Sharp nonexistence results for a linear elliptic inequality involving Hardy and Leray potentials

Mouhamed Moustapha Fall* and Roberta Musina ${ }^{\dagger}$

Abstract

In this paper we deal with non-negative distributional supersolutions for a class of linear elliptic equations involving inverse-square potentials and logarithmic weights. We prove sharp nonexistence results.

Key Words: Hardy inequality, logarithmic weights, nonexistence.
2000 Mathematics Subject Classification: 35J20, 35J70, 35B33

[^0]
Introduction

In recent years a great deal work has been made to find necessary and sufficient conditions for the existence of distributional supersolutions to semilinear elliptic equations with inverse-square potentials. We quote for instance [7] (and the references therein), where a problem related to the Hardy and Sobolev inequalities has been studied. In the present paper we are interested in a class of linear elliptic equations.

Let $N \geq 2$ be an integer, $R \in(0,1]$ and let B_{R} be the ball in \mathbb{R}^{N} of radius R centered at 0 . We focus our attention on non-negative distributional solutions to

$$
\begin{equation*}
-\Delta u-\frac{(N-2)^{2}}{4}|x|^{-2} u \geq \alpha|x|^{-2}|\log | x| |^{-2} u \quad \text { in } \mathcal{D}^{\prime}\left(B_{R} \backslash\{0\}\right), \tag{0.1}
\end{equation*}
$$

where $\alpha \in \mathbb{R}$ is a varying parameter. By a standard definition, a solution to (0.1) is a function $u \in L_{\text {loc }}^{1}\left(B_{R} \backslash\{0\}\right)$ such that

$$
-\int_{B_{R}} u \Delta \varphi d x-\frac{(N-2)^{2}}{4} \int_{B_{R}}|x|^{-2} u \varphi d x \geq \alpha \int_{B_{R}}|x|^{-2}|\log | x| |^{-2} u \varphi d x
$$

for any non-negative $\varphi \in C_{c}^{\infty}\left(B_{R} \backslash\{0\}\right)$. Problem (0.1) is motivated by the inequality

$$
\begin{equation*}
\int_{B_{1}}|\nabla u|^{2} d x-\frac{(N-2)^{2}}{4} \int_{B_{1}}|x|^{-2}|u|^{2} \geq \frac{1}{4} \int_{B_{1}}|x|^{-2}|\log | x| |^{-2}|u|^{2} d x \tag{0.2}
\end{equation*}
$$

which holds for any $u \in C_{c}^{\infty}\left(B_{1} \backslash\{0\}\right)$ (see for example [2], [5], [8], [12] and Appendix A). Notice that (0.2) improves the Hardy inequality for maps supported by the unit ball if $N \geq 3$. Inequality (0.2) was firstly proved by Leray [14] in the lower dimensional case $N=2$.

Due to the sharpness of the constants in (0.2), a necessary and sufficient condition for the existence of non-trivial and non-negative solutions to (0.1) is that $\alpha \leq 1 / 4$ (compare with Theorem B. 2 in Appendix B and with Remark 1.5).

In case $\alpha \leq 1 / 4$ we provide necessary conditions on the parameter α to have the existence of non-trivial solutions satisfying suitable integrability properties.

Theorem 0.1 Let $R \in(0,1]$ and let $u \geq 0$ be a distributional solution to (0.1). Assume that there exists $\gamma \leq 1$ such that

$$
u \in L_{\mathrm{loc}}^{2}\left(B_{R} ;\left.|x|^{-2}|\log | x\right|^{-2 \gamma} d x\right), \quad \alpha \geq \frac{1}{4}-(1-\gamma)^{2} .
$$

Then $u=0$ almost everywhere in B_{R}.

We remark that Theorem 0.1 is sharp, in view of the explicit counter-example in Remark 1.5.

Let us point out some consequences of Theorem 0.1. We use the Hardy-Leray inequality (0.2) to introduce the space $\widetilde{H}_{0}^{1}\left(B_{1}\right)$ as the closure of $C_{c}^{\infty}\left(B_{1} \backslash\{0\}\right)$ with respect to the scalar product

$$
\langle u, v\rangle=\int_{B_{1}} \nabla u \cdot \nabla v d x-\frac{(N-2)^{2}}{4} \int_{B_{1}}|x|^{-2} u v d x
$$

(see for example [9]). It turns out that $\widetilde{H}_{0}^{1}\left(B_{1}\right)$ strictly contains the standard Sobolev space $H_{0}^{1}\left(B_{1}\right)$, unless $N=2$.

Take $\gamma=1$ in Theorem 0.1. Then problem (0.1) has no non-trivial and nonnegative solutions $u \in L_{\text {loc }}^{2}\left(B_{R} ;\left.|x|^{-2}|\log | x\right|^{-2} d x\right)$ if $\alpha=1 / 4$. Therefore, if in the dual space $\widetilde{H}_{0}^{1}\left(B_{R}\right)^{\prime}$, a function $u \in \widetilde{H}_{0}^{1}\left(B_{R}\right)$ solves

$$
\left\{\begin{array}{l}
-\Delta u-\frac{(N-2)^{2}}{4}|x|^{-2} u \geq \frac{1}{4}|x|^{-2}|\log | x| |^{-2} u \quad \text { in } B_{R} \\
u \geq 0
\end{array}\right.
$$

then $u=0$ in B_{R}.
Next take $\gamma=0$ and $\alpha \geq-3 / 4$. From Theorem 0.1 it follows that problem (0.1) has no non-trivial and non-negative solutions $u \in L_{\text {loc }}^{2}\left(B_{R} ;|x|^{-2} d x\right)$. In particular, if $N \geq 3$ and if $u \in H_{0}^{1}\left(B_{R}\right) \hookrightarrow L^{2}\left(B_{R} ;|x|^{-2} d x\right)$ is a weak solution to

$$
\left\{\begin{array}{l}
-\Delta u-\frac{(N-2)^{2}}{4}|x|^{-2} u \geq-\frac{3}{4}|x|^{-2}|\log | x| |^{-2} u \quad \text { in } B_{R} \\
u \geq 0
\end{array}\right.
$$

then $u=0$ in B_{R}. Thus Theorem 0.1 improves some of the nonexistence results in [1] and in [13].

The case of boundary singularities has been little studied. In Section 2 we prove sharp nonexistence results for inequalities in cone-like domains in $\mathbb{R}^{N}, N \geq 1$, having a vertex at 0 . A special case concerns linear problems in half-balls. For $R>0$ we let $B_{R}^{+}=B_{R} \cap \mathbb{R}_{+}^{N}$, where \mathbb{R}_{+}^{N} is any half-space. Notice that $B_{R}^{+}=(0, R)$ or $B_{R}^{+}=(-R, 0)$ if $N=1$. A necessary and sufficient condition for the existence of non-negative and non-trivial distributional solutions to

$$
\begin{equation*}
-\Delta u-\frac{N^{2}}{4}|x|^{-2} u \geq \alpha|x|^{-2}|\log | x| |^{-2} u \quad \text { in } \mathcal{D}^{\prime}\left(B_{R}^{+}\right) \tag{0.3}
\end{equation*}
$$

is that $\alpha \leq 1 / 4$ (see Theorem B. 3 and Remark 2.3), and the following result holds.

Theorem 0.2 Let $R \in(0,1], N \geq 1$ and let $u \geq 0$ be a distributional solution to (0.3). Assume that there exists $\gamma \leq 1$ such that

$$
u \in L^{2}\left(B_{R}^{+} ;|x|^{-2}|\log | x| |^{-2 \gamma} d x\right), \quad \alpha \geq \frac{1}{4}-(1-\gamma)^{2}
$$

Then $u=0$ almost everywhere in B_{R}^{+}.
The key step in our proofs consists in studying the ordinary differential inequality

$$
\left\{\begin{array}{l}
-\psi^{\prime \prime} \geq \alpha s^{-2} \psi \quad \text { in } \mathcal{D}^{\prime}(a, \infty) \tag{0.4}\\
\psi \geq 0
\end{array}\right.
$$

where $a>0$. In our crucial Theorem 1.3 we prove a nonexistence result for (0.4), under suitable weighted integrability assumptions on ψ. Secondly, thanks to an "averaged Emden-Fowler transform", we show that distributional solutions to problems of the form (0.1) and (0.3) give rise to solutions of (0.4), see Section 1.2 and 2 respectively. Our main existence results readily follow from Theorem 1.3. A similar idea, but with a different functional change, was already used in [6] to obtain nonexistence results for a large class of superlinear problems.

In Appendix A we give a simple proof of the Hardy-Leray inequality for maps with support in cone-like domains that includes (0.2) and that motivates our interest in problem (0.3).

Appendix B deals in particular with the case $\alpha>1 / 4$. The nonexistence Theorems B. 2 and B. 3 follow from an Allegretto-Piepenbrink type result (Lemma B.1).

In the last appendix we point out some related results and some consequences of our main theorems.

Notation

We denote by \mathbb{R}_{+}the half real line $(0, \infty)$. For $a>0$ we put $I_{a}=(a, \infty)$.
We denote by $|\Omega|$ the Lebesgue measure of the domain $\Omega \subset \mathbb{R}^{N}$. Let $q \in[1,+\infty)$ and let ω be a non-negative measurable function on Ω. The weighted Lebesgue space $L^{q}(\Omega ; \omega(x) d x)$ is the space of measurable maps u in Ω with finite norm $\left(\int_{\Omega}|u|^{q} \omega(x) d x\right)^{1 / q}$. For $\omega \equiv 1$ we simply write $L^{q}(\Omega)$. We embed $L^{q}(\Omega ; \omega(x) d x)$ into $L^{q}\left(\mathbb{R}^{N} ; \omega(x) d x\right)$ via null extension.

1 Proof of Theorem 0.1

The proof consists of two steps. In the first one we prove a nonexistence result for a class of linear ordinary differential inequalities that might have some interest in itself.

1.1 Nonexistence results for problem (0.4)

We start by fixing some terminologies. Let $\mathcal{D}^{1,2}\left(\mathbb{R}_{+}\right)$be the Hilbert space obtained via the Hardy inequality

$$
\begin{equation*}
\int_{0}^{\infty}\left|v^{\prime}\right|^{2} d s \geq \frac{1}{4} \int_{0}^{\infty} s^{-2}|v|^{2} d s, \quad v \in C_{c}^{\infty}\left(\mathbb{R}_{+}\right) \tag{1.1}
\end{equation*}
$$

as the completion of $C_{c}^{\infty}\left(\mathbb{R}_{+}\right)$with respect to the scalar product

$$
\langle v, w\rangle=\int_{0}^{\infty} v^{\prime} w^{\prime} d s
$$

Notice that $\mathcal{D}^{1,2}\left(\mathbb{R}_{+}\right) \hookrightarrow L^{2}\left(\mathbb{R}_{+} ; s^{-2} d s\right)$ with a continuous embedding and moreover $\mathcal{D}^{1,2}\left(I_{a}\right) \subset C^{0}\left(\mathbb{R}_{+}\right)$by Sobolev embedding theorem. By Hölder inequality, the space $L^{2}\left(\mathbb{R}_{+} ; s^{2} d s\right)$ is continuously embedded into the dual space $\mathcal{D}^{1,2}\left(\mathbb{R}_{+}\right)^{\prime}$.

Finally, for any $a>0$ we put $I_{a}=(a, \infty)$ and

$$
\mathcal{D}^{1,2}\left(I_{a}\right)=\left\{v \in \mathcal{D}^{1,2}\left(\mathbb{R}_{+}\right) \mid v(a)=0\right\} .
$$

We need two technical lemmata.
Lemma 1.1 Let $f \in L^{2}\left(I_{a} ; s^{2} d s\right)$ and $v \in C^{2}\left(\mathbb{R}_{+}\right) \cap L^{2}\left(I_{a} ; s^{-2}\right.$ ds) be a function satisfying $v(a)=0$ and

$$
\begin{equation*}
-v^{\prime \prime} \leq f \quad \text { in } I_{a} \tag{1.2}
\end{equation*}
$$

Put $v^{+}:=\max \{v, 0\}$. Then $v^{+} \in \mathcal{D}^{1,2}\left(I_{a}\right)$ and

$$
\begin{equation*}
\int_{a}^{\infty}\left|\left(v^{+}\right)^{\prime}\right|^{2} d s \leq \int_{a}^{\infty} f v^{+} d s \tag{1.3}
\end{equation*}
$$

Proof. We first show that $\left(v^{+}\right)^{\prime} \in L^{2}(\mathbb{R})$ and that (1.3) holds. Let $\eta \in C_{c}^{\infty}(\mathbb{R})$ be a cut-off function satisfying

$$
0 \leq \eta \leq 1, \quad \eta(s) \equiv 1 \text { for }|s| \leq 1, \quad \eta(s) \equiv 0 \text { for } s \geq 2
$$

and put $\eta_{h}(s)=\eta(s / h)$. Then $\eta_{h} v^{+} \in \mathcal{D}^{1,2}\left(I_{a}\right)$ and $\eta_{h} v^{+} \geq 0$. Multiply (1.2) by $\eta_{h} v^{+}$and integrate by parts to get

$$
\begin{equation*}
\int_{a}^{\infty} \eta_{h}\left|\left(v^{+}\right)^{\prime}\right|^{2} d s-\frac{1}{2} \int_{a}^{\infty} \eta_{h}^{\prime \prime}\left|v^{+}\right|^{2} d s \leq \int_{a}^{\infty} \eta_{h} f v^{+} d s \tag{1.4}
\end{equation*}
$$

Notice that for some constant c depending only on η it results

$$
\left.\left.\left|\int_{a}^{\infty} \eta_{h}^{\prime \prime}\right| v^{+}\right|^{2} d s\left|\leq c \int_{h}^{2 h} s^{-2}\right| v^{+}\right|^{2} d s \rightarrow 0
$$

as $h \rightarrow \infty$, since $v^{+} \in L^{2}\left(I_{a} ; s^{-2} d s\right)$. Moreover,

$$
\int_{a}^{\infty} \eta_{h} f v^{+} d s \rightarrow \int_{a}^{\infty} f v^{+} d s
$$

by Lebesgue theorem, as $f v^{+} \in L^{1}\left(I_{a}\right)$ by Hölder inequality. In conclusion, from (1.4) we infer that

$$
\begin{equation*}
\int_{a}^{h}\left|v_{+}^{\prime}\right|^{2} d s \leq \int_{a}^{\infty} f v^{+} d s+o(1) \tag{1.5}
\end{equation*}
$$

since $\eta_{h} \equiv 1$ on (a, h). By Fatou's Lemma we get that $\left(v^{+}\right)^{\prime} \in L^{2}\left(I_{a}\right)$ and (1.3) readily follows from (1.5). To prove that $v^{+} \in \mathcal{D}^{1,2}\left(I_{a}\right)$, it is enough to notice that $\eta_{h} v^{+} \rightarrow v^{+}$in $\mathcal{D}^{1,2}\left(I_{a}\right)$. Indeed,

$$
\begin{aligned}
& \int_{a}^{\infty}\left|1-\eta_{h}\right|^{2}\left|\left(v^{+}\right)^{\prime}\right|^{2} \leq \int_{h}^{\infty}\left|\left(v^{+}\right)^{\prime}\right|^{2} d s=o(1) \\
& \int_{a}^{\infty}\left|\eta_{h}^{\prime}\right|^{2}\left|v^{+}\right|^{2} d s \leq c \int_{h}^{\infty} s^{-2}\left|v^{+}\right|^{2} d s=o(1)
\end{aligned}
$$

as $\left(v^{+}\right)^{\prime} \in L^{2}\left(I_{a}\right)$ and $v^{+} \in L^{2}\left(I_{a} ; s^{-2} d s\right)$.

Through the paper we let $\left(\rho_{n}\right)$ to be a standard mollifier sequence in \mathbb{R}, such that the support of ρ_{n} is contained in the interval $\left(-\frac{1}{n}, \frac{1}{n}\right)$.

Lemma 1.2 Let $a>0$ and $\psi \in L^{2}\left(I_{a} ; s^{-2} d s\right)$. Then $\rho_{n} \star \psi \in L^{2}\left(I_{a} ; s^{-2} d s\right)$ and

$$
\begin{gather*}
\rho_{n} \star \psi \rightarrow \psi \quad \text { in } L^{2}\left(I_{a} ; s^{-2} d s\right), \tag{1.6}\\
g_{n}:=\rho_{n} \star\left(s^{-2} \psi\right)-s^{-2}\left(\rho_{n} \star \psi\right) \rightarrow 0 \quad \text { in } L^{2}\left(I_{a} ; s^{2} d s\right) . \tag{1.7}
\end{gather*}
$$

Proof. We start by noticing that $\rho_{n} \star \psi \rightarrow \psi$ almost everywhere. Then we use Hölder inequality to get

$$
\begin{aligned}
s^{-2}\left|\left(\rho_{n} \star \psi\right)(s)\right|^{2} & =s^{-2}\left|\int \rho_{n}(s-t)^{1 / 2} \rho_{n}(s-t)^{1 / 2} \psi(t) d t\right|^{2} \\
& \leq s^{-2}\left(\frac{1}{n}+s\right)^{2} \int \rho_{n}(s-t) t^{-2}|\psi(t)|^{2} d t \\
& \leq\left(1+\frac{1}{n a}\right)^{2}\left|\left(\rho_{n} \star\left(s^{-2} \psi^{2}\right)\right)(s)\right|
\end{aligned}
$$

for any $s>a>0$. Since $s^{-2} \psi^{2} \in L^{1}\left(I_{a}\right)$ then $\rho_{n} \star\left(s^{-2} \psi^{2}\right) \rightarrow s^{-2} \psi^{2}$ in $L^{1}\left(I_{a}\right)$. Thus $s^{-1}\left(\rho_{n} \star \psi\right) \rightarrow s^{-1} \psi$ in $L^{2}\left(I_{a}\right)$ by the (generalized) Lebesgue Theorem, and (1.6) follows.

To prove (1.7) we first argue as before to check that

$$
s^{2}\left|\int \rho_{n}(s-t) t^{-2} \psi(t) d t\right|^{2} \leq\left(1-\frac{1}{n a}\right)^{-2}\left|\left(\rho_{n} \star\left(s^{-2} \psi^{2}\right)\right)(s)\right|
$$

for any $s>a>0$. Thus $\rho_{n} \star\left(s^{-2} \psi\right)$ converges to $s^{-2} \psi$ in $L^{2}\left(I_{a} ; s^{2} d s\right)$ by Lebesgue's Theorem. In addition, $s^{-2}\left(\rho_{n} \star \psi\right) \rightarrow s^{-2} \psi$ in $L^{2}\left(I_{a} ; s^{2} d s\right)$ by (1.6). Thus $g_{n} \rightarrow 0$ in $L^{2}\left(I_{a} ; s^{2} d s\right)$ and the Lemma is completely proved.

The following result for solutions to (0.4) is a crucial step in the proofs of our main theorems.

Theorem 1.3 Let $a>0$ and let ψ be a distributional solution to (0.4). Assume that there exists $\gamma \leq 1$ such that

$$
\psi \in L^{2}\left(I_{a} ; s^{-2 \gamma} d s\right), \quad \alpha \geq \frac{1}{4}-(1-\gamma)^{2} .
$$

Then $\psi=0$ almost everywhere in I_{a}.

Proof. We start by noticing that $L^{2}\left(I_{a} ; s^{-2 \gamma} d s\right) \hookrightarrow L^{2}\left(I_{a} ; s^{-2} d s\right)$ with a continuous immersion for any $\gamma<1$. In addition, we point out that we can assume

$$
\begin{equation*}
\alpha=\frac{1}{4}-(1-\gamma)^{2} . \tag{1.8}
\end{equation*}
$$

Let ρ_{n} be a standard sequence of mollifiers, and let

$$
\psi_{n}=\rho_{n} \star \psi, \quad g_{n}=\rho_{n} \star\left(s^{-2} \psi\right)-s^{-2}\left(\rho_{n} \star \psi\right) .
$$

Then $\psi_{n} \rightarrow \psi$ in $L^{2}\left(I_{a} ; s^{-2 \gamma} d s\right)$ and almost everywhere, and $g_{n} \rightarrow 0$ in $L^{2}\left(I_{a} ; s^{2} d s\right)$ by Lemma 1.2. Moreover, $\psi_{n} \in C^{\infty}\left(\bar{I}_{a}\right)$ is a non-negative solution to

$$
\begin{equation*}
-\psi_{n}^{\prime \prime} \geq \alpha s^{-2} \psi_{n}+\alpha g_{n} \quad \text { in } \mathcal{D}^{\prime}\left(I_{a}\right) \tag{1.9}
\end{equation*}
$$

We assume by contradiction that $\psi \neq 0$. We let $s_{0} \in I_{a}$ such that $\varepsilon_{n}:=\psi_{n}\left(s_{0}\right) \rightarrow$ $\psi\left(s_{0}\right)>0$. Up to a scaling and after replacing g_{n} with $s_{0}^{2} g_{n}$, we may assume that $s_{0}=1$. We will show that

$$
\begin{equation*}
\varepsilon_{n}:=\psi_{n}(1) \rightarrow \psi(1)>0 \tag{1.10}
\end{equation*}
$$

leads to a contradiction. We fix a parameter

$$
\begin{equation*}
\delta>\frac{1}{2}-\gamma \geq-\frac{1}{2} \tag{1.11}
\end{equation*}
$$

and for n large we put

$$
\varphi_{\delta, n}(s):=\varepsilon_{n} s^{-\delta} \in L^{2}\left(I_{1} ; s^{-2 \gamma} d s\right)
$$

Clearly $\varphi_{\delta, n} \in C^{\infty}\left(\mathbb{R}_{+}\right)$and one easily verifies that $\left(\varphi_{\delta, n}\right)_{n}$ is a bounded sequence in $L^{2}\left(I_{1} ; s^{-2 \gamma} d s\right)$ by (1.10) and (1.11). Finally we define

$$
v_{\delta, n}=\varphi_{\delta, n}-\psi_{n}=\varepsilon_{n} s^{-\delta}-\psi_{n}
$$

so that $v_{\delta, n} \in L^{2}\left(I_{1} ; s^{-2 \gamma} d s\right)$ and $v_{\delta, n}(1)=0$. In addition $v_{\delta, n}$ solves

$$
\begin{equation*}
-v_{\delta, n}^{\prime \prime} \leq \alpha s^{-2} v_{\delta, n}-c_{\delta} \varepsilon_{n} s^{-2-\delta}-\alpha g_{n} \quad \text { in } I_{1} \tag{1.12}
\end{equation*}
$$

where $c_{\delta}:=\delta(\delta+1)+\alpha=\delta(\delta+1)+1 / 4-(1-\gamma)^{2}$. Notice that $c_{\delta}>0$ and that all the terms in the right hand side of (1.12) belong to $L^{2}\left(I_{1} ; s^{2} d s\right)$, by (1.11). Thus Lemma 1.1 gives $v_{\delta, n}^{+} \in \mathcal{D}^{1,2}\left(I_{1}\right)$ and

$$
\int_{1}^{\infty}\left|\left(v_{\delta, n}^{+}\right)^{\prime}\right|^{2} d s \leq \alpha \int_{1}^{\infty} s^{-2}\left|v_{\delta, n}^{+}\right|^{2} d s-c_{\delta} \varepsilon_{n} \int_{1}^{\infty} s^{-2-\delta} v_{\delta, n}^{+} d s+o(1)
$$

since $v_{\delta, n}^{+}$is bounded in $L^{2}\left(I_{1} ; s^{-2} d s\right)$ and $g_{n} \rightarrow 0$ in $L^{2}\left(I_{1} ; s^{2} d s\right)$. By (1.8) and Hardy's inequality (1.1), we conclude that

$$
(1-\gamma)^{2} \int_{1}^{\infty} s^{-2}\left|v_{\delta, n}^{+}\right|^{2}+c_{\delta} \varepsilon_{n} \int_{1}^{\infty} s^{-2-\delta} v_{\delta, n}^{+} d s=o(1)
$$

Thus, for any fixed δ we get that $v_{\delta, n}^{+} \rightarrow 0$ almost everywhere in I_{1} as $n \rightarrow \infty$, since $\varepsilon_{n} c_{\delta}$ is bounded away from 0 by (1.10). Finally we notice that

$$
\psi_{n}=\varphi_{\delta, n}-v_{\delta, n} \geq \varepsilon_{n} s^{-\delta}-v_{\delta, n}^{+}
$$

Since $\psi_{n} \rightarrow \psi$ and $v_{\delta, n}^{+} \rightarrow 0$ almost everywhere in I_{1}, and since $\varepsilon_{n} \rightarrow \psi(1)>0$, we infer that $\psi \geq \psi(1) s^{-\delta}$ in I_{1}. This conclusion clearly contradicts the assumption $\psi \in L^{2}\left(I_{1} ; s^{-2 \gamma} d s\right)$, since $\delta>1 / 2-\gamma$ was arbitrarily chosen. Thus (1.10) cannot hold and the proof is complete.

Remark 1.4 If $\alpha>1 / 4$ then every non-negative solution $\psi \in L_{\mathrm{loc}}^{1}\left(I_{a}\right)$ to problem (0.4) vanishes. This is an immediate consequence of Lemma B.1 in Appendix B and the sharpness of the constant $1 / 4$ in the Hardy inequality (1.1).

1.2 Conclusion of the proof

We will show that any non-negative distributional solution u to problem (0.1) gives rise to a function ψ solving (0.4), and such that $\psi=0$ if and only if $u=0$. To this aim, we introduce the Emden-Fowler transform $u \mapsto T u$ by letting

$$
\begin{equation*}
u(x)=|x|^{\frac{2-N}{2}}(T u)\left(|\log | x| |, \frac{x}{|x|}\right) . \tag{1.13}
\end{equation*}
$$

By change of variable formula, for any $R^{\prime} \in(0, R)$ it results

$$
\begin{equation*}
\int_{B_{R^{\prime}}}|x|^{-2}|\log | x| |^{-2 \gamma}|u|^{2} d x=\int_{\left|\log R^{\prime}\right|}^{\infty} \int_{\mathbb{S}^{N-1}} s^{-2 \gamma}|T u|^{2} d s d \sigma, \tag{1.14}
\end{equation*}
$$

so that $T u \in L^{2}\left(I_{a} \times \mathbb{S}^{N-1} ; s^{-2 \gamma} d s d \sigma\right)$ for any $a>a_{R}:=|\log R|$. Now, for an arbitrary $\varphi \in C_{c}^{\infty}\left(I_{a_{R}}\right)$ we define the radially symmetric function $\tilde{\varphi} \in C_{c}^{\infty}\left(B_{R}\right)$ by setting

$$
\tilde{\varphi}(x)=|x|^{\frac{2-N}{2}} \varphi(|\log | x| |),
$$

so that $\varphi=T \tilde{\varphi}$. By direct computations we get

$$
\begin{gather*}
\int_{B_{R}} u\left(\Delta \tilde{\varphi}+\frac{(N-2)^{2}}{4}|x|^{-2} \tilde{\varphi}\right) d x=\int_{a_{R}}^{\infty} \varphi^{\prime \prime} \int_{\mathbb{S}^{N-1}} T u d \sigma d s \tag{1.15}\\
\left.\int_{B_{R}}|x|^{-2}|\log | x\right|^{-2} u \tilde{\varphi} d x=\int_{a_{R}}^{\infty} s^{-2} \varphi \int_{\mathbb{S}^{N-1}} T u d \sigma d s \tag{1.16}
\end{gather*}
$$

Thus we are led to introduce the function ψ defined in $I_{a_{R}}$ by setting

$$
\psi(s)=\int_{\mathbb{S}^{N-1}}(T u)(s, \sigma) d \sigma
$$

We notice that $\psi \in L^{2}\left(I_{a} ; s^{-2 \gamma} d s\right)$ for any $a>a_{R}$, since

$$
\int_{a}^{\infty} s^{-2 \gamma}|\psi|^{2} d s \leq\left|\mathbb{S}^{N-1}\right| \int_{a}^{\infty} \int_{\mathbb{S}^{N-1}} s^{-2 \gamma}|T u|^{2} d s d \sigma
$$

by Hölder inequality. Moreover, from (1.15) and (1.16) it immediately follows that $\psi \geq 0$ is a distributional solution to

$$
-\psi^{\prime \prime} \geq \alpha s^{-2} \psi \quad \text { in } \mathcal{D}^{\prime}\left(I_{a_{R}}\right)
$$

By Theorem 1.3 we infer that $\psi=0$ in $I_{a_{R}}$, and hence $u=0$ in B_{R}. The proof of Theorem 0.1 is complete.

Remark 1.5 The assumption on the integrability of u in Theorem 0.1 are sharp. If $\alpha>1 / 4$ use the results in Appendix B. For $\alpha \leq 1 / 4$ put $\delta_{\alpha}:=(\sqrt{1-4 \alpha}-1) / 2$ and notice that the function $u_{\alpha}: B_{1} \rightarrow \mathbb{R}$ defined by

$$
u_{\alpha}(x)=|x|^{\frac{2-N}{2}}|\log | x| |^{-\delta_{\alpha}}
$$

solves

$$
-\Delta u_{\alpha}-\frac{(N-2)^{2}}{4}|x|^{-2} u_{\alpha}=\left.\alpha|x|^{-2}|\log | x\right|^{-2} u_{\alpha} \quad \text { in } \mathcal{D}^{\prime}\left(B_{1} \backslash\{0\}\right)
$$

Moreover, if $\gamma \leq 1$ then

$$
u_{\alpha} \in L_{\mathrm{loc}}^{2}\left(B_{1} ;\left.|x|^{-2}|\log | x\right|^{-2 \gamma} d x\right) \quad \text { if and only if } \quad \alpha<\frac{1}{4}-(1-\gamma)^{2} .
$$

2 Cone-like domains

Let $N \geq 2$. To any Lipschitz domain $\Sigma \subset \mathbb{S}^{N-1}$ we associate the cone

$$
\mathcal{C}_{\Sigma}:=\left\{r \sigma \in \mathbb{R}^{N} \mid \sigma \in \Sigma, r>0\right\}
$$

For any given $R>0$ we introduce also the cone-like domain

$$
\mathcal{C}_{\Sigma}^{R}:=\mathcal{C}_{\Sigma} \cap B_{R}=\left\{r \sigma \in \mathbb{R}^{N} \mid r \in(0, R), \sigma \in \Sigma\right\}
$$

Notice that $\mathcal{C}_{\mathbb{S}^{N-1}}=\mathbb{R}^{N} \backslash\{0\}$ and $\mathcal{C}_{\mathbb{S}^{N-1}}^{R}=B_{R} \backslash\{0\}$. If Σ is an half-sphere \mathbb{S}_{+}^{N-1} then $\mathcal{C}_{\mathbb{S}_{+}^{N-1}}$ is an half-space \mathbb{R}_{+}^{N} and $\mathcal{C}_{\mathbb{S}_{+}^{N-1}}^{R}$ is an half-ball B_{R}^{+}, as in Theorem 0.2 .

Assume that Σ is properly contained in \mathbb{S}^{N-1}. Then we let $\lambda_{1}(\Sigma)>0$ to be the first eigenvalue of the Laplace operator on Σ. If $\Sigma=\mathbb{S}^{N-1}$ we put $\lambda_{1}\left(\mathbb{S}^{N-1}\right)=0$.
It has been noticed in [15], [11], that

$$
\begin{equation*}
\mu\left(\mathcal{C}_{\Sigma}\right):=\inf _{\substack{u \in C_{c}^{\infty}\left(\mathcal{C}_{\Sigma}\right) \\ u \neq 0}} \frac{\int_{\mathcal{C}_{\Sigma}}|\nabla u|^{2} d x}{\int_{\mathcal{C}_{\Sigma}}|x|^{-2}|u|^{2} d x}=\frac{(N-2)^{2}}{4}+\lambda_{1}(\Sigma) \tag{2.1}
\end{equation*}
$$

The infimum $\mu(\mathcal{C})$ is the best constant in the Hardy inequality for maps having compact support in \mathcal{C}_{Σ}. In particular, for any half-space \mathbb{R}_{+}^{N} it holds that

$$
\mu\left(\mathbb{R}_{+}^{N}\right)=\frac{N^{2}}{4}
$$

The aim of this section is to study the elliptic inequality

$$
\begin{equation*}
-\Delta u-\mu\left(\mathcal{C}_{\Sigma}\right)|x|^{-2} u \geq \alpha|x|^{-2}|\log | x| |^{-2} u \quad \text { in } \mathcal{D}^{\prime}\left(\mathcal{C}_{\Sigma}^{R}\right) \tag{2.2}
\end{equation*}
$$

Notice that (2.2) reduces to (0.1) if $\Sigma=\mathbb{S}^{N-1}$. Problem (2.2) is related to an improved Hardy inequality for maps supported in cone-like domains which will be discussed in Appendix A.

Theorem 2.1 Let Σ be a Lipschitz domain properly contained in $\mathbb{S}^{N-1}, R \in(0,1]$ and let $u \geq 0$ be a distributional solution to (2.2). Assume that there exists $\gamma \leq 1$ such that

$$
u \in L^{2}\left(\mathcal{C}_{\Sigma}^{R} ;|x|^{-2}|\log | x| |^{-2 \gamma} d x\right), \quad \alpha \geq \frac{1}{4}-(1-\gamma)^{2}
$$

Then $u=0$ almost everywhere in \mathcal{C}_{Σ}^{R}.

Proof. We introduce the first eigenfunction $\Phi \in C^{2}(\Sigma) \cap C(\bar{\Sigma})$ of the LaplaceBeltrami operator $-\Delta_{\sigma}$ in Σ. Thus Φ is positive in Σ and Φ solves

$$
\begin{cases}-\Delta_{\sigma} \Phi=\lambda_{1}(\Sigma) \Phi & \text { in } \Sigma \tag{2.3}\\ \Phi=0 & \text { on } \partial \Sigma\end{cases}
$$

Let $u \in L^{2}\left(\mathcal{C}_{\Sigma}^{R} ;\left.|x|^{-2}|\log | x\right|^{-2 \gamma} d x\right)$ be as in the statement, and put $a_{R}=$ $|\log R|$. We let $T u \in L^{2}\left(I_{a_{R}} \times \Sigma ; s^{-2 \gamma} d s d \sigma\right)$ be the Emden-Fowler transform, as in (1.13). We further let $\psi \in L^{2}\left(I_{a_{R}} ; s^{-2 \gamma} d s\right)$ defined as

$$
\psi(s)=\int_{\Sigma}(T u)(s, \sigma) \Phi(\sigma) d \sigma
$$

Next, for $\varphi \in C_{c}^{\infty}\left(I_{a_{R}}\right)$ being an arbitrary non-negative test function, we put

$$
\begin{equation*}
\tilde{\varphi}(x)=|x|^{\frac{2-N}{2}} \varphi(|\log | x \mid) \Phi\left(\frac{x}{|x|}\right) . \tag{2.4}
\end{equation*}
$$

In essence, our aim is to test (2.2) with $\tilde{\varphi}$ to prove that ψ satisfies (0.4) in $I_{a_{R}}$. To be more rigorous, we use a density argument to approximate Φ in $W^{2,2}(\Sigma) \cap H_{0}^{1}(\Sigma)$ by a sequence of smooth maps $\Phi_{n} \in C_{c}^{\infty}(\Sigma)$. Then we define $\tilde{\varphi}_{n}$ accordingly with (2.4), in such a way that $T \tilde{\varphi}_{n}=\varphi \Phi_{n}$. By direct computation we get

$$
\begin{aligned}
& \int_{\mathcal{C}_{\Sigma}^{R}} u\left(\Delta \tilde{\varphi}_{n}+\frac{(N-2)^{2}}{4}|x|^{-2} \tilde{\varphi}_{n}\right) d x= \\
& \int_{a_{R}}^{\infty} \int_{\Sigma}(T u) \varphi^{\prime \prime} \Phi_{n} d \sigma d s \\
&+\int_{a_{R}}^{\infty} \int_{\Sigma}(T u) \varphi \Delta_{\sigma} \Phi_{n} d \sigma d s \\
& \lambda_{1}(\Sigma) \int_{\mathcal{C}_{\Sigma}^{R}}|x|^{-2} u \tilde{\varphi}_{n} d x=\lambda_{1}(\Sigma) \int_{a_{R}}^{\infty} \int_{\Sigma}(T u) \varphi \Phi_{n} d \sigma d s \\
& \int_{\mathcal{C}_{\Sigma}^{R}}|x|^{-2}|\log | x| |^{-2} u \tilde{\varphi}_{n} d x=\int_{a_{R}}^{\infty} \int_{\Sigma} s^{-2}(T u) \varphi \Phi_{n} d \sigma d s
\end{aligned}
$$

Since $\tilde{\varphi}_{n} \in C_{c}^{\infty}\left(\mathcal{C}_{\Sigma}^{R}\right)$ is an admissible test function for (2.2), using also (2.1) we get

$$
\begin{aligned}
-\int_{a_{R}}^{\infty} \int_{\Sigma}(T u) \varphi^{\prime \prime} \Phi_{n} d \sigma d s & \geq \alpha \int_{a_{R}}^{\infty} \int_{\Sigma} s^{-2}(T u) \varphi \Phi_{n} d \sigma d s \\
& -\int_{a_{R}}^{\infty} \int_{\Sigma}(T u) \varphi\left(\Delta_{\sigma} \Phi_{n}+\lambda_{1}(\Sigma) \Phi_{n}\right) d \sigma d s
\end{aligned}
$$

Since $\Phi_{n} \rightarrow \Phi$ and $\Delta_{\sigma} \Phi_{n}+\lambda_{1}(\Sigma) \Phi_{n} \rightarrow 0$ in $L^{2}(\Sigma)$, we conclude that

$$
-\int_{a_{R}}^{\infty} \varphi^{\prime \prime} \psi d s \geq \alpha \int_{a_{R}}^{\infty} s^{-2} \varphi \psi d s
$$

By the arbitrariness of φ, we can conclude that ψ is a distributional solution to (0.4). Theorem 1.3 applies to give $\psi \equiv 0$, that is, $u \equiv 0$ in \mathcal{C}_{Σ}^{R}.

The next result extends Theorem 2.1 to cover the case $N=1$. Notice that $\mathbb{R}_{+}=(0, \infty)$ is a cone and $(0,1)$ is a cone-like domain in \mathbb{R}.

Theorem 2.2 Let $R \in(0,1]$ and let $u \geq 0$ be a distributional solution to

$$
-u^{\prime \prime}-\frac{1}{4} t^{-2} u \geq \alpha t^{-2}|\log t|^{-2} u \quad \text { in } \mathcal{D}^{\prime}(0, R)
$$

Assume that there exists $\gamma \leq 1$ such that

$$
u \in L^{2}\left((0, R) ; t^{-2}|\log t|^{-2 \gamma} d t\right), \quad \alpha \geq \frac{1}{4}-(1-\gamma)^{2}
$$

Then $u=0$ almost everywhere in $(0, R)$.
Proof. Write $u(t)=t^{1 / 2} \psi(|\log t|)=t^{1 / 2} \psi(s)$ for a function $\psi \in L^{2}\left(I_{a_{R}} ; s^{-2 \gamma} d s\right)$ and then notice that ψ is a distributional solution to

$$
-\psi^{\prime \prime} \geq \alpha s^{-2} \psi \quad \text { in } \mathcal{D}^{\prime}\left(I_{a_{R}}\right)
$$

The conclusion readily follows from Theorem 1.3.

Remark 2.3 If $\alpha>1 / 4$ then every non-negative solution $u \in L_{\text {loc }}^{1}\left(\mathcal{C}_{\Sigma}^{R}\right)$ to problem (2.2) vanishes by Theorem B.3.

In case $\alpha \leq 1 / 4$ the assumptions on α and on the integrability of u in Theorems 2.1, 2.2 are sharp. Fix $\alpha \leq 1 / 4$, let $\delta_{\alpha}:=(\sqrt{1-4 \alpha}-1) / 2$, and define the function

$$
u_{\alpha}(r \sigma)=r^{\frac{2-N}{2}}|\log r|^{-\delta_{\alpha}} \Phi(\sigma)
$$

Here Φ solves (2.3) if $N \geq 2$. If $N=1$ we agree that $\sigma=1$ and $\Phi \equiv 1$. By direct computations one has that u_{α} solves (2.2). Moreover, if $\gamma \leq 1$ and $R \in(0,1)$ then $u_{\alpha} \in L^{2}\left(\mathcal{C}_{\Sigma}^{R} ;\left.|x|^{-2}|\log | x\right|^{-2 \gamma} d x\right)$ if and only if $\alpha<\frac{1}{4}-(1-\gamma)^{2}$.

Remark 2.4 Nonexistence results for linear inequalities involving the differential operator $-\Delta-\mu\left(\mathcal{C}_{\sigma}\right)|x|^{-2}$ were already obtained in [11].

A Hardy-Leray inequalities on cone-like domains

In this appendix we give a simple proof of an improved Hardy inequality for mappings having support in a cone-like domain. We recall that for $\Sigma \subset \mathbb{S}^{N-1}$ we have set $\mathcal{C}_{\Sigma}^{1}=\{r \sigma \mid r \in(0,1), \sigma \in \Sigma\}$ and $\mu\left(\mathcal{C}_{\Sigma}^{1}\right)=(N-2)^{2} / 4+\lambda_{1}(\Sigma)$.

Proposition A. 1 Let Σ be a domain in \mathbb{S}^{N-1}. Then

$$
\begin{equation*}
\int_{\mathcal{C}_{\Sigma}^{1}}|\nabla u|^{2} d x-\mu\left(\mathcal{C}_{\Sigma}\right) \int_{\mathcal{C}_{\Sigma}^{1}}|x|^{-2}|u|^{2} \geq\left.\frac{1}{4} \int_{\mathcal{C}_{\Sigma}^{1}}|x|^{-2}|\log | x\right|^{-2}|u|^{2} d x \tag{A.1}
\end{equation*}
$$

for any $u \in C_{c}^{\infty}\left(\mathcal{C}_{\Sigma}^{1}\right)$.

Proof. We start by fixing an arbitrary function $v \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Sigma\right)$. We apply the Hardy inequality to the function $v(\cdot, \sigma) \in C_{c}^{\infty}\left(\mathbb{R}_{+}\right)$, for any fixed $\sigma \in \Sigma$, and then we integrate over Σ to get

$$
\int_{0}^{\infty} \int_{\Sigma}\left|v_{s}\right|^{2} d s d \sigma \geq \frac{1}{4} \int_{0}^{\infty} \int_{\Sigma} s^{-2}|v|^{2} d s d \sigma
$$

On the other hand, notice that $v(s, \cdot) \in C_{c}^{\infty}(\Sigma)$ for any $s \in \mathbb{R}_{+}$. Thus, the Poincaré inequality for maps in Σ plainly implies

$$
\int_{0}^{\infty} \int_{\Sigma}\left|\nabla_{\sigma} v\right|^{2} d s d \sigma-\lambda_{1}(\Sigma) \int_{0}^{\infty} \int_{\Sigma}|v|^{2} d s d \sigma \geq 0
$$

Adding these two inequalities we conclude that

$$
\int_{0}^{\infty} \int_{\Sigma}\left[\left|v_{s}\right|^{2}+\left|\nabla_{\sigma} v\right|^{2}\right] d s d \sigma-\lambda_{1}(\Sigma) \int_{0}^{\infty} \int_{\Sigma}|v|^{2} d s d \sigma \geq \frac{1}{4} \int_{0}^{\infty} \int_{\Sigma} s^{-2}|v|^{2} d s d \sigma
$$

for any $v \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Sigma\right)$. We use once more the Emden-Fowler transform T in (1.13) by letting $v:=T u \in C_{c}^{\infty}\left(\mathbb{R}_{+} \times \Sigma\right)$ for $u \in C_{c}^{\infty}\left(\mathcal{C}_{\Sigma}^{1}\right)$. Since

$$
\int_{B_{1}}\left[|\nabla u|^{2}-\frac{(N-2)^{2}}{4}|x|^{-2}|u|^{2}\right] d x=\int_{0}^{\infty} \int_{\mathbb{S}^{N-1}}\left[\left|v_{s}\right|^{2}+\left|\nabla_{\sigma} v\right|^{2}\right] d s d \sigma
$$

then (1.14) readily leads to the conclusion.

Remark A. 2 The arguments we have used to prove Proposition A. 1 and the fact that the best constant in the Hardy inequality for maps in $C_{c}^{\infty}\left(\mathbb{R}_{+}\right)$is not achieved show that the constants in inequality (A.1) are sharp, and not achieved.

Remark A. 3 Notice that for $N \geq 1$, we have $\mathcal{C}_{\mathbb{S}^{N-1}}=\mathbb{R}^{N} \backslash\{0\}$ and $\mu\left(\mathcal{C}_{\mathbb{S}^{N-1}}\right)=$ $(N-2)^{2} / 4$. Thus $A .1$ gives (0.2) for $u \in C_{c}^{\infty}\left(B_{1} \backslash\{0\}\right)$.

In the next proposition we extend the inequality (A.1) to cover the case $N=1$.
Proposition A. 4 It holds that

$$
\int_{0}^{1}\left|u^{\prime}\right|^{2} d t-\frac{1}{4} \int_{0}^{1} t^{-2}|u|^{2} d t \geq \frac{1}{4} \int_{0}^{1} t^{-2}|\log t|^{-2}|u|^{2} d t
$$

for any $u \in C_{c}^{\infty}(0,1)$. The constants are sharp, and not achieved.
Proof. Write $u(t)=t^{1 / 2} \psi(|\log t|)=t^{1 / 2} \psi(s)$ for a function $\psi \in C_{c}^{\infty}\left(\mathbb{R}_{+}\right)$and then apply the Hardy inequality to ψ.

Next, let $\theta \in \mathbb{R}$ be a given parameter and let Σ be a Lipschitz domain in \mathbb{S}^{N-1}, with $N \geq 2$. For an arbitrary $u \in C_{c}^{\infty}\left(\mathcal{C}_{\Sigma}^{1}\right)$ we put $v=|x|^{-\theta / 2} u$. Then the HardyLeray inequality (A.1) and integration by parts plainly imply that

$$
\int_{\mathcal{C}_{\Sigma}^{1}}|x|^{\theta}|\nabla v|^{2} d x-\mu\left(\mathcal{C}_{\Sigma} ; \theta\right) \int_{\mathcal{C}_{\Sigma}^{1}}|x|^{\theta-2}|v|^{2} \geq\left.\frac{1}{4} \int_{\mathcal{C}_{\Sigma}^{1}}|x|^{\theta-2}|\log | x\right|^{-2}|v|^{2} d x
$$

for any $v \in C_{c}^{\infty}\left(\mathcal{C}_{\Sigma}^{1}\right)$, where

$$
\begin{equation*}
\mu\left(\mathcal{C}_{\Sigma} ; \theta\right):=\frac{(N-2+\theta)^{2}}{4}+\lambda_{1}(\Sigma) \tag{A.2}
\end{equation*}
$$

It is well known that

$$
\frac{(N-2+\theta)^{2}}{4}=\inf _{\substack{u \in C_{c}^{\infty}\left(\mathbb{R}^{N} \backslash\{0\}\right) \\ u \neq 0}} \frac{\int_{B_{1}}|x|^{\theta}|\nabla u|^{2} d x}{\int_{B_{1}}|x|^{\theta-2}|u|^{2} d x}
$$

is the Hardy constant relative to the operator $L_{\theta} v=-\operatorname{div}\left(|x|^{\theta} \nabla v\right)$. For the case $N=1$ one can obtain in a similar way the inequality

$$
\int_{0}^{1} t^{\theta}\left|v^{\prime}\right|^{2} d t-\frac{(\theta-1)^{2}}{4} \int_{0}^{1} t^{\theta-2}|v|^{2} d t \geq \frac{1}{4} \int_{0}^{1} t^{\theta-2}|\log t|^{-2}|v|^{2} d t
$$

which holds for any $\theta \in \mathbb{R}$ and for any $v \in C_{c}^{\infty}(0,1)$.

B A general necessary condition

In this appendix we show in particular that a necessary condition for the existence of non-trivial and non-negative solutions to (0.1) and (2.2) is that $\alpha \leq 1 / 4$. We need the following general lemma, which naturally fits into the classical AllegrettoPiepenbrink theory (see for instance [3] and [16]).

Lemma B. 1 Let Ω be a domain in $\mathbb{R}^{N}, N \geq 1$. Let $a \in L_{\text {loc }}^{\infty}(\Omega)$ and $a>0$ in Ω. Assume that $u \in L_{l o c}^{1}(\Omega)$ is a non-negative, non-trivial solution to

$$
-\Delta u \geq a(x) u \quad \mathcal{D}^{\prime}(\Omega) .
$$

Then

$$
\int_{\Omega}|\nabla \phi|^{2} d x \geq \int_{\Omega} a(x)|\phi|^{2} d x, \quad \text { for any } \phi \in C_{c}^{\infty}(\Omega)
$$

Proof. Let $A \subset \Omega$ be a measurable set such that $|A|>0$ and $u>0$ in A. Fix any function $\phi \in C_{c}^{\infty}(\Omega)$ and choose a domain $\widetilde{\Omega} \subset \subset \Omega$ such that $|\widetilde{\Omega} \cap A|>0$ and $\phi \in C_{c}^{\infty}(\widetilde{\Omega})$. For any integer k large enough put $f_{k}=\min \{a(x) u, k\} \in L^{\infty}(\widetilde{\Omega})$. Let $v_{k} \in H_{0}^{1}(\widetilde{\Omega})$ be the unique solution to

$$
\begin{cases}-\Delta v_{k}=f_{k} & \text { in } \widetilde{\Omega}, \tag{B.1}\\ v_{k}=0 & \text { on } \partial \widetilde{\Omega} .\end{cases}
$$

Notice that $v \in C^{1, \beta}(\widetilde{\Omega})$ for any $\beta \in(0,1)$. Since for k large enough the function f_{k} is non-negative and non-trivial then $v \geq 0$. Actually it turns out that $v^{-1} \in L_{l o c}^{\infty}(\widetilde{\Omega})$ by the Harnack inequality. Finally, a convolution argument and the maximum principle plainly give

$$
\begin{equation*}
u \geq v_{k}>0 \quad \text { almost everywhere in } \widetilde{\Omega} . \tag{B.2}
\end{equation*}
$$

Since $v_{k}^{-1} \phi \in L^{\infty}(\widetilde{\Omega})$ then we can use $v_{k}^{-1} \phi^{2}$ as test function for (B.1) to get

$$
\int_{\Omega} \nabla v_{k} \cdot \nabla\left(v_{k}^{-1} \phi^{2}\right) d x=\int_{\Omega} f_{k} v_{k}^{-1} \phi^{2} d x \geq \int_{\Omega} f_{k} u^{-1} \phi^{2} d x
$$

by (B.2). Since $\nabla v_{k} \cdot \nabla\left(v_{k}^{-1} \phi^{2}\right)=|\nabla \phi|^{2}-\left|v_{k} \nabla\left(v_{k}^{-1} \phi\right)\right|^{2} \leq|\nabla \phi|^{2}$, we readily infer

$$
\int_{\Omega}|\nabla \phi|^{2} d x \geq \int_{\Omega} f_{k} u^{-1} \phi^{2} d x
$$

and Fatou's lemma implies that

$$
\int_{\Omega}|\nabla \phi|^{2} d x \geq \int_{\Omega} a(x) \phi^{2} d x
$$

The conclusion readily follows.
The sharpness of the constants in (0.2) (compare with Remark A.2) and Lemma B. 1 plainly imply the following result.

Theorem B. 2 Let $N \geq 1, R \in(0,1]$ and $c, \alpha \geq 0$. Let $u \in L_{l o c}^{1}\left(B_{R} \backslash\{0\}\right)$ be a non-negative distributional solution to

$$
-\Delta u-c|x|^{-2} u \geq\left.\alpha|x|^{-2}|\log | x\right|^{-2} u \quad \text { in } \mathcal{D}^{\prime}\left(B_{R} \backslash\{0\}\right) .
$$

i) If $c>\frac{(N-2)^{2}}{4}$ then $u \equiv 0$.
ii) If $c=\frac{(N-2)^{2}}{4}$ and $\alpha>\frac{1}{4}$ then $u \equiv 0$.

We notice that proposition i) in Theorem B. 2 was already proved in [4] (see also [10]).

Finally, from Remark A. 2 and Lemma B.1, we obtain the next nonexistence result.

Theorem B. 3 Let Σ be a domain properly contained in $\mathbb{S}^{N-1}, R \in(0,1]$ and $c, \alpha \geq$ 0. Let $u \in L_{\text {loc }}^{1}\left(\mathcal{C}_{\Sigma}^{R}\right)$ be a non-negative distributional solution to

$$
-\Delta u-c|x|^{-2} u \geq \alpha|x|^{-2}|\log | x| |^{-2} u \quad \text { in } \mathcal{D}^{\prime}\left(\mathcal{C}_{\Sigma}^{R}\right)
$$

i) If $c>\mu\left(\mathcal{C}_{\Sigma}\right)$ then $u \equiv 0$.
ii) If $c=\mu\left(\mathcal{C}_{\Sigma}\right)$ and $\alpha>\frac{1}{4}$ then $u \equiv 0$.

C Extensions

In this appendix we state some nonexistence theorems that can proved by using a suitable functional change $u \mapsto \psi$ and Theorem 1.3. We shall also point out some corollaries of our main results.

C. 1 The k-improved weights

We define a sequence of radii $R_{k} \rightarrow 0$ by setting $R_{1}=1, R_{k}=e^{-\frac{1}{R_{k-1}}}$. Then we use induction again to define two sequences of radially symmetric weights $X_{k}(x) \equiv$ $X_{k}(|x|)$ and z_{k} in $B_{R_{k}}$ by setting $X_{1}(|x|)=|\log | x| |^{-1}$ for $|x|<1=R_{1}$ and

$$
X_{k+1}(|x|)=X_{k}\left(\left.|\log | x\right|^{-1}\right), \quad z_{k}(x)=|x|^{-1} \prod_{i=1}^{k} X_{i}(|x|)
$$

for all $x \in B_{R_{k}} \backslash\{0\}$. It can be proved by induction that z_{k} is well defined on $B_{R_{k}}$ and $z_{k} \in L_{\mathrm{loc}}^{2}\left(B_{R_{k}}\right)$. We are interested in distributional solutions to

$$
\begin{equation*}
-\Delta u-\frac{(N-2)^{2}}{4}|x|^{-2} u \geq \alpha z_{k}^{2} u \quad \mathcal{D}^{\prime}\left(B_{R} \backslash\{0\}\right) \tag{C.1}
\end{equation*}
$$

for $R \in\left(0, R_{k}\right]$. The next result includes Theorem 0.1 by taking $k=1$.
Theorem C. 1 Let $k \geq 1, R \in\left(0, R_{k}\right]$ and let $u \geq 0$ be a distributional solution to (C.1). Assume that there exists $\gamma \leq 1$ such that

$$
u \in L_{\mathrm{loc}}^{2}\left(B_{R} ; z_{k}^{2} X_{k}^{2(\gamma-1)} d x\right), \quad \alpha \geq \frac{1}{4}-(1-\gamma)^{2} .
$$

Then $u=0$ almost everywhere in B_{R}.
Proof. We start by introducing the $k^{\text {th }}$ Emden-Fowler transform $u \mapsto T_{k} u$,

$$
u(x)=z_{k}(|x|)^{-\frac{1}{2}}|x|^{\frac{1-N}{2}} X_{k}(|x|)^{\frac{1}{2}}\left(T_{k} u\right)\left(X_{k}(|x|)^{-1}, \frac{x}{|x|}\right) .
$$

Notice that for any $R<R_{k}$ it results

$$
\begin{equation*}
\int_{B_{R}} z_{k}^{2} X_{k}^{2(\gamma-1)}|u|^{2} d x=\int_{X_{k}(R)^{-1}}^{\infty} s^{-2 \gamma} \int_{\mathbb{S}^{N-1}}\left|T_{k} u\right|^{2} d s d \sigma \tag{C.2}
\end{equation*}
$$

so that $T_{k} u \in L^{2}\left(I_{a} \times \mathbb{S}^{N-1} ; s^{-2 \gamma} d s d \sigma\right)$ for any $a>X_{k}(R)^{-1}$. This can be easily checked by noticing that $X_{k}^{\prime}=z_{k} X_{k}$. Next we set

$$
\psi_{u}(s):=\int_{\mathbb{S}^{N-1}}\left(T_{k} u\right)(s, \sigma) d \sigma
$$

By (C.2) we have that $\psi \in L^{2}\left(I_{a} ; s^{-2 \gamma} d s\right)$ for any $a>X_{k}(R)^{-1}$. Thanks to Theorem 1.3, to conclude the proof it suffices to show that ψ is a distributional solution to
$-\psi^{\prime \prime} \geq \alpha s^{-2} \psi$ in the interval $I_{\tilde{a}}$, where $\tilde{a}=X_{k}(R)^{-1}$. To this end, fix any test function $\varphi \in C^{\infty}\left(I_{\tilde{a}}\right)$, and define the radially symmetric mapping $\tilde{\varphi} \in C_{c}^{\infty}\left(B_{R} \backslash\{0\}\right)$ such that $T_{k} \tilde{\varphi}=\varphi$. By direct computation one can prove that

$$
\Delta \tilde{\varphi}+\frac{(N-2)^{2}}{4}|x|^{-2} \tilde{\varphi}=\omega \tilde{\varphi}+|x|^{\frac{1-N}{2}} z_{k}^{\frac{3}{2}} X_{k}^{-\frac{3}{2}} \varphi^{\prime \prime}\left(X_{k}(|x|)^{-1}\right)
$$

where $\omega \equiv 0$ if $k=1$, and

$$
\omega=\frac{1}{2}\left[\left(\sum_{i=1}^{k-1} z_{i}\right)^{2}-\frac{1}{2} \sum_{i=1}^{k-1} z_{i}^{2}\right]
$$

if $k \geq 2$. Since $\omega \geq 0$ then

$$
\int_{B_{R}} u\left(\Delta \tilde{\varphi}+\frac{(N-2)^{2}}{4}|x|^{-2} \tilde{\varphi}\right) d x \geq \int_{\tilde{a}}^{\infty} \psi \varphi^{\prime \prime} d s
$$

provided that φ is non-negative. In addition it results

$$
\int_{B_{R}} z_{k}^{2} u \tilde{\varphi} d x=\int_{\tilde{a}}^{\infty} s^{-2} \psi \varphi d s
$$

Since φ was arbitrarily chosen, the conclusion readily follows.
By similar arguments as above and in Section 2, we can prove a nonexistence result of positive solutions to the problem

$$
\begin{equation*}
-\Delta u-\mu\left(\mathcal{C}_{\Sigma}\right)|x|^{-2} u \geq \alpha z_{k}^{2} u \quad \mathcal{D}^{\prime}\left(\mathcal{C}_{\Sigma}^{R}\right) \tag{C.3}
\end{equation*}
$$

where \mathcal{C}_{Σ} is a Lipschitz proper cone in $\mathbb{R}^{N}, N \geq 1$, and $C_{\Sigma}^{R}=\mathcal{C}_{\Sigma} \cap B_{R}$. We shall skip the proof the following result.

Theorem C. 2 Let $k \geq 1, R \in\left(0, R_{k}\right]$ and let $u \geq 0$ be a distributional solution to (C.3). Assume that there exists $\gamma \leq 1$ such that

$$
u \in L^{2}\left(\mathcal{C}_{\Sigma}^{R} ; z_{k}^{2} X_{k}^{2(\gamma-1)} d x\right), \quad \alpha \geq \frac{1}{4}-(1-\gamma)^{2}
$$

Then $u=0$ almost everywhere in \mathcal{C}_{Σ}^{R}.
Some related improved Hardy inequalities involving the weight z_{k} and which motivate the interest of problems (C.1) and (C.3) can be found in [2], [8], [12] and also [5].

C. 2 Exterior cone-like domains

The Kelvin transform

$$
u(x) \mapsto|x|^{2-N} u\left(\frac{x}{|x|^{2}}\right)
$$

can be used to get nonexistence results for exterior domains in \mathbb{R}^{N}.
Let Σ be a domain in $\mathbb{S}^{N-1}, N \geq 2$, and let \mathcal{C}_{Σ} be the cone defined in Section 2. We recall that $\mu\left(\mathcal{C}_{\Sigma}\right)=(N-2)^{2} / 4+\lambda_{1}(\Sigma)$. Since the inequality in (0.1) is invariant with respect to the Kelvin transform, then Theorems 0.1 and 2.1 readily lead to the following nonexistence result.

Theorem C. 3 Let Σ be a Lipschitz domain in \mathbb{S}^{N-1}, with $N \geq 2$. Let $R>1$, $\alpha \in \mathbb{R}$ and let $u \geq 0$ be a distributional solution to

$$
-\Delta u-\mu\left(\mathcal{C}_{\Sigma}\right)|x|^{-2} u \geq \alpha|x|^{-2}|\log | x \|^{-2} u \quad \text { in } \mathcal{D}^{\prime}\left(\mathcal{C}_{\Sigma} \backslash \bar{B}_{R}\right)
$$

Assume that there exists $\gamma \leq 1$ such that

$$
u \in L^{2}\left(\mathcal{C}_{\Sigma} \backslash \bar{B}_{R} ;|x|^{-2}|\log | x| |^{-2 \gamma} d x\right), \quad \alpha \geq \frac{1}{4}-(1-\gamma)^{2} .
$$

Then $u=0$ almost everywhere in $\mathcal{C}_{\Sigma} \backslash \bar{B}_{R}$.

A similar statement holds in case $N=1$ for ordinary differential inequalities in unbounded intervals $(R, 0)$ with $R>0$, and for problems involving the weight z_{k}^{2}.

C. 3 Degenerate elliptic operators

Let $\theta \in \mathbb{R}$ be a given real parameter. We notice that u is a distributional solution to (2.2) if and only if $v=|x|^{-\theta / 2} u$ is a distributional solution to

$$
\begin{equation*}
-\operatorname{div}\left(|x|^{\theta} \nabla v\right)-\mu\left(\mathcal{C}_{\Sigma} ; \theta\right)|x|^{\theta-2} v \geq \frac{1}{4}|x|^{\theta-2}|\log | x| |^{-2} v \quad \text { in } \mathcal{D}^{\prime}\left(\mathcal{C}_{\Sigma}^{R}\right) \tag{C.4}
\end{equation*}
$$

where $\mu\left(\mathcal{C}_{\Sigma} ; \theta\right)$ is defined in Remark A.2. Therefore Theorem 0.1 and Theorem 2.1 imply the following nonexistence result for linear inequalities involving the weighted Laplace operator $L_{\theta} v=-\operatorname{div}\left(|x|^{\theta} \nabla v\right)$.

Theorem C. 4 Let Σ be a Lipschitz domain in \mathbb{S}^{N-1}. Let $\theta \in \mathbb{R}, R \in(0,1], \alpha \in \mathbb{R}$ and let $v \geq 0$ be a distributional solution to (C.4). Assume that there exists $\gamma \leq 1$ such that

$$
v \in L^{2}\left(\mathcal{C}_{\Sigma}^{R} ;\left.|x|^{\theta-2}|\log | x\right|^{-2 \gamma} d x\right), \quad \alpha \geq \frac{1}{4}-(1-\gamma)^{2} .
$$

Then $v=0$ almost everywhere in \mathcal{C}_{Σ}^{R}.
A nonexistence result for the operator $-\operatorname{div}\left(|x|^{\theta} \nabla v\right)$ similar to Theorem C. 3 or to Theorem C. 1 can be obtained from Theorem C.4, via suitable functional changes.

References

[1] Adimurthi and K. Sandeep, Existence and nonexistence of the first eigenvalue of the perturbed Hardy-Sobolev operator, Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), no. 5, 1021-1043.
[2] Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its application, Proc. Amer. Math. Soc. 130 (2002), no. 2, 489505.
[3] W. Allegretto, On the equivalence of two types of oscillation for elliptic operators, Pacific J. Math. 55 (1974), 319-328.
[4] P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), no. 1, 121-139.
[5] G. Barbitas, S. Filippas and A. Tertikas, Series Expansion for L^{p} Hardy Inequalities, Indiana University Mathematics Journal 52 (2003), no. 1, 171-190.
[6] I. Birindelli and E. Mitidieri, Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 6, 1217-1247.
[7] H. Brezis, L. Dupaigne and A. Tesei, On a semilinear elliptic equation with inverse-square potential, Selecta Math. (N.S.) 11 (2005), no. 1, 1-7.
[8] N. Chaudhuri, Bounds for the best constant in an improved Hardy-Sobolev inequality, Z. Anal. Anwendungen 22 (2003), no. 4, 757-765.
[9] J. Dávila and L. Dupaigne, Comparison results for PDEs with a singular potential, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 1, 61-83.
[10] L. Dupaigne, A nonlinear elliptic PDE with the inverse square potential, J. Anal. Math. 86 (2002), 359-398.
[11] M.M. Fall R. Musina, Hardy-Poincaré inequalities with boundary singularities. Prépublication Département de Mathématique Université Catholique de Louvain-La-Neuve 364 (2010), http://www.uclouvain.be/38324.html.
[12] N. Ghoussoub and A. Moradifam, On the best possible remaining term in the Hardy inequality, Proc. Natl. Acad. Sci. USA 105 (2008), no. 37, 13746-13751.
[13] K. T. Gkikas, Existence and nonexistence of energy solutions for linear elliptic equations involving Hardy-type potentials, Indiana Univ. Math. J. 58 (2009), no. 5, 2317-2345.
[14] J. Leray, Étude de diverses équations integrales nonlinéaires et de quelques problèmes que pose l'hydrodinamique, J. Math. Pures Appl. 9 (12) (1933), 1-82.
[15] Y. Pinchover and K. Tintarev, Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy's inequality, Indiana Univ. Math. J. 54 (2005), no. 4, 1061-1074.
[16] J. Piepenbrink, Nonoscillatory elliptic equations, J. Differential Equations 15 (1974), 541-550.

[^0]: *Université Catholique de Louvain-La-Neuve, Département de Mathématique. Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgique. E-mail: mouhamed.fall@uclouvain.be.
 ${ }^{\dagger}$ Dipartimento di Matematica ed Informatica, Università di Udine, via delle Scienze, 206 - 33100 Udine, Italy. E-mail: musina@dimi.uniud.it.

