Sharp nonexistence results for a linear elliptic inequality involving Hardy and Leray potentials

Mouhamed Moustapha Fall^{*} and Roberta Musina[†]

Abstract. In this paper we deal with non-negative distributional supersolutions for a class of linear elliptic equations involving inverse-square potentials and logarithmic weights. We prove sharp nonexistence results.

Key Words: Hardy inequality, logarithmic weights, nonexistence.2000 Mathematics Subject Classification: 35J20, 35J70, 35B33

^{*}Université Catholique de Louvain-La-Neuve, Département de Mathématique. Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgique. E-mail: mouhamed.fall@uclouvain.be.

[†]Dipartimento di Matematica ed Informatica, Università di Udine, via delle Scienze, 206 – 33100 Udine, Italy. E-mail: musina@dimi.uniud.it.

Introduction

In recent years a great deal work has been made to find necessary and sufficient conditions for the existence of distributional supersolutions to semilinear elliptic equations with inverse-square potentials. We quote for instance [7] (and the references therein), where a problem related to the Hardy and Sobolev inequalities has been studied. In the present paper we are interested in a class of linear elliptic equations.

Let $N \geq 2$ be an integer, $R \in (0, 1]$ and let B_R be the ball in \mathbb{R}^N of radius R centered at 0. We focus our attention on non-negative distributional solutions to

(0.1)
$$-\Delta u - \frac{(N-2)^2}{4} |x|^{-2} u \ge \alpha |x|^{-2} |\log |x||^{-2} u \quad \text{in } \mathcal{D}'(B_R \setminus \{0\}),$$

where $\alpha \in \mathbb{R}$ is a varying parameter. By a standard definition, a solution to (0.1) is a function $u \in L^1_{loc}(B_R \setminus \{0\})$ such that

$$-\int_{B_R} u\Delta\varphi \, dx - \frac{(N-2)^2}{4} \int_{B_R} |x|^{-2} u\varphi \, dx \ge \alpha \int_{B_R} |x|^{-2} |\log |x||^{-2} u\varphi \, dx$$

for any non-negative $\varphi \in C_c^{\infty}(B_R \setminus \{0\})$. Problem (0.1) is motivated by the inequality

(0.2)
$$\int_{B_1} |\nabla u|^2 \, dx - \frac{(N-2)^2}{4} \int_{B_1} |x|^{-2} |u|^2 \ge \frac{1}{4} \int_{B_1} |x|^{-2} |\log |x||^{-2} |u|^2 \, dx \, ,$$

which holds for any $u \in C_c^{\infty}(B_1 \setminus \{0\})$ (see for example [2], [5], [8], [12] and Appendix A). Notice that (0.2) improves the Hardy inequality for maps supported by the unit ball if $N \geq 3$. Inequality (0.2) was firstly proved by Leray [14] in the lower dimensional case N = 2.

Due to the sharpness of the constants in (0.2), a necessary and sufficient condition for the existence of non-trivial and non-negative solutions to (0.1) is that $\alpha \leq 1/4$ (compare with Theorem B.2 in Appendix B and with Remark 1.5).

In case $\alpha \leq 1/4$ we provide necessary conditions on the parameter α to have the existence of non-trivial solutions satisfying suitable integrability properties.

Theorem 0.1 Let $R \in (0,1]$ and let $u \ge 0$ be a distributional solution to (0.1). Assume that there exists $\gamma \le 1$ such that

$$u \in L^2_{\text{loc}}(B_R; |x|^{-2} |\log |x||^{-2\gamma} dx) , \quad \alpha \ge \frac{1}{4} - (1-\gamma)^2 .$$

Then u = 0 almost everywhere in B_R .

We remark that Theorem 0.1 is sharp, in view of the explicit counter-example in Remark 1.5.

Let us point out some consequences of Theorem 0.1. We use the Hardy-Leray inequality (0.2) to introduce the space $\widetilde{H}_0^1(B_1)$ as the closure of $C_c^{\infty}(B_1 \setminus \{0\})$ with respect to the scalar product

$$\langle u, v \rangle = \int_{B_1} \nabla u \cdot \nabla v \, dx - \frac{(N-2)^2}{4} \int_{B_1} |x|^{-2} uv \, dx$$

(see for example [9]). It turns out that $\widetilde{H}_0^1(B_1)$ strictly contains the standard Sobolev space $H_0^1(B_1)$, unless N = 2.

Take $\gamma = 1$ in Theorem 0.1. Then problem (0.1) has no non-trivial and nonnegative solutions $u \in L^2_{\text{loc}}(B_R; |x|^{-2} |\log |x||^{-2} dx)$ if $\alpha = 1/4$. Therefore, if in the dual space $\widetilde{H}^1_0(B_R)'$, a function $u \in \widetilde{H}^1_0(B_R)$ solves

$$\begin{cases} -\Delta u - \frac{(N-2)^2}{4} |x|^{-2} u \ge \frac{1}{4} |x|^{-2} |\log |x||^{-2} u & \text{in } B_R \\ u \ge 0, \end{cases}$$

then u = 0 in B_R .

Next take $\gamma = 0$ and $\alpha \ge -3/4$. From Theorem 0.1 it follows that problem (0.1) has no non-trivial and non-negative solutions $u \in L^2_{loc}(B_R; |x|^{-2} dx)$. In particular, if $N \ge 3$ and if $u \in H^1_0(B_R) \hookrightarrow L^2(B_R; |x|^{-2} dx)$ is a weak solution to

$$\begin{cases} -\Delta u - \frac{(N-2)^2}{4} |x|^{-2} u \ge -\frac{3}{4} |x|^{-2} |\log |x||^{-2} u & \text{in } B_R \\ u \ge 0, \end{cases}$$

then u = 0 in B_R . Thus Theorem 0.1 improves some of the nonexistence results in [1] and in [13].

The case of boundary singularities has been little studied. In Section 2 we prove sharp nonexistence results for inequalities in cone-like domains in \mathbb{R}^N , $N \ge 1$, having a vertex at 0. A special case concerns linear problems in half-balls. For R > 0 we let $B_R^+ = B_R \cap \mathbb{R}^N_+$, where \mathbb{R}^N_+ is any half-space. Notice that $B_R^+ = (0, R)$ or $B_R^+ = (-R, 0)$ if N = 1. A necessary and sufficient condition for the existence of non-negative and non-trivial distributional solutions to

(0.3)
$$-\Delta u - \frac{N^2}{4} |x|^{-2} u \ge \alpha |x|^{-2} |\log |x||^{-2} u \quad \text{in } \mathcal{D}'(B_R^+)$$

is that $\alpha \leq 1/4$ (see Theorem B.3 and Remark 2.3), and the following result holds.

Theorem 0.2 Let $R \in (0,1]$, $N \ge 1$ and let $u \ge 0$ be a distributional solution to (0.3). Assume that there exists $\gamma \le 1$ such that

$$u \in L^2(B_R^+; |x|^{-2} |\log |x||^{-2\gamma} dx) , \quad \alpha \ge \frac{1}{4} - (1 - \gamma)^2$$

Then u = 0 almost everywhere in B_R^+ .

The key step in our proofs consists in studying the ordinary differential inequality

(0.4)
$$\begin{cases} -\psi'' \ge \alpha s^{-2}\psi & \text{ in } \mathcal{D}'(a,\infty) \\ \psi \ge 0, \end{cases}$$

where a > 0. In our crucial Theorem 1.3 we prove a nonexistence result for (0.4), under suitable weighted integrability assumptions on ψ . Secondly, thanks to an "averaged Emden-Fowler transform", we show that distributional solutions to problems of the form (0.1) and (0.3) give rise to solutions of (0.4), see Section 1.2 and 2 respectively. Our main existence results readily follow from Theorem 1.3. A similar idea, but with a different functional change, was already used in [6] to obtain nonexistence results for a large class of superlinear problems.

In Appendix A we give a simple proof of the Hardy-Leray inequality for maps with support in cone-like domains that includes (0.2) and that motivates our interest in problem (0.3).

Appendix B deals in particular with the case $\alpha > 1/4$. The nonexistence Theorems B.2 and B.3 follow from an Allegretto-Piepenbrink type result (Lemma B.1).

In the last appendix we point out some related results and some consequences of our main theorems.

Notation

We denote by \mathbb{R}_+ the half real line $(0, \infty)$. For a > 0 we put $I_a = (a, \infty)$.

We denote by $|\Omega|$ the Lebesgue measure of the domain $\Omega \subset \mathbb{R}^N$. Let $q \in [1, +\infty)$ and let ω be a non-negative measurable function on Ω . The weighted Lebesgue space $L^q(\Omega; \omega(x) dx)$ is the space of measurable maps u in Ω with finite norm $(\int_{\Omega} |u|^q \omega(x) dx)^{1/q}$. For $\omega \equiv 1$ we simply write $L^q(\Omega)$. We embed $L^q(\Omega; \omega(x) dx)$ into $L^q(\mathbb{R}^N; \omega(x) dx)$ via null extension.

1 Proof of Theorem 0.1

The proof consists of two steps. In the first one we prove a nonexistence result for a class of linear ordinary differential inequalities that might have some interest in itself.

1.1 Nonexistence results for problem (0.4)

We start by fixing some terminologies. Let $\mathcal{D}^{1,2}(\mathbb{R}_+)$ be the Hilbert space obtained via the Hardy inequality

(1.1)
$$\int_0^\infty |v'|^2 \, ds \ge \frac{1}{4} \int_0^\infty s^{-2} |v|^2 \, ds \, , \quad v \in C_c^\infty(\mathbb{R}_+)$$

as the completion of $C_c^{\infty}(\mathbb{R}_+)$ with respect to the scalar product

$$\langle v, w \rangle = \int_0^\infty v' w' \, ds \, .$$

Notice that $\mathcal{D}^{1,2}(\mathbb{R}_+) \hookrightarrow L^2(\mathbb{R}_+; s^{-2} ds)$ with a continuous embedding and moreover $\mathcal{D}^{1,2}(I_a) \subset C^0(\mathbb{R}_+)$ by Sobolev embedding theorem. By Hölder inequality, the space $L^2(\mathbb{R}_+; s^2 ds)$ is continuously embedded into the dual space $\mathcal{D}^{1,2}(\mathbb{R}_+)'$.

Finally, for any a > 0 we put $I_a = (a, \infty)$ and

$$\mathcal{D}^{1,2}(I_a) = \{ v \in \mathcal{D}^{1,2}(\mathbb{R}_+) \mid v(a) = 0 \}.$$

We need two technical lemmata.

Lemma 1.1 Let $f \in L^2(I_a; s^2 ds)$ and $v \in C^2(\mathbb{R}_+) \cap L^2(I_a; s^{-2} ds)$ be a function satisfying v(a) = 0 and

$$(1.2) -v'' \le f in I_a.$$

Put $v^+ := \max\{v, 0\}$. Then $v^+ \in \mathcal{D}^{1,2}(I_a)$ and

(1.3)
$$\int_{a}^{\infty} |(v^{+})'|^{2} ds \leq \int_{a}^{\infty} fv^{+} ds$$

Proof. We first show that $(v^+)' \in L^2(\mathbb{R})$ and that (1.3) holds. Let $\eta \in C_c^{\infty}(\mathbb{R})$ be a cut-off function satisfying

$$0 \le \eta \le 1$$
, $\eta(s) \equiv 1$ for $|s| \le 1$, $\eta(s) \equiv 0$ for $s \ge 2$

and put $\eta_h(s) = \eta(s/h)$. Then $\eta_h v^+ \in \mathcal{D}^{1,2}(I_a)$ and $\eta_h v^+ \ge 0$. Multiply (1.2) by $\eta_h v^+$ and integrate by parts to get

(1.4)
$$\int_{a}^{\infty} \eta_{h} |(v^{+})'|^{2} \, ds - \frac{1}{2} \int_{a}^{\infty} \eta_{h}'' |v^{+}|^{2} \, ds \leq \int_{a}^{\infty} \eta_{h} f v^{+} \, ds \, ds$$

Notice that for some constant c depending only on η it results

$$\left| \int_{a}^{\infty} \eta_{h}'' |v^{+}|^{2} ds \right| \leq c \int_{h}^{2h} s^{-2} |v^{+}|^{2} ds \to 0$$

as $h \to \infty$, since $v^+ \in L^2(I_a; s^{-2} ds)$. Moreover,

$$\int_{a}^{\infty} \eta_{h} f v^{+} \, ds \to \int_{a}^{\infty} f v^{+} \, ds$$

by Lebesgue theorem, as $fv^+ \in L^1(I_a)$ by Hölder inequality. In conclusion, from (1.4) we infer that

(1.5)
$$\int_{a}^{h} |v'_{+}|^{2} ds \leq \int_{a}^{\infty} fv^{+} ds + o(1)$$

since $\eta_h \equiv 1$ on (a, h). By Fatou's Lemma we get that $(v^+)' \in L^2(I_a)$ and (1.3) readily follows from (1.5). To prove that $v^+ \in \mathcal{D}^{1,2}(I_a)$, it is enough to notice that $\eta_h v^+ \to v^+$ in $\mathcal{D}^{1,2}(I_a)$. Indeed,

$$\int_{a}^{\infty} |1 - \eta_{h}|^{2} |(v^{+})'|^{2} \leq \int_{h}^{\infty} |(v^{+})'|^{2} \, ds = o(1)$$
$$\int_{a}^{\infty} |\eta_{h}'|^{2} |v^{+}|^{2} \, ds \leq c \int_{h}^{\infty} s^{-2} |v^{+}|^{2} \, ds = o(1)$$

as $(v^+)' \in L^2(I_a)$ and $v^+ \in L^2(I_a; s^{-2} ds)$.

Through the paper we let (ρ_n) to be a standard mollifier sequence in \mathbb{R} , such that the support of ρ_n is contained in the interval $(-\frac{1}{n}, \frac{1}{n})$.

Lemma 1.2 Let a > 0 and $\psi \in L^2(I_a; s^{-2} ds)$. Then $\rho_n \star \psi \in L^2(I_a; s^{-2} ds)$ and

(1.6)
$$\rho_n \star \psi \to \psi \quad in \ L^2(I_a; s^{-2} \ ds),$$

(1.7)
$$g_n := \rho_n \star (s^{-2}\psi) - s^{-2}(\rho_n \star \psi) \to 0 \quad in \ L^2(I_a; s^2 \ ds) .$$

Proof. We start by noticing that $\rho_n \star \psi \to \psi$ almost everywhere. Then we use Hölder inequality to get

$$s^{-2} |(\rho_n \star \psi)(s)|^2 = s^{-2} \left| \int \rho_n (s-t)^{1/2} \rho_n (s-t)^{1/2} \psi(t) \, dt \right|^2$$

$$\leq s^{-2} \left(\frac{1}{n} + s \right)^2 \int \rho_n (s-t) t^{-2} |\psi(t)|^2 \, dt$$

$$\leq \left(1 + \frac{1}{na} \right)^2 |(\rho_n \star (s^{-2} \psi^2))(s)|$$

for any s > a > 0. Since $s^{-2}\psi^2 \in L^1(I_a)$ then $\rho_n \star (s^{-2}\psi^2) \to s^{-2}\psi^2$ in $L^1(I_a)$. Thus $s^{-1}(\rho_n \star \psi) \to s^{-1}\psi$ in $L^2(I_a)$ by the (generalized) Lebesgue Theorem, and (1.6) follows.

To prove (1.7) we first argue as before to check that

$$s^{2} \left| \int \rho_{n}(s-t)t^{-2}\psi(t) \ dt \right|^{2} \leq \left(1 - \frac{1}{na}\right)^{-2} \left| (\rho_{n} \star (s^{-2}\psi^{2}))(s) \right|$$

for any s > a > 0. Thus $\rho_n \star (s^{-2}\psi)$ converges to $s^{-2}\psi$ in $L^2(I_a; s^2 ds)$ by Lebesgue's Theorem. In addition, $s^{-2}(\rho_n \star \psi) \to s^{-2}\psi$ in $L^2(I_a; s^2 ds)$ by (1.6). Thus $g_n \to 0$ in $L^2(I_a; s^2 ds)$ and the Lemma is completely proved.

The following result for solutions to (0.4) is a crucial step in the proofs of our main theorems.

Theorem 1.3 Let a > 0 and let ψ be a distributional solution to (0.4). Assume that there exists $\gamma \leq 1$ such that

$$\psi \in L^2(I_a; s^{-2\gamma} ds) , \quad \alpha \ge \frac{1}{4} - (1 - \gamma)^2 .$$

Then $\psi = 0$ almost everywhere in I_a .

Proof. We start by noticing that $L^2(I_a; s^{-2\gamma} ds) \hookrightarrow L^2(I_a; s^{-2} ds)$ with a continuous immersion for any $\gamma < 1$. In addition, we point out that we can assume

(1.8)
$$\alpha = \frac{1}{4} - (1 - \gamma)^2$$

Let ρ_n be a standard sequence of mollifiers, and let

$$\psi_n = \rho_n \star \psi$$
, $g_n = \rho_n \star (s^{-2}\psi) - s^{-2}(\rho_n \star \psi)$.

Then $\psi_n \to \psi$ in $L^2(I_a; s^{-2\gamma} ds)$ and almost everywhere, and $g_n \to 0$ in $L^2(I_a; s^2 ds)$ by Lemma 1.2. Moreover, $\psi_n \in C^{\infty}(\overline{I}_a)$ is a non-negative solution to

(1.9)
$$-\psi_n'' \ge \alpha s^{-2}\psi_n + \alpha g_n \quad \text{in } \mathcal{D}'(I_a).$$

We assume by contradiction that $\psi \neq 0$. We let $s_0 \in I_a$ such that $\varepsilon_n := \psi_n(s_0) \rightarrow \psi(s_0) > 0$. Up to a scaling and after replacing g_n with $s_0^2 g_n$, we may assume that $s_0 = 1$. We will show that

(1.10)
$$\varepsilon_n := \psi_n(1) \to \psi(1) > 0$$

leads to a contradiction. We fix a parameter

(1.11)
$$\delta > \frac{1}{2} - \gamma \ge -\frac{1}{2}$$

and for n large we put

$$\varphi_{\delta,n}(s) := \varepsilon_n \, s^{-\delta} \in L^2(I_1; s^{-2\gamma} \, ds) \, .$$

Clearly $\varphi_{\delta,n} \in C^{\infty}(\mathbb{R}_+)$ and one easily verifies that $(\varphi_{\delta,n})_n$ is a bounded sequence in $L^2(I_1; s^{-2\gamma} ds)$ by (1.10) and (1.11). Finally we define

$$v_{\delta,n} = \varphi_{\delta,n} - \psi_n = \varepsilon_n s^{-\delta} - \psi_n,$$

so that $v_{\delta,n} \in L^2(I_1; s^{-2\gamma} ds)$ and $v_{\delta,n}(1) = 0$. In addition $v_{\delta,n}$ solves

(1.12)
$$-v_{\delta,n}'' \leq \alpha s^{-2} v_{\delta,n} - c_{\delta} \varepsilon_n s^{-2-\delta} - \alpha g_n \quad \text{in } I_1,$$

where $c_{\delta} := \delta(\delta + 1) + \alpha = \delta(\delta + 1) + 1/4 - (1 - \gamma)^2$. Notice that $c_{\delta} > 0$ and that all the terms in the right hand side of (1.12) belong to $L^2(I_1; s^2 ds)$, by (1.11). Thus Lemma 1.1 gives $v_{\delta,n}^+ \in \mathcal{D}^{1,2}(I_1)$ and

$$\int_{1}^{\infty} |(v_{\delta,n}^{+})'|^2 ds \le \alpha \int_{1}^{\infty} s^{-2} |v_{\delta,n}^{+}|^2 ds - c_{\delta} \varepsilon_n \int_{1}^{\infty} s^{-2-\delta} v_{\delta,n}^{+} ds + o(1) ,$$

since $v_{\delta,n}^+$ is bounded in $L^2(I_1; s^{-2} ds)$ and $g_n \to 0$ in $L^2(I_1; s^2 ds)$. By (1.8) and Hardy's inequality (1.1), we conclude that

$$(1-\gamma)^2 \int_1^\infty s^{-2} |v_{\delta,n}^+|^2 + c_\delta \varepsilon_n \int_1^\infty s^{-2-\delta} v_{\delta,n}^+ \, ds = o(1) \, .$$

Thus, for any fixed δ we get that $v_{\delta,n}^+ \to 0$ almost everywhere in I_1 as $n \to \infty$, since $\varepsilon_n c_{\delta}$ is bounded away from 0 by (1.10). Finally we notice that

$$\psi_n = \varphi_{\delta,n} - v_{\delta,n} \ge \varepsilon_n s^{-\delta} - v_{\delta,n}^+$$

Since $\psi_n \to \psi$ and $v_{\delta,n}^+ \to 0$ almost everywhere in I_1 , and since $\varepsilon_n \to \psi(1) > 0$, we infer that $\psi \ge \psi(1)s^{-\delta}$ in I_1 . This conclusion clearly contradicts the assumption $\psi \in L^2(I_1; s^{-2\gamma} ds)$, since $\delta > 1/2 - \gamma$ was arbitrarily chosen. Thus (1.10) cannot hold and the proof is complete.

Remark 1.4 If $\alpha > 1/4$ then every non-negative solution $\psi \in L^1_{loc}(I_a)$ to problem (0.4) vanishes. This is an immediate consequence of Lemma B.1 in Appendix B and the sharpness of the constant 1/4 in the Hardy inequality (1.1).

1.2 Conclusion of the proof

We will show that any non-negative distributional solution u to problem (0.1) gives rise to a function ψ solving (0.4), and such that $\psi = 0$ if and only if u = 0. To this aim, we introduce the Emden-Fowler transform $u \mapsto Tu$ by letting

(1.13)
$$u(x) = |x|^{\frac{2-N}{2}} (Tu) \left(\left| \log |x| \right|, \frac{x}{|x|} \right).$$

By change of variable formula, for any $R' \in (0, R)$ it results

(1.14)
$$\int_{B_{R'}} |x|^{-2} |\log |x||^{-2\gamma} |u|^2 \, dx = \int_{|\log R'|}^{\infty} \int_{\mathbb{S}^{N-1}} s^{-2\gamma} |Tu|^2 \, ds d\sigma \,,$$

so that $Tu \in L^2(I_a \times \mathbb{S}^{N-1}; s^{-2\gamma} dsd\sigma)$ for any $a > a_R := |\log R|$. Now, for an arbitrary $\varphi \in C_c^{\infty}(I_{a_R})$ we define the radially symmetric function $\tilde{\varphi} \in C_c^{\infty}(B_R)$ by setting

$$\tilde{\varphi}(x) = |x|^{\frac{2-N}{2}}\varphi(|\log|x||)$$

so that $\varphi = T\tilde{\varphi}$. By direct computations we get

(1.15)
$$\int_{B_R} u(\Delta \tilde{\varphi} + \frac{(N-2)^2}{4} |x|^{-2} \tilde{\varphi}) \, dx = \int_{a_R}^{\infty} \varphi'' \int_{\mathbb{S}^{N-1}} Tu \, d\sigma ds$$

(1.16)
$$\int_{B_R} |x|^{-2} |\log |x||^{-2} u\tilde{\varphi} \, dx = \int_{a_R}^{\infty} s^{-2} \varphi \int_{\mathbb{S}^{N-1}} Tu \, d\sigma ds \, .$$

Thus we are led to introduce the function ψ defined in I_{a_R} by setting

$$\psi(s) = \int_{\mathbb{S}^{N-1}} (Tu)(s,\sigma) \, d\sigma \, .$$

We notice that $\psi \in L^2(I_a; s^{-2\gamma} ds)$ for any $a > a_R$, since

$$\int_a^\infty s^{-2\gamma} |\psi|^2 \ ds \le \left|\mathbb{S}^{N-1}\right| \int_a^\infty \int_{\mathbb{S}^{N-1}} s^{-2\gamma} |Tu|^2 \ ds d\sigma$$

by Hölder inequality. Moreover, from (1.15) and (1.16) it immediately follows that $\psi \ge 0$ is a distributional solution to

$$-\psi'' \ge \alpha s^{-2}\psi$$
 in $\mathcal{D}'(I_{a_R})$.

By Theorem 1.3 we infer that $\psi = 0$ in I_{a_R} , and hence u = 0 in B_R . The proof of Theorem 0.1 is complete.

Remark 1.5 The assumption on the integrability of u in Theorem 0.1 are sharp. If $\alpha > 1/4$ use the results in Appendix B. For $\alpha \le 1/4$ put $\delta_{\alpha} := (\sqrt{1-4\alpha}-1)/2$ and notice that the function $u_{\alpha}: B_1 \to \mathbb{R}$ defined by

$$u_{\alpha}(x) = |x|^{\frac{2-N}{2}} |\log |x||^{-\delta_{\alpha}}$$

solves

$$-\Delta u_{\alpha} - \frac{(N-2)^2}{4} |x|^{-2} u_{\alpha} = \alpha |x|^{-2} |\log |x||^{-2} u_{\alpha} \quad in \ \mathcal{D}'(B_1 \setminus \{0\}).$$

Moreover, if $\gamma \leq 1$ then

$$u_{\alpha} \in L^{2}_{\text{loc}}(B_{1}; |x|^{-2} |\log |x||^{-2\gamma} dx)$$
 if and only if $\alpha < \frac{1}{4} - (1 - \gamma)^{2}$.

2 Cone-like domains

Let $N \geq 2$. To any Lipschitz domain $\Sigma \subset \mathbb{S}^{N-1}$ we associate the *cone*

$$\mathcal{C}_{\Sigma} := \left\{ r\sigma \in \mathbb{R}^N \mid \sigma \in \Sigma \ , \ r > 0 \right\}$$

For any given R > 0 we introduce also the *cone-like* domain

$$\mathcal{C}_{\Sigma}^{R} := \mathcal{C}_{\Sigma} \cap B_{R} = \left\{ r\sigma \in \mathbb{R}^{N} \mid r \in (0, R) , \sigma \in \Sigma \right\}.$$

Notice that $\mathcal{C}_{\mathbb{S}^{N-1}} = \mathbb{R}^N \setminus \{0\}$ and $\mathcal{C}^R_{\mathbb{S}^{N-1}} = B_R \setminus \{0\}$. If Σ is an half-sphere \mathbb{S}^{N-1}_+ then $\mathcal{C}_{\mathbb{S}^{N-1}_+}$ is an half-space \mathbb{R}^N_+ and $\mathcal{C}^R_{\mathbb{S}^{N-1}_+}$ is an half-ball B^+_R , as in Theorem 0.2.

Assume that Σ is properly contained in \mathbb{S}^{N-1} . Then we let $\lambda_1(\Sigma) > 0$ to be the first eigenvalue of the Laplace operator on Σ . If $\Sigma = \mathbb{S}^{N-1}$ we put $\lambda_1(\mathbb{S}^{N-1}) = 0$. It has been noticed in [15], [11], that

(2.1)
$$\mu(\mathcal{C}_{\Sigma}) := \inf_{\substack{u \in C_c^{\infty}(\mathcal{C}_{\Sigma}) \\ u \neq 0}} \frac{\int_{\mathcal{C}_{\Sigma}} |\nabla u|^2 \, dx}{\int_{\mathcal{C}_{\Sigma}} |x|^{-2} |u|^2 \, dx} = \frac{(N-2)^2}{4} + \lambda_1(\Sigma) \, .$$

The infimum $\mu(\mathcal{C})$ is the best constant in the Hardy inequality for maps having compact support in \mathcal{C}_{Σ} . In particular, for any half-space \mathbb{R}^N_+ it holds that

$$\mu(\mathbb{R}^N_+) = \frac{N^2}{4}$$

The aim of this section is to study the elliptic inequality

(2.2)
$$-\Delta u - \mu(\mathcal{C}_{\Sigma})|x|^{-2} u \ge \alpha |x|^{-2} |\log |x||^{-2} u \quad \text{in } \mathcal{D}'(\mathcal{C}_{\Sigma}^R).$$

Notice that (2.2) reduces to (0.1) if $\Sigma = \mathbb{S}^{N-1}$. Problem (2.2) is related to an improved Hardy inequality for maps supported in cone-like domains which will be discussed in Appendix A.

Theorem 2.1 Let Σ be a Lipschitz domain properly contained in \mathbb{S}^{N-1} , $R \in (0,1]$ and let $u \ge 0$ be a distributional solution to (2.2). Assume that there exists $\gamma \le 1$ such that

$$u \in L^2(\mathcal{C}^R_{\Sigma}; |x|^{-2} |\log |x||^{-2\gamma} dx) , \quad \alpha \ge \frac{1}{4} - (1-\gamma)^2 .$$

Then u = 0 almost everywhere in \mathcal{C}_{Σ}^{R} .

Proof. We introduce the first eigenfunction $\Phi \in C^2(\Sigma) \cap C(\overline{\Sigma})$ of the Laplace-Beltrami operator $-\Delta_{\sigma}$ in Σ . Thus Φ is positive in Σ and Φ solves

(2.3)
$$\begin{cases} -\Delta_{\sigma}\Phi = \lambda_{1}(\Sigma)\Phi & \text{in }\Sigma\\ \Phi = 0 & \text{on }\partial\Sigma. \end{cases}$$

Let $u \in L^2(\mathcal{C}^R_{\Sigma}; |x|^{-2} |\log |x||^{-2\gamma} dx)$ be as in the statement, and put $a_R = |\log R|$. We let $Tu \in L^2(I_{a_R} \times \Sigma; s^{-2\gamma} ds d\sigma)$ be the Emden-Fowler transform, as in (1.13). We further let $\psi \in L^2(I_{a_R}; s^{-2\gamma} ds)$ defined as

$$\psi(s) = \int_{\Sigma} (Tu)(s,\sigma) \Phi(\sigma) \, d\sigma$$

Next, for $\varphi \in C_c^{\infty}(I_{a_R})$ being an arbitrary non-negative test function, we put

(2.4)
$$\tilde{\varphi}(x) = |x|^{\frac{2-N}{2}} \varphi(|\log|x|) \Phi\left(\frac{x}{|x|}\right) \,.$$

In essence, our aim is to test (2.2) with $\tilde{\varphi}$ to prove that ψ satisfies (0.4) in I_{a_R} . To be more rigorous, we use a density argument to approximate Φ in $W^{2,2}(\Sigma) \cap H_0^1(\Sigma)$ by a sequence of smooth maps $\Phi_n \in C_c^{\infty}(\Sigma)$. Then we define $\tilde{\varphi}_n$ accordingly with (2.4), in such a way that $T\tilde{\varphi}_n = \varphi \Phi_n$. By direct computation we get

$$\int_{\mathcal{C}_{\Sigma}^{R}} u(\Delta \tilde{\varphi}_{n} + \frac{(N-2)^{2}}{4} |x|^{-2} \tilde{\varphi}_{n}) dx = \int_{a_{R}}^{\infty} \int_{\Sigma} (Tu) \varphi'' \Phi_{n} d\sigma ds + \int_{a_{R}}^{\infty} \int_{\Sigma} (Tu) \varphi \Delta_{\sigma} \Phi_{n} d\sigma ds$$

$$\lambda_1(\Sigma) \int_{\mathcal{C}_{\Sigma}^R} |x|^{-2} u \tilde{\varphi}_n \ dx = \lambda_1(\Sigma) \int_{a_R}^{\infty} \int_{\Sigma} (Tu) \varphi \Phi_n \ d\sigma ds$$
$$\int_{\mathcal{C}_{\Sigma}^R} |x|^{-2} \left| \log |x| \right|^{-2} u \tilde{\varphi}_n \ dx = \int_{a_R}^{\infty} \int_{\Sigma} s^{-2} (Tu) \varphi \Phi_n \ d\sigma ds$$

Since $\tilde{\varphi}_n \in C_c^{\infty}(\mathcal{C}_{\Sigma}^R)$ is an admissible test function for (2.2), using also (2.1) we get

$$-\int_{a_R}^{\infty} \int_{\Sigma} (Tu) \varphi'' \Phi_n \ d\sigma ds \geq \alpha \int_{a_R}^{\infty} \int_{\Sigma} s^{-2} (Tu) \varphi \Phi_n \ d\sigma ds$$
$$-\int_{a_R}^{\infty} \int_{\Sigma} (Tu) \varphi (\Delta_{\sigma} \Phi_n + \lambda_1(\Sigma) \Phi_n) \ d\sigma ds$$

Since $\Phi_n \to \Phi$ and $\Delta_{\sigma} \Phi_n + \lambda_1(\Sigma) \Phi_n \to 0$ in $L^2(\Sigma)$, we conclude that

$$-\int_{a_R}^{\infty}\varphi''\psi ds \ge \alpha \int_{a_R}^{\infty} s^{-2}\varphi \psi ds \,.$$

By the arbitrariness of φ , we can conclude that ψ is a distributional solution to (0.4). Theorem 1.3 applies to give $\psi \equiv 0$, that is, $u \equiv 0$ in \mathcal{C}_{Σ}^{R} .

The next result extends Theorem 2.1 to cover the case N = 1. Notice that $\mathbb{R}_+ = (0, \infty)$ is a cone and (0, 1) is a cone-like domain in \mathbb{R} .

Theorem 2.2 Let $R \in (0,1]$ and let $u \ge 0$ be a distributional solution to

$$-u'' - \frac{1}{4}t^{-2}u \ge \alpha t^{-2}|\log t|^{-2}u \quad in \ \mathcal{D}'(0,R).$$

Assume that there exists $\gamma \leq 1$ such that

$$u \in L^2((0,R); t^{-2} |\log t|^{-2\gamma} dt) , \quad \alpha \ge \frac{1}{4} - (1-\gamma)^2 .$$

Then u = 0 almost everywhere in (0, R).

Proof. Write $u(t) = t^{1/2}\psi(|\log t|) = t^{1/2}\psi(s)$ for a function $\psi \in L^2(I_{a_R}; s^{-2\gamma} ds)$ and then notice that ψ is a distributional solution to

$$-\psi'' \ge \alpha s^{-2}\psi$$
 in $\mathcal{D}'(I_{a_R})$.

The conclusion readily follows from Theorem 1.3.

Remark 2.3 If $\alpha > 1/4$ then every non-negative solution $u \in L^1_{loc}(\mathcal{C}^R_{\Sigma})$ to problem (2.2) vanishes by Theorem B.3.

In case $\alpha \leq 1/4$ the assumptions on α and on the integrability of u in Theorems 2.1, 2.2 are sharp. Fix $\alpha \leq 1/4$, let $\delta_{\alpha} := (\sqrt{1-4\alpha}-1)/2$, and define the function

$$u_{\alpha}(r\sigma) = r^{\frac{2-N}{2}} |\log r|^{-\delta_{\alpha}} \Phi(\sigma).$$

Here Φ solves (2.3) if $N \ge 2$. If N = 1 we agree that $\sigma = 1$ and $\Phi \equiv 1$. By direct computations one has that u_{α} solves (2.2). Moreover, if $\gamma \le 1$ and $R \in (0,1)$ then $u_{\alpha} \in L^{2}(\mathcal{C}_{\Sigma}^{R}; |x|^{-2} |\log |x||^{-2\gamma} dx)$ if and only if $\alpha < \frac{1}{4} - (1 - \gamma)^{2}$.

Remark 2.4 Nonexistence results for linear inequalities involving the differential operator $-\Delta - \mu(\mathcal{C}_{\sigma})|x|^{-2}$ were already obtained in [11].

A Hardy-Leray inequalities on cone-like domains

In this appendix we give a simple proof of an improved Hardy inequality for mappings having support in a cone-like domain. We recall that for $\Sigma \subset \mathbb{S}^{N-1}$ we have set $\mathcal{C}_{\Sigma}^{1} = \{r\sigma \mid r \in (0,1) , \sigma \in \Sigma \}$ and $\mu(\mathcal{C}_{\Sigma}^{1}) = (N-2)^{2}/4 + \lambda_{1}(\Sigma)$.

Proposition A.1 Let Σ be a domain in \mathbb{S}^{N-1} . Then

(A.1)
$$\int_{\mathcal{C}_{\Sigma}^{1}} |\nabla u|^{2} dx - \mu(\mathcal{C}_{\Sigma}) \int_{\mathcal{C}_{\Sigma}^{1}} |x|^{-2} |u|^{2} \ge \frac{1}{4} \int_{\mathcal{C}_{\Sigma}^{1}} |x|^{-2} |\log |x||^{-2} |u|^{2} dx$$

for any $u \in C_c^{\infty}(\mathcal{C}^1_{\Sigma})$.

Proof. We start by fixing an arbitrary function $v \in C_c^{\infty}(\mathbb{R}_+ \times \Sigma)$. We apply the Hardy inequality to the function $v(\cdot, \sigma) \in C_c^{\infty}(\mathbb{R}_+)$, for any fixed $\sigma \in \Sigma$, and then we integrate over Σ to get

$$\int_0^\infty \int_\Sigma |v_s|^2 \, ds d\sigma \ge \frac{1}{4} \int_0^\infty \int_\Sigma s^{-2} |v|^2 \, ds d\sigma$$

On the other hand, notice that $v(s, \cdot) \in C_c^{\infty}(\Sigma)$ for any $s \in \mathbb{R}_+$. Thus, the Poincaré inequality for maps in Σ plainly implies

$$\int_0^\infty \int_{\Sigma} |\nabla_{\sigma} v|^2 \, ds d\sigma - \lambda_1(\Sigma) \int_0^\infty \int_{\Sigma} |v|^2 \, ds d\sigma \ge 0 \, .$$

Adding these two inequalities we conclude that

$$\int_0^\infty \int_\Sigma \left[|v_s|^2 + |\nabla_\sigma v|^2 \right] \, ds d\sigma - \lambda_1(\Sigma) \int_0^\infty \int_\Sigma |v|^2 \, ds d\sigma \ge \frac{1}{4} \int_0^\infty \int_\Sigma s^{-2} |v|^2 \, ds d\sigma$$

for any $v \in C_c^{\infty}(\mathbb{R}_+ \times \Sigma)$. We use once more the Emden-Fowler transform T in (1.13) by letting $v := Tu \in C_c^{\infty}(\mathbb{R}_+ \times \Sigma)$ for $u \in C_c^{\infty}(\mathcal{C}_{\Sigma}^1)$. Since

$$\int_{B_1} \left[|\nabla u|^2 - \frac{(N-2)^2}{4} |x|^{-2} |u|^2 \right] \, dx = \int_0^\infty \int_{\mathbb{S}^{N-1}} \left[|v_s|^2 + |\nabla_\sigma v|^2 \right] \, ds d\sigma \,,$$

then (1.14) readily leads to the conclusion.

Remark A.2 The arguments we have used to prove Proposition A.1 and the fact that the best constant in the Hardy inequality for maps in $C_c^{\infty}(\mathbb{R}_+)$ is not achieved show that the constants in inequality (A.1) are sharp, and not achieved.

Remark A.3 Notice that for $N \ge 1$, we have $\mathcal{C}_{\mathbb{S}^{N-1}} = \mathbb{R}^N \setminus \{0\}$ and $\mu(\mathcal{C}_{\mathbb{S}^{N-1}}) = (N-2)^2/4$. Thus A.1 gives (0.2) for $u \in C_c^{\infty}(B_1 \setminus \{0\})$.

In the next proposition we extend the inequality (A.1) to cover the case N = 1.

Proposition A.4 It holds that

$$\int_0^1 |u'|^2 dt - \frac{1}{4} \int_0^1 t^{-2} |u|^2 dt \ge \frac{1}{4} \int_0^1 t^{-2} |\log t|^{-2} |u|^2 dt$$

for any $u \in C_c^{\infty}(0,1)$. The constants are sharp, and not achieved.

Proof. Write $u(t) = t^{1/2}\psi(|\log t|) = t^{1/2}\psi(s)$ for a function $\psi \in C_c^{\infty}(\mathbb{R}_+)$ and then apply the Hardy inequality to ψ .

Next, let $\theta \in \mathbb{R}$ be a given parameter and let Σ be a Lipschitz domain in \mathbb{S}^{N-1} , with $N \geq 2$. For an arbitrary $u \in C_c^{\infty}(\mathcal{C}_{\Sigma}^1)$ we put $v = |x|^{-\theta/2}u$. Then the Hardy-Leray inequality (A.1) and integration by parts plainly imply that

$$\int_{\mathcal{C}_{\Sigma}^{1}} |x|^{\theta} |\nabla v|^{2} \, dx - \mu(\mathcal{C}_{\Sigma};\theta) \int_{\mathcal{C}_{\Sigma}^{1}} |x|^{\theta-2} |v|^{2} \ge \frac{1}{4} \int_{\mathcal{C}_{\Sigma}^{1}} |x|^{\theta-2} |\log |x||^{-2} |v|^{2} \, dx$$

for any $v \in C_c^{\infty}(\mathcal{C}_{\Sigma}^1)$, where

(A.2)
$$\mu(\mathcal{C}_{\Sigma};\theta) := \frac{(N-2+\theta)^2}{4} + \lambda_1(\Sigma)$$

It is well known that

$$\frac{(N-2+\theta)^2}{4} = \inf_{\substack{u \in C_c^{\infty}(\mathbb{R}^N \setminus \{0\})\\ u \neq 0}} \frac{\int_{B_1} |x|^{\theta} |\nabla u|^2 \, dx}{\int_{B_1} |x|^{\theta-2} |u|^2 \, dx}$$

is the Hardy constant relative to the operator $L_{\theta}v = -\operatorname{div}(|x|^{\theta}\nabla v)$. For the case N = 1 one can obtain in a similar way the inequality

$$\int_0^1 t^{\theta} |v'|^2 dt - \frac{(\theta - 1)^2}{4} \int_0^1 t^{\theta - 2} |v|^2 dt \ge \frac{1}{4} \int_0^1 t^{\theta - 2} |\log t|^{-2} |v|^2 dt$$

which holds for any $\theta \in \mathbb{R}$ and for any $v \in C_c^{\infty}(0, 1)$.

B A general necessary condition

In this appendix we show in particular that a necessary condition for the existence of non-trivial and non-negative solutions to (0.1) and (2.2) is that $\alpha \leq 1/4$. We need the following general lemma, which naturally fits into the classical Allegretto-Piepenbrink theory (see for instance [3] and [16]).

Lemma B.1 Let Ω be a domain in \mathbb{R}^N , $N \ge 1$. Let $a \in L^{\infty}_{loc}(\Omega)$ and a > 0 in Ω . Assume that $u \in L^1_{loc}(\Omega)$ is a non-negative, non-trivial solution to

$$-\Delta u \ge a(x)u \quad \mathcal{D}'(\Omega)$$

Then

$$\int_{\Omega} |\nabla \phi|^2 \, dx \ge \int_{\Omega} a(x) \, |\phi|^2 \, dx, \quad \text{for any } \phi \in C^{\infty}_c(\Omega).$$

Proof. Let $A \subset \Omega$ be a measurable set such that |A| > 0 and u > 0 in A. Fix any function $\phi \in C_c^{\infty}(\Omega)$ and choose a domain $\widetilde{\Omega} \subset \subset \Omega$ such that $|\widetilde{\Omega} \cap A| > 0$ and $\phi \in C_c^{\infty}(\widetilde{\Omega})$. For any integer k large enough put $f_k = \min\{a(x)u, k\} \in L^{\infty}(\widetilde{\Omega})$. Let $v_k \in H_0^1(\widetilde{\Omega})$ be the unique solution to

(B.1)
$$\begin{cases} -\Delta v_k = f_k & \text{in } \widetilde{\Omega}, \\ v_k = 0 & \text{on } \partial \widetilde{\Omega}. \end{cases}$$

Notice that $v \in C^{1,\beta}(\widetilde{\Omega})$ for any $\beta \in (0,1)$. Since for k large enough the function f_k is non-negative and non-trivial then $v \ge 0$. Actually it turns out that $v^{-1} \in L^{\infty}_{loc}(\widetilde{\Omega})$ by the Harnack inequality. Finally, a convolution argument and the maximum principle plainly give

(B.2)
$$u \ge v_k > 0$$
 almost everywhere in Ω .

Since $v_k^{-1}\phi \in L^{\infty}(\widetilde{\Omega})$ then we can use $v_k^{-1}\phi^2$ as test function for (B.1) to get

$$\int_{\Omega} \nabla v_k \cdot \nabla \left(v_k^{-1} \phi^2 \right) \, dx = \int_{\Omega} f_k v_k^{-1} \phi^2 \, dx \ge \int_{\Omega} f_k u^{-1} \phi^2 \, dx$$

by (B.2). Since $\nabla v_k \cdot \nabla \left(v_k^{-1} \phi^2 \right) = |\nabla \phi|^2 - \left| v_k \nabla (v_k^{-1} \phi) \right|^2 \le |\nabla \phi|^2$, we readily infer

$$\int_{\Omega} |\nabla \phi|^2 \, dx \ge \int_{\Omega} f_k u^{-1} \phi^2 \, dx$$

and Fatou's lemma implies that

$$\int_{\Omega} |\nabla \phi|^2 \ dx \ge \int_{\Omega} a(x) \ \phi^2 \ dx$$

The conclusion readily follows.

The sharpness of the constants in (0.2) (compare with Remark A.2) and Lemma B.1 plainly imply the following result.

Theorem B.2 Let $N \ge 1$, $R \in (0,1]$ and $c, \alpha \ge 0$. Let $u \in L^1_{loc}(B_R \setminus \{0\})$ be a non-negative distributional solution to

$$-\Delta u - c |x|^{-2} u \ge \alpha |x|^{-2} |\log |x||^{-2} u \quad in \ \mathcal{D}'(B_R \setminus \{0\}).$$

$$i) \quad If \ c > \frac{(N-2)^2}{4} \ then \ u \equiv 0.$$

$$ii) \quad If \ c = \frac{(N-2)^2}{4} \ and \ \alpha > \frac{1}{4} \ then \ u \equiv 0.$$

We notice that proposition i) in Theorem B.2 was already proved in [4] (see also [10]).

Finally, from Remark A.2 and Lemma B.1, we obtain the next nonexistence result.

Theorem B.3 Let Σ be a domain properly contained in \mathbb{S}^{N-1} , $R \in (0,1]$ and $c, \alpha \geq 0$. Let $u \in L^1_{loc}(\mathcal{C}^R_{\Sigma})$ be a non-negative distributional solution to

$$-\Delta u - c |x|^{-2} u \ge \alpha |x|^{-2} |\log |x||^{-2} u \quad in \ \mathcal{D}'(\mathcal{C}_{\Sigma}^R).$$

- i) If $c > \mu(\mathcal{C}_{\Sigma})$ then $u \equiv 0$.
- ii) If $c = \mu(\mathcal{C}_{\Sigma})$ and $\alpha > \frac{1}{4}$ then $u \equiv 0$.

C Extensions

In this appendix we state some nonexistence theorems that can proved by using a suitable functional change $u \mapsto \psi$ and Theorem 1.3. We shall also point out some corollaries of our main results.

C.1 The *k*-improved weights

We define a sequence of radii $R_k \to 0$ by setting $R_1 = 1$, $R_k = e^{-\frac{1}{R_{k-1}}}$. Then we use induction again to define two sequences of radially symmetric weights $X_k(x) \equiv X_k(|x|)$ and z_k in B_{R_k} by setting $X_1(|x|) = |\log |x||^{-1}$ for $|x| < 1 = R_1$ and

$$X_{k+1}(|x|) = X_k \left(|\log |x||^{-1} \right) , \quad z_k(x) = |x|^{-1} \prod_{i=1}^k X_i(|x|)$$

for all $x \in B_{R_k} \setminus \{0\}$. It can be proved by induction that z_k is well defined on B_{R_k} and $z_k \in L^2_{loc}(B_{R_k})$. We are interested in distributional solutions to

(C.1)
$$-\Delta u - \frac{(N-2)^2}{4} |x|^{-2} u \ge \alpha z_k^2 u \quad \mathcal{D}'(B_R \setminus \{0\})$$

for $R \in (0, R_k]$. The next result includes Theorem 0.1 by taking k = 1.

Theorem C.1 Let $k \ge 1$, $R \in (0, R_k]$ and let $u \ge 0$ be a distributional solution to (C.1). Assume that there exists $\gamma \le 1$ such that

$$u \in L^2_{\text{loc}}(B_R; z_k^2 X_k^{2(\gamma-1)} dx) , \quad \alpha \ge \frac{1}{4} - (1-\gamma)^2 .$$

Then u = 0 almost everywhere in B_R .

Proof. We start by introducing the k^{th} Emden-Fowler transform $u \mapsto T_k u$,

$$u(x) = z_k(|x|)^{-\frac{1}{2}} |x|^{\frac{1-N}{2}} X_k(|x|)^{\frac{1}{2}} (T_k u) \left(X_k(|x|)^{-1}, \frac{x}{|x|} \right) \,.$$

Notice that for any $R < R_k$ it results

(C.2)
$$\int_{B_R} z_k^2 X_k^{2(\gamma-1)} |u|^2 \, dx = \int_{X_k(R)^{-1}}^{\infty} s^{-2\gamma} \int_{\mathbb{S}^{N-1}} |T_k u|^2 \, ds d\sigma \, d\sigma$$

so that $T_k u \in L^2(I_a \times \mathbb{S}^{N-1}; s^{-2\gamma} ds d\sigma)$ for any $a > X_k(R)^{-1}$. This can be easily checked by noticing that $X'_k = z_k X_k$. Next we set

$$\psi_u(s) := \int_{\mathbb{S}^{N-1}} (T_k u)(s,\sigma) d\sigma$$

By (C.2) we have that $\psi \in L^2(I_a; s^{-2\gamma} ds)$ for any $a > X_k(R)^{-1}$. Thanks to Theorem 1.3, to conclude the proof it suffices to show that ψ is a distributional solution to

 $-\psi'' \geq \alpha s^{-2}\psi$ in the interval $I_{\tilde{a}}$, where $\tilde{a} = X_k(R)^{-1}$. To this end, fix any test function $\varphi \in C^{\infty}(I_{\tilde{a}})$, and define the radially symmetric mapping $\tilde{\varphi} \in C^{\infty}_c(B_R \setminus \{0\})$ such that $T_k \tilde{\varphi} = \varphi$. By direct computation one can prove that

$$\Delta \tilde{\varphi} + \frac{(N-2)^2}{4} |x|^{-2} \tilde{\varphi} = \omega \tilde{\varphi} + |x|^{\frac{1-N}{2}} z_k^{\frac{3}{2}} X_k^{-\frac{3}{2}} \varphi'' \left(X_k(|x|)^{-1} \right)$$

where $\omega \equiv 0$ if k = 1, and

$$\omega = \frac{1}{2} \left[\left(\sum_{i=1}^{k-1} z_i \right)^2 - \frac{1}{2} \sum_{i=1}^{k-1} z_i^2 \right]$$

if $k \geq 2$. Since $\omega \geq 0$ then

$$\int_{B_R} u\left(\Delta \tilde{\varphi} + \frac{(N-2)^2}{4} |x|^{-2} \tilde{\varphi}\right) \, dx \ge \int_{\tilde{a}}^{\infty} \psi \varphi'' \, ds$$

provided that φ is non-negative. In addition it results

$$\int_{B_R} z_k^2 \, u \tilde{\varphi} \, dx = \int_{\tilde{a}}^{\infty} s^{-2} \psi \varphi \, ds \, dx$$

Since φ was arbitrarily chosen, the conclusion readily follows.

By similar arguments as above and in Section 2, we can prove a nonexistence result of positive solutions to the problem

(C.3)
$$-\Delta u - \mu(\mathcal{C}_{\Sigma})|x|^{-2}u \ge \alpha z_k^2 u \quad \mathcal{D}'(\mathcal{C}_{\Sigma}^R),$$

where \mathcal{C}_{Σ} is a Lipschitz proper cone in \mathbb{R}^N , $N \geq 1$, and $C_{\Sigma}^R = \mathcal{C}_{\Sigma} \cap B_R$. We shall skip the proof the following result.

Theorem C.2 Let $k \ge 1$, $R \in (0, R_k]$ and let $u \ge 0$ be a distributional solution to (C.3). Assume that there exists $\gamma \le 1$ such that

$$u \in L^2(\mathcal{C}_{\Sigma}^R; z_k^2 X_k^{2(\gamma-1)} dx) , \quad \alpha \ge \frac{1}{4} - (1-\gamma)^2 .$$

Then u = 0 almost everywhere in \mathcal{C}_{Σ}^{R} .

Some related improved Hardy inequalities involving the weight z_k and which motivate the interest of problems (C.1) and (C.3) can be found in [2], [8], [12] and also [5].

C.2 Exterior cone-like domains

The Kelvin transform

$$u(x) \mapsto |x|^{2-N} u\left(\frac{x}{|x|^2}\right)$$

can be used to get nonexistence results for exterior domains in \mathbb{R}^N .

Let Σ be a domain in \mathbb{S}^{N-1} , $N \geq 2$, and let \mathcal{C}_{Σ} be the cone defined in Section 2. We recall that $\mu(\mathcal{C}_{\Sigma}) = (N-2)^2/4 + \lambda_1(\Sigma)$. Since the inequality in (0.1) is invariant with respect to the Kelvin transform, then Theorems 0.1 and 2.1 readily lead to the following nonexistence result.

Theorem C.3 Let Σ be a Lipschitz domain in \mathbb{S}^{N-1} , with $N \geq 2$. Let R > 1, $\alpha \in \mathbb{R}$ and let $u \geq 0$ be a distributional solution to

$$-\Delta u - \mu(\mathcal{C}_{\Sigma})|x|^{-2} u \ge \alpha |x|^{-2} |\log |x||^{-2} u \quad in \ \mathcal{D}'(\mathcal{C}_{\Sigma} \setminus \overline{B}_R).$$

Assume that there exists $\gamma \leq 1$ such that

$$u \in L^2(\mathcal{C}_{\Sigma} \setminus \overline{B}_R; |x|^{-2} |\log |x||^{-2\gamma} dx) , \quad \alpha \ge \frac{1}{4} - (1-\gamma)^2 .$$

Then u = 0 almost everywhere in $\mathcal{C}_{\Sigma} \setminus \overline{B}_R$.

A similar statement holds in case N = 1 for ordinary differential inequalities in unbounded intervals (R, 0) with R > 0, and for problems involving the weight z_k^2 .

C.3 Degenerate elliptic operators

Let $\theta \in \mathbb{R}$ be a given real parameter. We notice that u is a distributional solution to (2.2) if and only if $v = |x|^{-\theta/2}u$ is a distributional solution to

(C.4)
$$-\operatorname{div}(|x|^{\theta}\nabla v) - \mu(\mathcal{C}_{\Sigma};\theta)|x|^{\theta-2} v \ge \frac{1}{4}|x|^{\theta-2}|\log|x||^{-2} v \quad \text{in } \mathcal{D}'(\mathcal{C}_{\Sigma}^{R}) ,$$

where $\mu(\mathcal{C}_{\Sigma};\theta)$ is defined in Remark A.2. Therefore Theorem 0.1 and Theorem 2.1 imply the following nonexistence result for linear inequalities involving the weighted Laplace operator $L_{\theta}v = -\operatorname{div}(|x|^{\theta}\nabla v)$.

Theorem C.4 Let Σ be a Lipschitz domain in \mathbb{S}^{N-1} . Let $\theta \in \mathbb{R}$, $R \in (0,1]$, $\alpha \in \mathbb{R}$ and let $v \geq 0$ be a distributional solution to (C.4). Assume that there exists $\gamma \leq 1$ such that

$$v \in L^2(\mathcal{C}_{\Sigma}^R; |x|^{\theta-2} |\log |x||^{-2\gamma} dx) , \quad \alpha \ge \frac{1}{4} - (1-\gamma)^2 .$$

Then v = 0 almost everywhere in \mathcal{C}_{Σ}^{R} .

A nonexistence result for the operator $-\operatorname{div}(|x|^{\theta}\nabla v)$ similar to Theorem C.3 or to Theorem C.1 can be obtained from Theorem C.4, via suitable functional changes.

References

- Adimurthi and K. Sandeep, Existence and nonexistence of the first eigenvalue of the perturbed Hardy-Sobolev operator, Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), no. 5, 1021–1043.
- [2] Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its application, Proc. Amer. Math. Soc. 130 (2002), no. 2, 489– 505.
- W. Allegretto, On the equivalence of two types of oscillation for elliptic operators, Pacific J. Math. 55 (1974), 319–328.
- [4] P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), no. 1, 121–139.
- [5] G. Barbitas, S. Filippas and A. Tertikas, Series Expansion for L^p Hardy Inequalities, Indiana University Mathematics Journal **52** (2003), no. 1, 171–190.
- [6] I. Birindelli and E. Mitidieri, Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 6, 1217–1247.
- [7] H. Brezis, L. Dupaigne and A. Tesei, On a semilinear elliptic equation with inverse-square potential, Selecta Math. (N.S.) 11 (2005), no. 1, 1–7.
- [8] N. Chaudhuri, Bounds for the best constant in an improved Hardy-Sobolev inequality, Z. Anal. Anwendungen 22 (2003), no. 4, 757–765.

- [9] J. Dávila and L. Dupaigne, Comparison results for PDEs with a singular potential, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 1, 61–83.
- [10] L. Dupaigne, A nonlinear elliptic PDE with the inverse square potential, J. Anal. Math. 86 (2002), 359–398.
- [11] M.M. Fall R. Musina, Hardy-Poincaré inequalities with boundary singularities. Prépublication Département de Mathématique Université Catholique de Louvain-La-Neuve 364 (2010), http://www.uclouvain.be/38324.html.
- [12] N. Ghoussoub and A. Moradifam, On the best possible remaining term in the Hardy inequality, Proc. Natl. Acad. Sci. USA 105 (2008), no. 37, 13746–13751.
- [13] K. T. Gkikas, Existence and nonexistence of energy solutions for linear elliptic equations involving Hardy-type potentials, Indiana Univ. Math. J. 58 (2009), no. 5, 2317–2345.
- [14] J. Leray, Étude de diverses équations integrales nonlinéaires et de quelques problèmes que pose l'hydrodinamique, J. Math. Pures Appl. 9 (12) (1933), 1–82.
- [15] Y. Pinchover and K. Tintarev, Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy's inequality, Indiana Univ. Math. J. 54 (2005), no. 4, 1061–1074.
- [16] J. Piepenbrink, Nonoscillatory elliptic equations, J. Differential Equations 15 (1974), 541–550.