψ in L2(Ia; s
−2γ ds) and almost everywhere, and gn → 0 in L2(Ia; s

2 ds)

by Lemma 1.2. Moreover, ψn ∈ C∞(Ia) is a non-negative solution to

(1.9) −ψ′′
n ≥ αs−2ψn + αgn in D′(Ia).

We assume by contradiction that ψ 6= 0. We let s0 ∈ Ia such that εn := ψn(s0) →
ψ(s0) > 0. Up to a scaling and after replacing gn with s20gn, we may assume that

s0 = 1. We will show that

(1.10) εn := ψn(1) → ψ(1) > 0

leads to a contradiction. We fix a parameter

(1.11) δ >
1

2
− γ ≥ −1

2

and for n large we put

ϕδ,n(s) := εn s
−δ ∈ L2(I1; s

−2γ ds) .

Clearly ϕδ,n ∈ C∞(R+) and one easily verifies that (ϕδ,n)n is a bounded sequence in

L2(I1; s
−2γ ds) by (1.10) and (1.11). Finally we define

vδ,n = ϕδ,n − ψn = εn s
−δ − ψn ,

so that vδ,n ∈ L2(I1; s
−2γ ds) and vδ,n(1) = 0. In addition vδ,n solves

(1.12) −v′′δ,n ≤ αs−2 vδ,n − cδ εn s
−2−δ − αgn in I1,

where cδ := δ(δ+1)+α = δ(δ+1)+ 1/4− (1− γ)2. Notice that cδ > 0 and that all

the terms in the right hand side of (1.12) belong to L2(I1; s
2 ds), by (1.11). Thus

Lemma 1.1 gives v+δ,n ∈ D1,2(I1) and

∫ ∞

1
|(v+δ,n)′|2 ds ≤ α

∫ ∞

1
s−2|v+δ,n|2 ds− cδεn

∫ ∞

1
s−2−δv+δ,n ds+ o(1) ,
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since v+δ,n is bounded in L2(I1; s
−2 ds) and gn → 0 in L2(I1; s

2 ds). By (1.8) and

Hardy’s inequality (1.1), we conclude that

(1− γ)2
∫ ∞

1
s−2|v+δ,n|2 + cδ εn

∫ ∞

1
s−2−δv+δ,n ds = o(1) .

Thus, for any fixed δ we get that v+δ,n → 0 almost everywhere in I1 as n→ ∞, since

εncδ is bounded away from 0 by (1.10). Finally we notice that

ψn = ϕδ,n − vδ,n ≥ εns
−δ − v+δ,n .

Since ψn → ψ and v+δ,n → 0 almost everywhere in I1, and since εn → ψ(1) > 0, we

infer that ψ ≥ ψ(1)s−δ in I1. This conclusion clearly contradicts the assumption

ψ ∈ L2(I1; s
−2γ ds), since δ > 1/2 − γ was arbitrarily chosen. Thus (1.10) cannot

hold and the proof is complete.

Remark 1.4 If α > 1/4 then every non-negative solution ψ ∈ L1
loc(Ia) to problem

(0.4) vanishes. This is an immediate consequence of Lemma B.1 in Appendix B and

the sharpness of the constant 1/4 in the Hardy inequality (1.1).

1.2 Conclusion of the proof

We will show that any non-negative distributional solution u to problem (0.1) gives

rise to a function ψ solving (0.4), and such that ψ = 0 if and only if u = 0. To this

aim, we introduce the Emden-Fowler transform u 7→ Tu by letting

(1.13) u(x) = |x| 2−N

2 (Tu)

(
|log |x|| , x|x|

)
.

By change of variable formula, for any R′ ∈ (0, R) it results

(1.14)

∫

B
R′

|x|−2 |log |x||−2γ |u|2 dx =

∫ ∞

| logR′|

∫

SN−1

s−2γ |Tu|2 dsdσ ,

so that Tu ∈ L2(Ia × S
N−1; s−2γ dsdσ) for any a > aR := | logR|. Now, for an

arbitrary ϕ ∈ C∞
c (IaR) we define the radially symmetric function ϕ̃ ∈ C∞

c (BR) by

setting

ϕ̃(x) = |x| 2−N

2 ϕ(| log |x||) ,
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so that ϕ = T ϕ̃. By direct computations we get

∫

BR

u(∆ϕ̃+
(N − 2)2

4
|x|−2ϕ̃) dx =

∫ ∞

aR

ϕ′′

∫

SN−1

Tu dσds(1.15)

∫

BR

|x|−2 |log |x||−2 uϕ̃ dx =

∫ ∞

aR

s−2ϕ

∫

SN−1

Tu dσds .(1.16)

Thus we are led to introduce the function ψ defined in IaR by setting

ψ(s) =

∫

SN−1

(Tu)(s, σ) dσ .

We notice that ψ ∈ L2(Ia; s
−2γ ds) for any a > aR, since

∫ ∞

a
s−2γ |ψ|2 ds ≤

∣∣SN−1
∣∣
∫ ∞

a

∫

SN−1

s−2γ |Tu|2 dsdσ

by Hölder inequality. Moreover, from (1.15) and (1.16) it immediately follows that

ψ ≥ 0 is a distributional solution to

−ψ′′ ≥ αs−2ψ in D′(IaR).

By Theorem 1.3 we infer that ψ = 0 in IaR , and hence u = 0 in BR. The proof of

Theorem 0.1 is complete.

Remark 1.5 The assumption on the integrability of u in Theorem 0.1 are sharp.

If α > 1/4 use the results in Appendix B. For α ≤ 1/4 put δα := (
√
1− 4α − 1)/2

and notice that the function uα : B1 → R defined by

uα(x) = |x| 2−N

2 | log |x||−δα

solves

−∆uα − (N − 2)2

4
|x|−2 uα = α|x|−2 |log |x||−2 uα in D′(B1 \ {0}).

Moreover, if γ ≤ 1 then

uα ∈ L2
loc(B1; |x|−2 |log |x||−2γ dx) if and only if α <

1

4
− (1− γ)2 .
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2 Cone-like domains

Let N ≥ 2. To any Lipschitz domain Σ ⊂ S
N−1 we associate the cone

CΣ :=
{
rσ ∈ R

N | σ ∈ Σ , r > 0
}
.

For any given R > 0 we introduce also the cone-like domain

CR
Σ := CΣ ∩BR =

{
rσ ∈ R

N | r ∈ (0, R) , σ ∈ Σ
}
.

Notice that CSN−1 = R
N \ {0} and CR

SN−1 = BR \ {0}. If Σ is an half-sphere S
N−1
+

then C
S
N−1
+

is an half-space R
N
+ and CR

S
N−1
+

is an half-ball B+
R , as in Theorem 0.2.

Assume that Σ is properly contained in S
N−1. Then we let λ1(Σ) > 0 to be the

first eigenvalue of the Laplace operator on Σ. If Σ = S
N−1 we put λ1(S

N−1) = 0.

It has been noticed in [15], [11], that

(2.1) µ(CΣ) := inf
u∈C∞

c (CΣ)
u 6=0

∫

CΣ

|∇u|2 dx
∫

CΣ

|x|−2|u|2 dx
=

(N − 2)2

4
+ λ1(Σ) .

The infimum µ(C) is the best constant in the Hardy inequality for maps having

compact support in CΣ. In particular, for any half-space R
N
+ it holds that

µ(RN
+ ) =

N2

4
.

The aim of this section is to study the elliptic inequality

(2.2) −∆u− µ(CΣ)|x|−2 u ≥ α|x|−2 |log |x||−2 u in D′(CR
Σ ).

Notice that (2.2) reduces to (0.1) if Σ = S
N−1. Problem (2.2) is related to an

improved Hardy inequality for maps supported in cone-like domains which will be

discussed in Appendix A.

Theorem 2.1 Let Σ be a Lipschitz domain properly contained in S
N−1, R ∈ (0, 1]

and let u ≥ 0 be a distributional solution to (2.2). Assume that there exists γ ≤ 1

such that

u ∈ L2(CR
Σ ; |x|−2 |log |x||−2γ dx) , α ≥ 1

4
− (1− γ)2 .

Then u = 0 almost everywhere in CR
Σ .
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Proof. We introduce the first eigenfunction Φ ∈ C2(Σ) ∩ C(Σ) of the Laplace-

Beltrami operator −∆σ in Σ. Thus Φ is positive in Σ and Φ solves

(2.3)




−∆σΦ = λ1(Σ)Φ in Σ

Φ = 0 on ∂Σ.

Let u ∈ L2(CR
Σ ; |x|−2 |log |x||−2γ dx) be as in the statement, and put aR =

| logR|. We let Tu ∈ L2(IaR ×Σ; s−2γ dsdσ) be the Emden-Fowler transform, as in

(1.13). We further let ψ ∈ L2(IaR ; s
−2γ ds) defined as

ψ(s) =

∫

Σ
(Tu)(s, σ)Φ(σ) dσ .

Next, for ϕ ∈ C∞
c (IaR) being an arbitrary non-negative test function, we put

(2.4) ϕ̃(x) = |x| 2−N

2 ϕ(| log |x|)Φ
(
x

|x|

)
.

In essence, our aim is to test (2.2) with ϕ̃ to prove that ψ satisfies (0.4) in IaR . To

be more rigorous, we use a density argument to approximate Φ in W 2,2(Σ)∩H1
0 (Σ)

by a sequence of smooth maps Φn ∈ C∞
c (Σ). Then we define ϕ̃n accordingly with

(2.4), in such a way that T ϕ̃n = ϕΦn. By direct computation we get

∫

CR

Σ

u(∆ϕ̃n +
(N − 2)2

4
|x|−2ϕ̃n) dx =

∫ ∞

aR

∫

Σ
(Tu)ϕ′′Φn dσds

+

∫ ∞

aR

∫

Σ
(Tu)ϕ∆σΦn dσds

λ1(Σ)

∫

CR

Σ

|x|−2uϕ̃n dx = λ1(Σ)

∫ ∞

aR

∫

Σ
(Tu)ϕΦn dσds

∫

CR

Σ

|x|−2 |log |x||−2 uϕ̃n dx =

∫ ∞

aR

∫

Σ
s−2(Tu)ϕΦn dσds

Since ϕ̃n ∈ C∞
c (CR

Σ ) is an admissible test function for (2.2), using also (2.1) we get

−
∫ ∞

aR

∫

Σ
(Tu)ϕ′′Φn dσds ≥ α

∫ ∞

aR

∫

Σ
s−2(Tu)ϕΦn dσds

−
∫ ∞

aR

∫

Σ
(Tu)ϕ(∆σΦn + λ1(Σ)Φn) dσds .

12



Since Φn → Φ and ∆σΦn + λ1(Σ)Φn → 0 in L2(Σ), we conclude that

−
∫ ∞

aR

ϕ′′ψds ≥ α

∫ ∞

aR

s−2ϕψds .

By the arbitrariness of ϕ, we can conclude that ψ is a distributional solution to

(0.4). Theorem 1.3 applies to give ψ ≡ 0, that is, u ≡ 0 in CR
Σ .

The next result extends Theorem 2.1 to cover the case N = 1. Notice that

R+ = (0,∞) is a cone and (0, 1) is a cone-like domain in R.

Theorem 2.2 Let R ∈ (0, 1] and let u ≥ 0 be a distributional solution to

−u′′ − 1

4
t−2u ≥ αt−2| log t|−2 u in D′(0, R).

Assume that there exists γ ≤ 1 such that

u ∈ L2((0, R); t−2| log t|−2γ dt) , α ≥ 1

4
− (1− γ)2 .

Then u = 0 almost everywhere in (0, R).

Proof. Write u(t) = t1/2ψ (| log t|) = t1/2ψ(s) for a function ψ ∈ L2(IaR ; s
−2γ ds)

and then notice that ψ is a distributional solution to

−ψ′′ ≥ αs−2ψ in D′(IaR).

The conclusion readily follows from Theorem 1.3.

Remark 2.3 If α > 1/4 then every non-negative solution u ∈ L1
loc(CR

Σ ) to problem

(2.2) vanishes by Theorem B.3.

In case α ≤ 1/4 the assumptions on α and on the integrability of u in Theorems

2.1, 2.2 are sharp. Fix α ≤ 1/4, let δα := (
√
1− 4α− 1)/2, and define the function

uα(rσ) = r
2−N

2 | log r|−δαΦ(σ) .

Here Φ solves (2.3) if N ≥ 2. If N = 1 we agree that σ = 1 and Φ ≡ 1. By direct

computations one has that uα solves (2.2). Moreover, if γ ≤ 1 and R ∈ (0, 1) then

uα ∈ L2(CR
Σ ; |x|−2 |log |x||−2γ dx) if and only if α < 1

4 − (1− γ)2.

Remark 2.4 Nonexistence results for linear inequalities involving the differential

operator −∆− µ(Cσ)|x|−2 were already obtained in [11].

13



A Hardy-Leray inequalities on cone-like domains

In this appendix we give a simple proof of an improved Hardy inequality for mappings

having support in a cone-like domain. We recall that for Σ ⊂ S
N−1 we have set

C1
Σ = {rσ | r ∈ (0, 1) , σ ∈ Σ } and µ(C1

Σ) = (N − 2)2/4 + λ1(Σ).

Proposition A.1 Let Σ be a domain in S
N−1. Then

(A.1)

∫

C1
Σ

|∇u|2 dx− µ(CΣ)
∫

C1
Σ

|x|−2|u|2 ≥ 1

4

∫

C1
Σ

|x|−2 |log |x||−2 |u|2 dx

for any u ∈ C∞
c (C1

Σ).

Proof. We start by fixing an arbitrary function v ∈ C∞
c (R+ × Σ). We apply the

Hardy inequality to the function v(·, σ) ∈ C∞
c (R+), for any fixed σ ∈ Σ, and then

we integrate over Σ to get

∫ ∞

0

∫

Σ
|vs|2 dsdσ ≥ 1

4

∫ ∞

0

∫

Σ
s−2|v|2 dsdσ .

On the other hand, notice that v(s, ·) ∈ C∞
c (Σ) for any s ∈ R+. Thus, the Poincaré

inequality for maps in Σ plainly implies

∫ ∞

0

∫

Σ
|∇σv|2 dsdσ − λ1(Σ)

∫ ∞

0

∫

Σ
|v|2 dsdσ ≥ 0 .

Adding these two inequalities we conclude that

∫ ∞

0

∫

Σ

[
|vs|2 + |∇σv|2

]
dsdσ − λ1(Σ)

∫ ∞

0

∫

Σ
|v|2 dsdσ ≥ 1

4

∫ ∞

0

∫

Σ
s−2|v|2 dsdσ

for any v ∈ C∞
c (R+ × Σ). We use once more the Emden-Fowler transform T in

(1.13) by letting v := Tu ∈ C∞
c (R+ × Σ) for u ∈ C∞

c (C1
Σ). Since

∫

B1

[
|∇u|2 − (N − 2)2

4
|x|−2|u|2

]
dx =

∫ ∞

0

∫

SN−1

[
|vs|2 + |∇σv|2

]
dsdσ ,

then (1.14) readily leads to the conclusion.
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Remark A.2 The arguments we have used to prove Proposition A.1 and the fact

that the best constant in the Hardy inequality for maps in C∞
c (R+) is not achieved

show that the constants in inequality (A.1) are sharp, and not achieved.

Remark A.3 Notice that for N ≥ 1, we have CSN−1 = R
N \ {0} and µ(CSN−1) =

(N − 2)2/4 . Thus A.1 gives (0.2) for u ∈ C∞
c (B1 \ {0}).

In the next proposition we extend the inequality (A.1) to cover the case N = 1.

Proposition A.4 It holds that
∫ 1

0
|u′|2 dt− 1

4

∫ 1

0
t−2|u|2 dt ≥ 1

4

∫ 1

0
t−2| log t|−2|u|2 dt

for any u ∈ C∞
c (0, 1). The constants are sharp, and not achieved.

Proof. Write u(t) = t1/2ψ (| log t|) = t1/2ψ (s) for a function ψ ∈ C∞
c (R+) and then

apply the Hardy inequality to ψ.

Next, let θ ∈ R be a given parameter and let Σ be a Lipschitz domain in S
N−1,

with N ≥ 2. For an arbitrary u ∈ C∞
c (C1

Σ) we put v = |x|−θ/2u. Then the Hardy-

Leray inequality (A.1) and integration by parts plainly imply that
∫

C1
Σ

|x|θ|∇v|2 dx− µ(CΣ; θ)
∫

C1
Σ

|x|θ−2|v|2 ≥ 1

4

∫

C1
Σ

|x|θ−2 |log |x||−2 |v|2 dx

for any v ∈ C∞
c (C1

Σ), where

(A.2) µ(CΣ; θ) :=
(N − 2 + θ)2

4
+ λ1(Σ) .

It is well known that

(N − 2 + θ)2

4
= inf

u∈C∞
c (RN\{0})
u 6=0

∫

B1

|x|θ|∇u|2 dx
∫

B1

|x|θ−2|u|2 dx

is the Hardy constant relative to the operator Lθv = −div(|x|θ∇v). For the case

N = 1 one can obtain in a similar way the inequality
∫ 1

0
tθ|v′|2 dt− (θ − 1)2

4

∫ 1

0
tθ−2|v|2 dt ≥ 1

4

∫ 1

0
tθ−2| log t|−2|v|2 dt

which holds for any θ ∈ R and for any v ∈ C∞
c (0, 1).
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B A general necessary condition

In this appendix we show in particular that a necessary condition for the existence

of non-trivial and non-negative solutions to (0.1) and (2.2) is that α ≤ 1/4. We

need the following general lemma, which naturally fits into the classical Allegretto-

Piepenbrink theory (see for instance [3] and [16]).

Lemma B.1 Let Ω be a domain in R
N , N ≥ 1. Let a ∈ L∞

loc(Ω) and a > 0 in Ω.

Assume that u ∈ L1
loc(Ω) is a non-negative, non-trivial solution to

−∆u ≥ a(x)u D′(Ω).

Then ∫

Ω
|∇φ|2 dx ≥

∫

Ω
a(x) |φ|2 dx, for any φ ∈ C∞

c (Ω).

Proof. Let A ⊂ Ω be a measurable set such that |A| > 0 and u > 0 in A. Fix

any function φ ∈ C∞
c (Ω) and choose a domain Ω̃ ⊂⊂ Ω such that |Ω̃ ∩ A| > 0 and

φ ∈ C∞
c (Ω̃). For any integer k large enough put fk = min{a(x)u, k} ∈ L∞(Ω̃). Let

vk ∈ H1
0 (Ω̃) be the unique solution to

(B.1)




−∆vk = fk in Ω̃,

vk = 0 on ∂Ω̃.

Notice that v ∈ C1,β(Ω̃) for any β ∈ (0, 1). Since for k large enough the function fk is

non-negative and non-trivial then v ≥ 0. Actually it turns out that v−1 ∈ L∞
loc(Ω̃) by

the Harnack inequality. Finally, a convolution argument and the maximum principle

plainly give

(B.2) u ≥ vk > 0 almost everywhere in Ω̃.

Since v−1
k φ ∈ L∞(Ω̃) then we can use v−1

k φ2 as test function for (B.1) to get
∫

Ω
∇vk · ∇

(
v−1
k φ2

)
dx =

∫

Ω
fkv

−1
k φ2 dx ≥

∫

Ω
fku

−1φ2 dx

by (B.2). Since ∇vk · ∇
(
v−1
k φ2

)
= |∇φ|2 −

∣∣vk∇(v−1
k φ)

∣∣2 ≤ |∇φ|2, we readily infer

∫

Ω
|∇φ|2 dx ≥

∫

Ω
fku

−1φ2 dx
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and Fatou’s lemma implies that

∫

Ω
|∇φ|2 dx ≥

∫

Ω
a(x)φ2 dx .

The conclusion readily follows.

The sharpness of the constants in (0.2) (compare with Remark A.2) and Lemma

B.1 plainly imply the following result.

Theorem B.2 Let N ≥ 1, R ∈ (0, 1] and c, α ≥ 0. Let u ∈ L1
loc(BR \ {0}) be a

non-negative distributional solution to

−∆u− c |x|−2 u ≥ α|x|−2 |log |x||−2 u in D′(BR \ {0}).

i) If c > (N−2)2

4 then u ≡ 0.

ii) If c = (N−2)2

4 and α > 1
4 then u ≡ 0.

We notice that proposition i) in Theorem B.2 was already proved in [4] (see also

[10]).

Finally, from Remark A.2 and Lemma B.1, we obtain the next nonexistence

result.

Theorem B.3 Let Σ be a domain properly contained in S
N−1, R ∈ (0, 1] and c, α ≥

0. Let u ∈ L1
loc(CR

Σ ) be a non-negative distributional solution to

−∆u− c |x|−2 u ≥ α|x|−2 |log |x||−2 u in D′(CR
Σ ).

i) If c > µ(CΣ) then u ≡ 0.

ii) If c = µ(CΣ) and α > 1
4 then u ≡ 0.

C Extensions

In this appendix we state some nonexistence theorems that can proved by using a

suitable functional change u 7→ ψ and Theorem 1.3. We shall also point out some

corollaries of our main results.
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C.1 The k-improved weights

We define a sequence of radii Rk → 0 by setting R1 = 1, Rk = e
− 1

Rk−1 . Then we

use induction again to define two sequences of radially symmetric weights Xk(x) ≡
Xk(|x|) and zk in BRk

by setting X1(|x|) = | log |x||−1 for |x| < 1 = R1 and

Xk+1(|x|) = Xk

(
| log |x||−1

)
, zk(x) = |x|−1

k∏

i=1

Xi(|x|)

for all x ∈ BRk
\ {0}. It can be proved by induction that zk is well defined on BRk

and zk ∈ L2
loc(BRk

). We are interested in distributional solutions to

(C.1) −∆u− (N − 2)2

4
|x|−2u ≥ αz2k u D′(BR \ {0})

for R ∈ (0, Rk]. The next result includes Theorem 0.1 by taking k = 1.

Theorem C.1 Let k ≥ 1, R ∈ (0, Rk] and let u ≥ 0 be a distributional solution to

(C.1). Assume that there exists γ ≤ 1 such that

u ∈ L2
loc(BR; z

2
kX

2(γ−1)
k dx) , α ≥ 1

4
− (1− γ)2 .

Then u = 0 almost everywhere in BR.

Proof. We start by introducing the kth Emden-Fowler transform u 7→ Tku,

u(x) = zk(|x|)−
1

2 |x| 1−N

2 Xk(|x|)
1

2 (Tku)

(
Xk(|x|)−1,

x

|x|

)
.

Notice that for any R < Rk it results

(C.2)

∫

BR

z2kX
2(γ−1)
k |u|2 dx =

∫ ∞

Xk(R)−1

s−2γ

∫

SN−1

|Tku|2 dsdσ ,

so that Tku ∈ L2(Ia × S
N−1; s−2γ dsdσ) for any a > Xk(R)

−1. This can be easily

checked by noticing that X ′
k = zkXk. Next we set

ψu(s) :=

∫

SN−1

(Tku)(s, σ)dσ .

By (C.2) we have that ψ ∈ L2(Ia; s
−2γ ds) for any a > Xk(R)

−1. Thanks to Theorem

1.3, to conclude the proof it suffices to show that ψ is a distributional solution to
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−ψ′′ ≥ αs−2ψ in the interval Iã, where ã = Xk(R)
−1. To this end, fix any test

function ϕ ∈ C∞(Iã), and define the radially symmetric mapping ϕ̃ ∈ C∞
c (BR \{0})

such that Tkϕ̃ = ϕ. By direct computation one can prove that

∆ϕ̃+
(N − 2)2

4
|x|−2ϕ̃ = ωϕ̃+ |x| 1−N

2 z
3

2

kX
− 3

2

k ϕ′′
(
Xk(|x|)−1

)

where ω ≡ 0 if k = 1, and

ω =
1

2



(

k−1∑

i=1

zi

)2

− 1

2

k−1∑

i=1

z2i




if k ≥ 2. Since ω ≥ 0 then
∫

BR

u

(
∆ϕ̃+

(N − 2)2

4
|x|−2ϕ̃

)
dx ≥

∫ ∞

ã
ψϕ′′ ds

provided that ϕ is non-negative. In addition it results
∫

BR

z2k uϕ̃ dx =

∫ ∞

ã
s−2ψϕ ds .

Since ϕ was arbitrarily chosen, the conclusion readily follows.

By similar arguments as above and in Section 2, we can prove a nonexistence

result of positive solutions to the problem

(C.3) −∆u− µ(CΣ)|x|−2u ≥ αz2k u D′(CR
Σ ) ,

where CΣ is a Lipschitz proper cone in R
N , N ≥ 1, and CR

Σ = CΣ ∩ BR. We shall

skip the proof the following result.

Theorem C.2 Let k ≥ 1, R ∈ (0, Rk] and let u ≥ 0 be a distributional solution to

(C.3). Assume that there exists γ ≤ 1 such that

u ∈ L2(CR
Σ ; z

2
kX

2(γ−1)
k dx) , α ≥ 1

4
− (1− γ)2 .

Then u = 0 almost everywhere in CR
Σ .

Some related improved Hardy inequalities involving the weight zk and which moti-

vate the interest of problems (C.1) and (C.3) can be found in [2], [8], [12] and also

[5].
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C.2 Exterior cone-like domains

The Kelvin transform

u(x) 7→ |x|2−Nu

(
x

|x|2
)

can be used to get nonexistence results for exterior domains in R
N .

Let Σ be a domain in S
N−1, N ≥ 2, and let CΣ be the cone defined in Section 2.

We recall that µ(CΣ) = (N −2)2/4+λ1(Σ). Since the inequality in (0.1) is invariant

with respect to the Kelvin transform, then Theorems 0.1 and 2.1 readily lead to the

following nonexistence result.

Theorem C.3 Let Σ be a Lipschitz domain in S
N−1, with N ≥ 2. Let R > 1,

α ∈ R and let u ≥ 0 be a distributional solution to

−∆u− µ(CΣ)|x|−2 u ≥ α|x|−2 |log |x||−2 u in D′(CΣ \BR).

Assume that there exists γ ≤ 1 such that

u ∈ L2(CΣ \BR; |x|−2| log |x||−2γ dx) , α ≥ 1

4
− (1− γ)2 .

Then u = 0 almost everywhere in CΣ \BR.

A similar statement holds in case N = 1 for ordinary differential inequalities in

unbounded intervals (R, 0) with R > 0, and for problems involving the weight z2k.

C.3 Degenerate elliptic operators

Let θ ∈ R be a given real parameter. We notice that u is a distributional solution

to (2.2) if and only if v = |x|−θ/2u is a distributional solution to

(C.4) −div(|x|θ∇v)− µ(CΣ; θ)|x|θ−2 v ≥ 1

4
|x|θ−2| log |x||−2 v in D′(CR

Σ ) ,

where µ(CΣ; θ) is defined in Remark A.2. Therefore Theorem 0.1 and Theorem 2.1

imply the following nonexistence result for linear inequalities involving the weighted

Laplace operator Lθv = −div(|x|θ∇v).

20



Theorem C.4 Let Σ be a Lipschitz domain in S
N−1. Let θ ∈ R, R ∈ (0, 1], α ∈ R

and let v ≥ 0 be a distributional solution to (C.4). Assume that there exists γ ≤ 1

such that

v ∈ L2(CR
Σ ; |x|θ−2| log |x||−2γ dx) , α ≥ 1

4
− (1− γ)2 .

Then v = 0 almost everywhere in CR
Σ .

A nonexistence result for the operator −div(|x|θ∇v) similar to Theorem C.3 or

to Theorem C.1 can be obtained from Theorem C.4, via suitable functional changes.
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