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Nonexistence of distributional supersolutions of a

semilinear elliptic equation with Hardy potential
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Abstract. In this paper we study nonexistence of non-negative distributional supersolutions for a

class of semilinear elliptic equations involving inverse-square potentials.
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Introduction

Let  define a domain of RV, N > 3. In this paper, we study nonnegative functions

u satisfying
(0.1) —Au—b(x)u >u" in D'(Q),

with p > 1, b =2 0 and b € L} () is a singular potential of Hardy-type. More
precisely, we are interested in distributional solutions to (0.1), that is, functions

u € LY () such that b(z)u € L] () and
[une—s@e) oz [woar voecE@,ezo
Q Q

The study of nonexistence results of (very) weak solution to problem (0.1) goes back

to [4], where the authors were motivated by the failure of the Implicit Function
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Theorem. Further references in this direction are [5], [9], [12], [13]. We also quote
2], [3] [27], [20], [28], [21], [24], [20].

In this paper, we study nonexistence of solutions to (0.1) when 92 possesses a conical
singularity at 0 as well as when 992 is of class C? at 0. Higher dimensional singularity
will be also considered.

SN_l

For any domain ¥ in the unit sphere we introduce the cone

Cg::{raeRN]r>O,a€E}.

We recall that the best constant in the Hardy inequality for functions supported by
Cyx, is given by

/|Vu|2 dz (N — 2
p(Csg) = inf & = +A(D),

“ECSO(CE)/ ’x‘—2u2 de 4
Cs

where A1(X) is the first Dirichlet eigenvalue for the Laplace-Beltrami operator on 3

([17], [28]). For a given radius R > 0 we introduce the cone-like domain
Cl.=ConBr={ro|re(0,R),cex},
where Bp is the ball of radius R centered at 0. We study the inequality

(0.2) —Au— # w>uP inD (CE),

with
A(XE) <e<uly).

By homogeneity, an important role is played by

_ N -2
ay = ———— —/u(Cx) —c,

2

which is the smallest root of the equation

a? — (N —2)a+c— M\ (%) =0.
We notice that the restriction ¢ < p(Cyx) is not restrictive (see Remark 1.5 below)
and in addition a5, > 0 when ¢ > \{(2). Finally we define

2
py =1+ —.
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We observe that py, = N+2 when ¢ = p(Cyx) while py, > N+§ as soon as ¢ < u(Cy).

In [5], the authors have Studled the case Q = Br \ {0} = Cé%N,l. They proved that
(0.2) has a non-trivial solution in Bg \ {0} if and only if p < pgy-1.

Our first result generalizes the nonexistence result in [5] to cone-like domains.

Theorem 0.1 Let C& be a cone-like domain of RN, N > 3. For A1 (3) < ¢ < u(Cx),
let we LV

loc

(Cg) be non-negative such that

—Au — #u >uP  in D (c§) .

If p > ps then u = 0.

Theorem 0.1 improves a part of the nonexistence results obtained in [22], where
more regular supersolutions were considered. We notice that the assumption p > px,
is sharp (see the existence result in [22], Theorem 1.2).

We next consider the case where 0 € 99 with 9Q is smooth at 0 and b(z) = c|x|~2.

/|Vu|2 dz
w(Q) := inf

ueCX () /‘Z” 2u2 dl’

Put Q, := QN B,(0). Recently it was proved in [15] that, there exits ro = 79(2) > 0
such that for all r € (0,79)

We define

(03) (@) = 1 (Conmr ) = N{ ,

with Sf ~1 is a hemisphere centered at 0 so that Cgn-1 is a half-space. We have
+

obtained:

Theorem 0.2 Let Q be a smooth domain of ]RN N >3, with 0 € 0. Letr >0
small so that (0.3) holds. For N —1 < ¢ < 2F, let u € L} () be non-negative
such that

—Au — #u >uP  in D' (Q,) .

If p > Pg -1 then u = 0.



Here also the nonexistence of nontrivial solution for ¢ € (N — 1, N2 /4] is sharp, see
Proposition 3.2.

When we consider general domains, we face some obstacles in the restriction of the
parameter c¢. This is due to the fact that () is not in general smaller than N — 1

for smooth domains 2, with 0 € 99, see [17]. A consequence of Theorem 0.2 is:

Corollary 0.3 Let Q be a smooth domain of RN, N > 3, with 0 € 9. Assume
that N —1 < ¢ < u(2). Suppose that there exists u € LY (), u > 0 such that

loc

—Au— #u > P in D(9).

If p > Pgn-1 then u = 0.

In Corollary 0.3 above, we assume that the interval [N —1, (€)] is not empty. This is
not in general true (see Remark 0.6 below). However it holds for various domains or

in higher dimensions. Indeed, we first observe that the inequality % < () <
NTQ is valid for every smooth bounded domain €2 with 0 € 99, see [17]. In particular

w(Q) > N — 1 whenever N > 7. Hence we get:

Corollary 0.4 Let Q be a smooth bounded domain of RN, N > 7, with 0 € 99Q. Let
N-1<ec<puQ) andue L

1oc (£2) be non-negative such that

“Au— —u>uP  in D (Q) .

If p > Pg -1 then u = 0.

When Q is a smooth domain (not necessarily bounded), with 0 € 912, is contained

in the half-space Cgv-1 then obviously u(§2) = NTQ by (0.3). In particular, thanks to
+

Theorem 0.2, the restriction N > 7 in Corollary 0.4 and the boundedness of () can

be removed. Indeed, we have:

Corollary 0.5 Let €2 be a smooth domain of the half-space Cgn-1, N > 3, with
+
0€00. Let N -1<c< NTQ and u € LY (Q) be non-negative such that

—Au — #u >uP  in D' (Q) .

If p > Pg -1 then u = 0.



Remark 0.6 According to our argument, the assumption N —1 < p(Q) is crucial
because it implies that 1 < psn—1 < oo when ¢ > N — 1. However it is not valid
+

for every smooth domain. In fact, one can construct a family of smooth bounded
domains QF, for which u(QF) < M + e, fore >0 small, see [17], [16].

Remark 0.7 The conclusion in theorems 0.1, 0.2 still holds when u?P is replaced by

|z[*u? with A\1(X) < ¢ < u(Cx). In this case one has to replace py, with qs, = 1+?,
>

We prove our nonexistence results via a linearization argument which were also
used in [22]. However when working with weaker notion of solutions, further analysis
are required. Our approach is to obtain a quite sharp lower estimate on u in such a
way that uP~! is somehow proportional to b(z) and to look the problem as a linear
problem: —Au — b(z)u — uP~tu > 0 in D'(Q). This leads to the inequality (see
Lemma 1.4)

(04) [vel = [z [wle voecr@.
Q Q Q
By using appropriate test functions in (0.4), we were able to contradict the exis-
tence of solutions. To lower estimate u, we construct sub-solutions for the operator
L := —A —b(x). On the other hand since we are working with ”very weak” super-
solutions in non-smooth domains, and the operator L does not in general satisfies
the maximum principle, we have proved a comparison principle (see Lemma 1.3
in Section 1). We achieve this by requiring L to be coercive. Since in this paper
the potential b(z) is of Hardy-type, such coercivity is nothing but improvements of
Hardy inequalities. The comparison principle allows us to put below u a more reg-
ular function v. Such function v turns out to be a supersolution for L and therefore

can be lower estimated by the sub-solutions via standard arguments.

The paper is organized as follows. In Section 1 we prove some preliminary results,
which are mainly used in the paper. The proofs of Theorems 0.1, 0.2 will be carried

out in Sections 2, 3 respectively. Finally in the last section, we study the problem

—Au - (N_Z_2)2 dist(;,r)z g(x)u>w?  in D(Q\T),
(0.5) we LP (Q\T),

loc

u =0,



where I is a smooth closed submanifold of 2 and ¢ is a nonnegative weight.

1 Preliminaries and comparison lemmata

Let © be a bounded open subset of RV. In this section we deal with comparison

results involving a differential operator of the type
—A - b(.Z') )

where b € L} (Q) is a given non-negative weight. We shall always assume that

—A — b(x) is coercive, in the sense that there exists a constant C(2) > 0 such that

(1.1) / \Vul|? do — / b(x)u?® dr > C(Q)/ u? dx for any u € C°(9).
Q Q Q

Following [10], we define the space H(2) as the completion of C°(€2) with respect

to the scalar product

(u,v) / VuVv dx — / b(x)uv dx .
Q Q

The scalar product in H(£2) will be denoted by (-, ") 5 (q)-

Clearly H}(Q) — H(Q) — L?(Q) by (1.1), and hence L?(Q2) embeds into the dual
space H(f2)'. By the Lax Milligram theorem, for any f € L?(f2) there exists a unique
function v € H(Q) such that

—Av—=>b(x)v=f in H(Q),

that is,
(v, ) o) = /Qfgp dx for any ¢ € H(Q).

Remark 1.1 Observe that if b € L>°(Q) then H(Q) = HL(Q) since
C [ 1Vuf? do < Jullyey < [ V6P da,
Q Q
where the constant C' > 0 depends only on C(2), and on the L norm of b.

We start with the following technical result which will be useful in the sequel.



Lemma 1.2 Let u € L}, (Q) be non-negative and g € L*(Q) such that
~Au>g inD(Q).
Let v € H(Q) be the solution to
—Av=g in €.

Then
v<wu in .

Proof. For ¢ > 0, define Q. = {z € Q : dist(z,0Q) > €}. Let €. be a smooth
open set compactly contained in 2 and containing €2.. Denote by p, the standard
mollifier and put u,, = p, *u. Then for € > 0 there exists N, such that u,, is smooth
in Q. up to the boundary for all n > N.. Consider v, , € H&(ﬁg) be the solution
of —Avep, = pp*g=gpnin ﬁe. Clearly —A(u, — vep) > 0 in 55 and u, — vz, > 0
on 855, because u is non-negative. It turns out that u, — v., > 0 in S~)E by the
maximum principle. Letting v. € H&(ﬁe) be the solution of —Av., = ¢ in QE, by
Holder and Poincaré inequalities, we have that ||ve , — UEHH& @) < Cllgn — QHL?(?)E)’
with C' > 0 is a constant independent on n. In particular v, converges to v. in
ﬁe. Therefore u > v, in ﬁe. To conclude, it suffices to notice that v. — v weakly in
H(Q) and pointwise in . O

We have the following comparison principle.

Lemma 1.3 Let u € L} (Q) be non-negative with b(x)u € L} (Q) and let f €

loc loc

L%(Q) with f > 0 such that

—Au—b(x)u>f inD(Q).
Let v € H(S2) be the solution of

—Av —b(z)v=f in H(Q).

Then



Proof. Step 1: We first prove the result if b € L*°(12).
We let vg € H} () solving
—Avg=f in Q.

Then 0 < vg < u in Q by Lemma 1.2 and because f > 0. We define inductively the
sequence vy, € HJ(Q) by

—Avy = b(z)vg + f in Q, —Avp, = b(x)vp—1 + f in

Since b > 0, we have —Au > b(x)vg + f in D'(Q). Thus using once again Lemma

1.2, we obtain vy < v; < w in . By induction, we have
<< <v,<u in VneN.

Since vy,_1 < v, in 2, we have

/|an|2dx—/ b(@)|on? §/f(:1:)vndx.
Q Q Q
By Holder inequality and (1.1) (see Remark 1.1) v, is bounded in H}(Q2). We

conclude that v, — v in H}(2) as n — oo which is the unique solution to
—Av=0b(z)v+ f in Q.
Since v, — v in L%(Q), we get v < u in Q.

Step 2: Conclusion of the proof.
We put by,(x) = min(b(x), k) for every k € N. We consider v* € H}(Q) be the unique

solution to
(1.2) /Vkacp— / min {b(z), k} vFp = / fo YeoeCX(Q).
Q Q Q

Thanks to Step 1, we have v* < v in Q.
Next, we check that such a sequence v*, satisfying (1.2), converges to v in L?()

when k — oo. Indeed, we have

ey < It gy = [ min{o(e). kY o4 da

_ Aﬂﬁmgowwmm

8



by Hoélder inequality and by (1.1), where the constant C' depends on f and € but
not on k. Therefore the sequence v* is bounded in H(2). We conclude that there
exists 7 € H(Q) such that, for a subsequence, v* — ¥ in H(Q). Now by (1.2), we

have
(0, P e + /Q (b() — min{b(x), k}) v*ep = /Q fo.

Since for every k > 1 and any ¢ € C°(9)
(b(z) — min{b(z), k}) vk@( < (b(z) — min{b(z), k}) ule| < 20(z)ule| € L1(Q),
the dominated convergence theorem implies that
(1.3) ey = [ fo for any ¢ € CX(@).
We therefore have that v = v by uniqueness. By (1.3), we have

lo =¥y = 10130 — 00" @) + (0,0 = ") o

[ 3y — [ o+ (@0 =) g
0

105200y — [ min{b(@),k} Wb do— [ foF+ (0,0 —0F)
o) Q Q

= (v,v— vk>H(Q).

IA

We thus obtain
() / v — o dz < (v,v — vk>H(Q) =0
Q

by (1.1). Hence v* — v pointwise and thus v < u in Q.
O

We conclude this section by pointing out the following Allegretto-Piepenbrink
type result which is essentially contained in [18]. A version for distributional solu-

tions is also contained in [[8], Theorem 2.12].

Lemma 1.4 Let Q be a domain (possibly unbounded) in RN, N > 1. Let V €
L} .(Q) and V > 0 in Q. Assume that u € L}, (Q), V(z)u € L, .(Q) and that u is

a non-negative, non-trivial solution to

—Au>V(z)u D(Q).



Then
/ \Vé|? dax > / V(z) ¢? dz  for any ¢ € C°(R).
Q Q

Proof. Put Vi (z) = min{V(z),k} then Lemma B.1 in [18] yields
/ \Vo|* dx > / Vie(z) $? dz  for any ¢ € C°(9Q).
Q Q

To conclude, it suffices to use Fatou’s lemma. U

Remark 1.5 Given Q) any domain in RN, N > 1. Define

/|Vu|2 dx
w(Q) := inf

Q .
2| "%u? dx
Q

ueCge ()

Then Lemma 1.4 clearly implies that if ¢ > p(Q2) there is no non-negative and non-
trivial u € L} () that satisfies —Au — %u >0 in D'(Q).

|z

Suppose that € is a smooth bounded domain and that the potential b(x) satisfies

2
/ |V<,0|2 dx —/ b(x)go2 dx > C(b) </ lo|” d:z:> ' for any ¢ € C°(2)
Q Q Q

for some C(b) > 0 and 2 < r. By [[10] Lemma 7.2], we can let G € L}(Q x Q) be

the Green function associated to —A — b(z):

—AG(,y) = b(x)G(y) =0y, n,
G(,y) =0 on 09,

where 6, denotes the Dirac measure at some y € €. Define
(o) i= | Gy

which is the H(€2)-solution to —A¢y —b(z) (o = 1. By using Lemma 1.3 and Lemma

1.4, we can prove the following

Proposition 1.6 Suppose that / (g“ dxr = oo for some p > r then there is no
Q
nonnegative and nontrivial u satisfying —Au — b(x) u > uP in D'(Q).

10



Proof. If such u exists, it is positive by the maximum principle therefore, we can
define v € H(Q) be the solution of —Av — b(z) v = min(u?, 1) so that by Lemma
1.3 we have v > v in Q. Thanks to [[10] Corollary 2.4], we have u > v > C(y. By
applying Lemma 1.4 with V(z) = b(x) + (C{p)P~! we conclude that

0o > [|Gollaray = CPH / ¢ de.
Q

2 Proof of Theorem 0.1

We state the following lemma which is a consequence of Lemma 1.3 and [[22], The-

orem 4.2].

Lemma 2.1 Let u € L}, .(Q) be positive and let f € L}, .(Cx) with f Z 0 such that
- -2 . yels
—Au—-V <—‘> lz|"“u>f inD(Cy),

|z

where ||V | poo(zy < u(Cs) and V' > 0. Then for every . CC X there exists a constant
C > 0 such that

_ _ 2
(2.1) u(z) > C|$|¥+V A Cg2,
where A1y is the first Dirichlet eigenvalue of —Agn-1® —V® = X y® on X .

Proof. Up to a scaling, we can assume that » = 1. We recall the following improved

Hardy inequality
(2.2) / Vol? do — u(Cx) / l2]2lol? > Co / o2 do Vi e C(Ch),
Cs, Cs, Cs,

for some Cjy > 0 (see for instance [17]). We can therefore pick v € H (C) solves

(2.3) —Av -V <i|> |z|7?v = min(f,1) in H (C}).

|

11



Then by the maximum principle and Lemma 1.3, we have 0 < v < u in Cé.
Approximating v by smooth functions compactly supported in C% with respect to
the H (Cé)—norm, we infer that

—Av—-V <i> |z|7?v = min(f,1) in D' (C3).

|

Elliptic regularity theory then implies that v € CIIO’Z(C%) C H} (CL). By applying
[[22], Theorem 4.2] (up to Kelvin transform), we get the lower estimate (2.1) for v
and hence for u.

O

Proof of Theorem 0.1
Up to a scaling, we can assume that R = 1. We argue by contradiction. If v £ 0
then by the maximum principle © > 0 in Cé. We will show that appropriate lower

bound of u and an application of Lemma 1.4 will lead to a contradiction.

Case 1: ¢ < u(Cy).

By Lemma 2.1
u(z) > Cola;\¥+\/ wls)=e vy e C%/z,

where () is a positive constant and > cc By assumption u?~!(x)|z|> > Cg_l.

In particular for every e € (0, 1), we have
1
—Au— (c+eV)|z|%u > Eup in D’(C;p),

p—1
where V' = 002 Xs- We notice that for € small, ¢ + eV < u(Cs). We apply once

more Lemma 2.1 to get
2N 4V (N=2)2 /4t ¢ 1/4
(2.4) u(z) > Cylz| 2 c Veely,
where A; . is the first Dirichlet eigenvalue of —Agn-1® — (¢ +eV)® = A\ P on X.

We observe that, for € small, A\; . < A\1(X) — ¢ < 0 and thus

2 2
p—1>—> > 0.
Qy %— \/(N—2)2/4+)\17E

12



Recalling that —Au > uP~1u, we deduce from (2.4) that

—Au—p(x)|z|2u >0 in D’(C%/‘l),

p—1
1

where p(x) = 02 ]az\(%ﬂ/ (N=2)2/4+20.0) (=142 Gince p(x) — +00 as |z| — 0,
applying Lemma 1.4, we contradict the sharpness of the Hardy constant j(Cs;).

Case 2: ¢ = u(Cy).
We consider the function v € H(C&) solving

—Av — p(Cx)|x|"*v = min(u?, 1).

Then by Lemma 1.3 and the maximum principle 0 < v < u in Cé. By Lemma 2.1,

2

v(x) zC]a:\% for z € CJ.

Since —Au—p(Cs)|z|7?u = wP~lu in D'(CL), by Lemma 1.4 and the above estimate,

we have
00 > ”U”%{(Cl) > / P~ ? do > / P dg
2Ty c
> C P da > C/ 2|~ dz = .
cl/? cl/?
> =
This readily leads to a contradiction. Theorem 0.1 is completely proved. ]

3 Smooth domains

In this section, we introduce a system of coordinates near 0 € 9f2 that flattens 052,

see [19]. This will allows us to construct a (super-) sub-solution via the function

2
y1|y|_%+\/ “T'~¢ which is the (virtual) ground state for the operator A + ¢|y|=2 in
the half-space Rf .
3.1 Fermi coordinates
We denote by {E1, Ea, ..., Ex} the standard orthonormal basis of RY and we put
RY ={yeRY : y' >0}, sV '=sV"1nRY,
Bi(yo) ={y €R™ : ly—wo| <r}, B =B(0)nRY.

13



Let U be an open subset of RV with boundary M := 0l a smooth closed hyper-
surface of RY and 0 € M. We write Ny for the unit normal vector-field of M
pointed into ¢. Up to a rotation, we assume that Ny (0) = Ei. For z € RY, we
let dpq(z) = dist(M, z) be the distance function of M. Given z € U and close to
M then it can be written uniquely as x = o, + day(x) Nag(o,), where o, is the
projection of z on M. We further use the Fermi coordinates (y2,...,y") on M so

that for o, close to 0, we have

N
O = EXpO <Z ylEz> )

i=2
where Expy : RN=1 — M is the exponential mapping on M endowed with the metric

induced by R¥, see [11]. In this way a neighborhood of 0 in & can be parameterize
by the map

N N
Faly) = Expg <Z y’Ez> +y' N (Expo <Z y’Ei)) , yeB,

=2 =2

for some r > 0. In this coordinates, the Laplacian A is given by

Nooog? o? o X
;@wi)?:(ayl)?*hwmay Z <”gg a])

where ha(z) = Adam(z); for Z,j =2...,N, gij = (6;;//;",8;//}”>; the quantity
lg| is the determinant of g and ¢g* is the component of the inverse of the matrix
(gij)2<i,j<N

Since g;; = i + O(y') + O(|y|?) (see [19]), we have the following Taylor expansion

DIFUSE) e

i=1
For a € R, we put X,(t) :=|logt|®, ¢t € (0,1) and for ¢ < NTz, set

2 2

2
Z A owrwr

7]_

+hMOFM

8 9.1

Baly) =yl 2V T X (|y]) Yy € RY

and put

N 92
=2 gy~ I+ ala = DIyl X2
=1

14



Then one easily verifies that

N? _ _ .
L,w, =2a - clyl 2 X _1(|ly]) @a in RY,

W, =0 on ORY \ {0},

N2
w, € HY(B}) VR > 0, Ve < e Va < 0.

For K € R, we define
wa,ic (y) = €V @a(y).

This function satisfies similar boundary and integrability conditions as @,. In addi-
tion it holds that
(3.2)

2K N2 _ _
Ly Wa, K = _FWQ,K + 2a T —C ’y‘ 2X—1(‘y’)wa

1
+2K (% — -+ aX—l(\y!)> WK — KPwa k.

Furthermore for all a € R

&ua %W, SN 1y /M2
Zo () 20k 22 Y (e AT}
7]

= Our(lyl™) war(y).

Here the error term O, g has the property that for any A > 0 and ¢y < NT2, there

exit some constants C' > 0 and sy > 0 such that

2
(3.3) |00 ik(s)| <Cs Vse(0,s0), Vae€[-A,A] Ve e [co, NT] .
Let
(3.4) Wk (%) := wa ik (Ff (7)), Ve Bt = Fu(B)).

Then using (3.1), (3.2) and the fact that || = |y| + O(|y|?) we obtain the following
expansions

(3.5)

2K
LoWag = — <+7]W($)

N2
a 2 T 2X— a, a a )
(@) ) Wa.k+2a 1 clx|” 1(|z]) Wa,k+Oq i (||~ )W,K

15



with L, := —A — c|z|72 4+ a(a — 1)|2| 72X _5(|x|). Moreover it is easy to see that

Wa,K>0 in BT',",
(3.6) Wax =0 on MNaBH\ {0},
Warx € HY(B) Ve< NTQ, and Va < 0.

3.2 Non-existence

We start by recalling the following local improved Hardy inequality. Given a domain
Q C RY, of class C? at 0 € 99, there exist two constants C(2) > 0 and rg = ro(Q) >
0 such that

(3.7) /Q

for every ¢ € | —oo, NZ , with Q,., := QN B,,(0), see [15]. From this we can define
1 0 0

the space H(2,,) to be the completion of C2°(£,,) with respect to the scalar product

\Vul|? dz — c/ 2| 2u? dz > C(Q) / w dr Yu e CZ(Q,,),
T Q

T0 Q 0 T0

VuVv — c/ 2| 2w Yu,v € C(Q,,).
QT’O T

0
In the sequel we will assume that €2 contains the ball B = B;(FE;) such that 9B N
09 = {0}. Recalling the notations in Section 3.1, we state the following result
Lemma 3.1 Let ¢y € <—oo, NTT and f € L*(,,) be a non-negative and non-

trivial function. For ¢ € [CO,NTZ], let v € H(Qy,) be the unique solution of the

problem

VuoVodr — c/

o opds = [ fode Vo€ CE(@n)
Q Qg

Q7‘0 70

Then there exist R > 0 and r > 0 such that
2 N2
oFan) = Ryl FVE e Bt vee o |
Proof. For a <0 and r > 0 small we define G, := Fyp(B;") and

we(x) = wavN_l(FgBl(m)% Vz € G

16



Letting L := —A — ¢|z| 72, by (3.5),

Llwo+w) < —2 _dl) T ROB (o b w 1) — 2|22 X a(|z]) ws
OB
oy X (e ey + Ol ) (e + w)
We observe that
(3.8) w_1(z) = wo(z)|log | Fy5 (x)]| ™" = wo(z) (X—1(|z]) + O(|z])).

Since —hgp(x) = (N —1) (1 + O(]z])) in G;f, we have using (3.8),

(3.9) L(wo+w_1) <0 in G},

for r positive small.

Case c € |:Co, NTZ)

We put U = wo+w_1. ThenU € HY(G;")NC(G;") by (3.6) and v € H} (2,,,)NC(2y,)

by elliptic regularity theory and Remark 1.1. Moreover v > 0 in 2, by the maximum
principle. Therefore since Fyp <TS§_Z _1> C Q,,, we can let

N—-2

(3.10) R=r"z W=D inf >0

N—1
y€rS+

so that
RU <wv on Fyp (rSf_l).

By (3.6) and setting p = RU —v, we get »T := max(p,0) € HZ(G;F) because U = 0
on 0B NOG; . Since Lv > 0, we have

Le<0 inG/,
by (3.9). Multiplying the above inequality by ¢ T and integrating by parts yields

/G+ Vo[> de — c/G+ |z| 2| T|? dz < 0.

This implies that ¢t = 0 in G, for all r positive small. We conclude that v >
R(wp +w—1) in G and thus

2 N2
v(Fop(y)) = Ruo(Fop(y) = Ry'lyl > "V Wye Gl Vee [co, T) .
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2
Case ¢ = NT.

In this case, we notice that the solutions v to the problem

N?Z 1 9
VoV dr — <— - %> /QT.O |z| " “vpp de = /QT.O fodr Vo e H(Q,,)

Qg 4

are H&-solutions if 7o is small enough (independent on k) and they are monotone
increasing to v as k — oco. Hence by (3.10) and from the above argument we deduce
that there exist an integer ky > 1 and a constant R (possibly depending on kg) such
that

o(Fos () > ve(Fon(w)) = Byl *VE, vy Gf, Vi >k

Passing to the limit as kK — oo, we get the result. U

3.2.1 Proof of Theorem 0.2

Recall that

N-2 [N? 2
3.11 Ay 1= ———\|—/— —¢ > pgy1 =14+ ——,
(3.11) g1 5 1 P > pgy-1 o
+

Suppose that u # 0 near 0 thus we can find a bounded function f with f # 0 and
0 < f < wP. By Lemma 1.3 and the maximum principle, there exits v € H(Q,,)
such that v > v > 0 and

Vvngdx—c/ |x|_2v¢dx:/ fodr Yo e CZ(Q,,),
T QTO

Q'rO 0

for some rg > 0 small. In addition Lemma 3.1 yields

2
(3.12) w(Fps(y)) > Ry'ly 2 V5 ¢ wye B

Case 1: c € (N—l,NT2).
Since — & + 4/ NTZ — ¢ <0, (3.12) implies that

(3.13) w(@) > v(x) > Cdpp(a) 2| T VT~ wre af,

18



where we recall that dop(Fpp(y)) = ' and ]Fgé(a:)] < Clx|.
Let v € (0,1) then for every € B,(yE1) C Bi(E1) = B, we have

dop(x) =1—|z— E1| > (1 —’y)xl.

Using this together with (3.11) and (3.13), we obtain

1

p—1
(3.14) wP(z) > C <|a;_|> lz|™2 Vz e GF.

Since for v > 0 small u satisfies

1 1
—Au — clz|2u > iup_lu + §up in D' (B (vEn)),

we thus have from (3.14)
—Au -V, <|§—|> 2|~ 2u > %u‘” in D'(B,(vE1)),
where V. <ﬁ> =c+5C <% . El)p_l for every € € (0,1). From now on, we will fix
€ so small that V, < NTQ.
Given 6 € (0,1), consider the cone Cs := {x € RY : 2! > §|z|} and define X5 =
Cs NSN~1. We observe that for every § € (0,1), there exists r5 > 0 such that the
cone-like domain
Cs). C By(vEn).
It follows that
—Au—V, <i> || 2u > v in D'(C?).
kd 2 ’
Let A1 5. be the first Dirichlet eigenvalue of —Agn-1® —V.® = Ay 5.® on Xs. Since
M) NN —-1= )\1(81_1) as d — 0, we can choose a 0. € (0,1) such that

(3.15) Moe<N—-1—-c<0 V6e€(0,0).

Since V; < NTQ < % + A1 (Z5) = u(Cyx,) for every 6 € (0,6.), we can apply

Lemma 2.1 to have V§ € (0, d.)

— _ 2
u(zx) > CM#*’\/ %“‘1’575, in C;‘Sﬂ
5
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where ig CC X5. We get from (3.15)

2 2
p—1>— > — >0
osz,l ¥ - \/(N —2)%/44 Aise

Since —Au > uP~lu, we deduce that Vo € (0,6.)

—Au—p(z)|z]2u>0 in D/(Cg/z),
é
where p(z) > C’|x|(%Jr (N=2)/4+2166)=1D+2 " Gince p(z) — 400 as |z| — 0,

applying Lemma 1.4, we contradict the sharpness of the Hardy constant /‘(Cié)'

Case 2: ¢ = NT.

Here, we recall that p > % By (3.7) we can let ¢ € H(G;") be the unique solution
to the problem

2

/ VCV(bdx—i/ \xy—2g¢da;=/ lodr VYo € CE(G)).
fers 4 Jor Gy

We put ®(y) = ‘y—;| Then by Lemma 1.4, Lemma 3.1 and (3.12), we have

Klery = [ o ke

> 0 [ Wt il
B;

> 0 |l eeray
> -
= C/ <I>p+1da/rt2zN(p+1)tN—1dt
st 0
> 0/ <I>P+1da/ t71dt = .
st 0
This clearly contradicts the fact that ¢ € H(G;"). O

3.3 Existence

Let Q be a domain of RV, N > 3 which is of class C? at 0 € Q, we shall show
that for some r > 0 small, there exists a positive function v € LP(2 N B,.(0)),

20



1<p<pgff1=1+ 2 and

“Au——Su>u i D(QN B(0)).
Letting B be a unit ball with 0 € 9B, call Y = RV \ B and M = 9U. Under the

notations in Section 3.1, the above existence result is a consequence of the following

Proposition 3.2 Let 1 <p <pgnv-1 and N —1<c < NTQ. Then there exists r > 0
+

small such that the problem

—Aw - pmw=uwf in D'(B)),
(3.16) w € LP(B)),
w>0 BF

has a supersolution, with B = Fa(B;").

Proof. Notice that ha(z) = ==~ and thus

1+dpq ()
21— N) +hag(z) . N —1
3.17 - > Ve elU.
(3.17) (@) (@)

Define (see (3.4))

w(r) =wa 1_]\,(F/\_/tl(:zt)) Vz € B

2p?

By (3.5), (3.17) and using the fact that |z| = |y| + O(|y|?), we have

2ol X el w(Faa )

+O(Jy| ™) w(Fm(y))-

—Aw(Fpm(y)) — clFm(y)| Pw(Fumly) >

In particular if » > 0 small

—Aw(Fpm(y) = dFm)| Pw(Fm(y)) > Clyl*X_o(lyl) w(Fm(y)) Vy € B,

with C > 0 a constant depending only on p and N. Therefore w is a supersolution

provided
Clyl 2 X o(Jyl) w(Fm(y) = w(Fm(y))? Yy € B
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or equivalently

1 —a —2 1 —a p
Y _ 1 N-1 _o4 L Yy _ 1 N-—1 1
Oy g ) “pZ(me“ Wty |1og|y||2”> Ve B

Since 0 < f’—;e(l_myl < 1 and p > 1, the above holds if

- p
—a 2 opl —a N a1
Cly| *+ llog |y||~*T2» > <Iy| *+  |log |y||2p) Vy € B

The previous inequality is true provided

—a N —2+pa 11
Clyl " oyl ETE > 1 Wye B
2

o
gV—-1

This is clearly possible whenever p < pov-1 =1+ and r > 0 is small enough.
+

+
" N-a_ /N2
Finally, we notice that / wP dr < C/ t72 VT log t\% dt < oo, when N—1 <
B 0

c< NTZ. This concludes the proof. ]

4 Problem with perturbation

We let T' ¢ RY be a smooth closed submanifold of dimension k with 1 < k < N — 2.
Let Q be a smooth domain in RY containing I". We study the problem

—Au — (N_Z_Z)z dist(;,r)z g(z)u>w?  in D(Q\T),
(4.1) we LP (Q\T),

loc

uz0 inQ\T,
where g € C%(Q2), ¢ > 0 in Q and normalized as
(4.2) max q(o) =1.

We obtain the following result:

Theorem 4.1 Suppose that p > %:’gfg and that (4.2) holds. Then problem (4.1)

does not have a solution.
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The above supercriticality assumption on p is sharp as we will see in Section 4.2

below.

Remark 4.2 o It was observed in [[5], Remark 3] that if 0 < maxpq < 1 or

q =1 then (4.1) does not have a solution when

2 N—-k+2
N—k—2 (N—h=2)? _ “N—-k-2

——9)2
with ¢ = M maxr ¢.

o We should mention that extremals for weighted Hardy inequality was studied
in [6], [7] and [14] when T is a submanifold of O and k =1,...,N —1. In
these papers, the finiteness of the integral | ————

r/1-q(o)

sufficient to obtain the existence of an eigenfunction in some function space

do was necessary and

corresponding to some “critical “ eigenvalue.
We belive that the argument in this paper and the results in [14] might be used
to study problem (4.1) but with T' C 092.

In the sequel, we denote by §(z) := dist(z, I'). For f > 0, we consider the
interior of the tube around I' of radius  defined as I'g := {x € Q : 6(z) < B}. It
is well known that if 3 is positive small, the function ¢ is smooth in I'g \ I'. If 3 is

small then for all 2 € I'g, there exists a unique projection o(x) € I" given by
1
(4.3) o(z) =z — §V(52)(x) =x — d(x)Vo(z).

In addition the function o is also smooth in I', see for instance [1].
From now on, we will consider /s for which the projection function o is smooth.
Set

(1.4 ola) = 57,
with
(15 o(x) = ag(a) =~ =2 /&)
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and where N )
i) = (55 72) (- atole) +9@)).

Clearly « is well defined as soon as ¢ < 1 on I'. Recall that X, (t) = |logt|*, t € (0,1)
and a € R. We define

wa(x) == wo(z) X4 (0(x)).

We will need the following result which will be useful in the proof of Theorem 4.1.

Lemma 4.3 Put L, := —A— (N_2k_2)2 072 q. Then there exit C, By > 0 depending
only on T, a and ||q\|02(§) such that
(4.6)

‘Lq wa —2aVadi 2 X _qw, +ala —1)6"2 X _sw,| < Cllog(d)| 5 3w, in Ia,-

Proof. We start by noticing that

(4.7) Awg = wy <A log(wo) + ]Vlog(wo)]2>
and that
(4.8) —Alog(wo) = Aalog(d) + 2Va - V(log(d)) + aAlog(0).
We have

= — (1 2
(4.9) ~Aa=AVa=Va <§Alog( )+ —\v1og( )| )

By simple computations we get

Va N—k—-2\?=V(goo)+ Vs
Vav log(a) = \/a_< 5 ) 7=
e laa| |, |val
1o Va
Va|Alog(a)| < —= \/_ T

We deduce that there exits a constant Sy > 0 depending only on I' and ||¢|| @
such that

w Q

(4.10) |Aal < ) in T'g,.
2
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Similar we have

(4.11) |Va - Vieogd| < 523 in I'g,.
2
Recall that (see for instance [9])
N—-k—-2
(4.12) aAlog(d) =« 5 (14 0(9)).

Using (4.9), (4.10), (4.11) and (4.12) in the formula (4.8), we obtain the following

estimate:

1
‘ <clled i,

2

N-—-k—-2
52

(4.13) ‘A log(wo) +

We also have —_
—V(log(wp)) = V(alog(d)) = a— +log(d) Vo

0
and thus
a? log 6 .
(4.14) ‘|V(log(w0))|2 - 5| < ¢! é | Ts,-

By using (4.13), (4.14) in the identity (4.7), we conclude that

1
<c! ‘;gg‘ﬂ in Ts,.

wo 52 52

2

‘AWO N—-k—-2 a?
+ « —

We use the fact that |g(z) — q(o(z))| < Cdo(x) to deduce that

N—k—2)? :
Awy = (%5_%](95)0‘)0+O(\10g(5)]5_3)w0 in I'g,.

To conclude, we write
wa(z) = wo(x) (—log(6(x)))"

and the proof of (4.6) follows with some little computations. We skip the details. [J

4.1 Proof of Theorem 4.1

Step I: The following inequality holds:

N —k—2)?
(4.15) / \V|?dz — (7)/ 6 2qp*dx > C 02X _opida
T 4 Tso T
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for any ¢ € C°(I's,), with fy > 0 small depending only on K and HqHCQ@) and
C > 0 is a constant.
Indeed, observe that by (4.6),

Aw; — e — 2
Y Wk q> L2 X_y— Cllog(8)|6~2 inTg\T.
w% 4 4

Hence, there exist Sy > 0 small and a constant C' > 0 such that
(N —k—2)2
4
Since w1 € LY(T'g,), the inequality (4.16) holds in D'(I's,) thus by Lemma 1.4, (4.15)

follows.

(4.16) —Aw% — 5_2qw% —C62X_, Wi >0 inIg, \T.

Step II: Set 0, := wy + wg, with a < —1/2. There exist positive constants C' and

Bo depending only on a, I' and ||¢[| 2 ) such that

(4.17) |

1
0,12 <C/7da.,
‘ HHl(F[gO) — r 1 _q(o_)

First of all it is easy to see that, since X, < 1 for a negative, we can estimate

(4.18) |V0,* < C37272  in Tg,.
Following [10], there exits a family of disjoint open sets W;, i = 1,...,mg of I" such
that
mo
r=Jw, W, N W;| =0, i#j.
=1

Moreover by (4.18),
mo
(419)  [8allFpnr,,) < C/ 522 = CZ/ 67 (14 04()) dd do,
FBO =1 WiXBﬂO
where Bév ~k is the ball of RN~* with radius 8. Therefore, we have

il Bo
Hea‘ﬁ{l(pﬁo) < CZ/ /SNkl/O 5_15(N_k_2)\/md5d0
i=1 i

mo
CZ / / / 605_15(N_k_2)\/1“1(”)d5da
i—1 Wi SN—k—1 0

IN

IN

— 1 1
0; /Wi Ni=re do = C/F Ni=re) do.
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This ends the proof of this step.
Step III: Let u satisfies (4.1) and 6, = wy +wq, for a < —1/2. For any 5 > 0 small,

there exists a constant C' > 0 such that
(4.20) u>Cf, inTg.

Indeed, define g,(z) := g(z) — L with n € N* and we put 0y, = §~%n + 5% X, (9).
Recalling (4.5), by (4.6) there exit constants 3y, C' > 0 (independent on n) such that

Lg,Oan g-—§5—2|1og5r4+a5—QWw4-cnlogon|5—%5—amz in T'g,

for any 8 € (0, Bp). Therefore for all 8 > 0 small we obtain

(N — k —2)?

(4.21) RN - 1

672 () by <0 inlg Vn>1.

By [[5], Lemma 1], u € L?

1oc(€2). In addition, it is nonnegative and non-trivial in

and satisfies
(N —k —2)?

(4.22) —Au— 1

6 2q(x)u > uP  in D'(Q).

Hence by the maximum principle, u > 0 in Q. For 5 > 0 small (independent on n),
by (4.15) we can pick v, € H}(I'5) solution to

(N — k —2)?

4

By Lemma 1.3 the sequence (vy,), is monotone increasing and converging pointwise
to v € H(I'g) solution to —Av — Wdﬁq(az) v = min(uP, 1). By Lemma 1.3 we
have that u > v > v, > 0 in I'g for any n > 1. By elliptic regularity theory v, is
continuous in I'z \ I'. We choose M,, > 0 such that

(4.23) —Av, — 6 2qn(z) vy = min(uP, 1)  in Tg.

(4.24) M,, sup 0, = inf v,.
81“[3 8F§
2

Clearly, we have M,, 64, < v, on 9I' 5. It follows form (4.17) that (M, 04, — va) T €
2
HO1 <F§>. On the other hand by (4.21) and (4.23),
2

(N —k—2)

2
—A (M, 0qn —vp) — 1 5_2q(:17) (M, 64 —vp) <0 inTp.
2
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Multiplying this inequality by (M, 04, — vn)+ and integrating by parts yields M, 0, , <
v, on I's by (4.15). Since v, is monotone increasing to v, by the choice of M, in
(4.24), tlzlere exists an integer ng > 1 such that M, 6, , < v, for all n > ng. Passing
to the limit, we get (4.20).

Step IV: There is no u satisfying (4.1) with p > %

By using (4.20) we have that

wP~l > OO~ > CWhTl > 0T HVITT i Ty,

for some C' > 0 and provided f is small. This together with (4.22) give

L 9)2
(4.25) —Au — (q + 0052vl—q°“> (N+2)5—2 w>0  inD(Ty),
for some Cp > 0. By Lemma 1.4 we have, Vo € C°(I'3)
Vo|? dx
oy /)
(4.26) (N—-Fk—-2) s

< .
4 / <q + Cpd*V l_q(0)> 0 2% da
Ug

Our aim is to construct appropriate test functions in (4.26) supported in a neigh-

borhood of the maximum point of g on I' in order to get a contradiction.

By (4.2), we can let oy € T" be such that

(4.27) q(op) = malgq(a) =1
S
For y € RV, we write y = (7,7) € RV x RF with § = (y',...,yN"*) and

g = (yN_kJ’_l?”’?yN)’

neighborhood of op with f(0) = o0¢. In a neighborhood of oy, we consider N,

Consider f : R¥ — T' a normal parameterization of a

i =1,...,N — k an orthonormal frame filed on the normal bundle of I'.  We can
therefore define a parameterization of a neighborhood, in RY, of ¢y by the mapping
Y :B,(0) - T3 as

N—k

YY) = F@) + 3 yN (@) € Ts,

1=1
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for some r > 0 small. By identification using (4.3), we get for some r > 0 small

(4.28) (Y () =1lgl, o(Y(y)=rf@  VyeB(0).

Denoting by g the metric induced by Y with component g;;(y) = (3;Y (v),0;Y (v)),
it is not difficult to verify that for all y € B,(0)

(4.29) 9i(y) =35 +O(yl)  forij=1,...,N.

Next we let w € C(RV=%\ {0} x R¥). We choose gy > 0 small such that, for
all € € (0,e0), we have
e Suppw C B,(0).

We define the following test function
ve(x) = 57w (6_1Y_1(33)) ,  x € Y(eSuppw).

Clearly, for every € € (0,¢9), we have that ¢, € C2°(I'g) and thus by (4.26), we have

(summations over repeated indices is understood)

V. |?dz
(N —k=2? _ /rﬁ‘ el
4 /F <q + Cpd%V 1_‘1(0)) 672 902 dx
8

g2-N /RN 6—2(ga)ijaiwajw \/]g?] dy
= [ (alv(ew) + ColedPVETED) fej 2 Vgl dy
| a0t i dy
L (a0 ten) + Coleil™V=TE) (5172 w2 gl dy.

where ¢° is the metric with component g¢;(y) = gij(ey) with (¢°)¥(y) denotes the
component of the inverse matrix of ¢° and |¢g°| stands for the determinant of g..

Observe that the scaled metric g° expands a ¢ = Id + O(e) on the support of
w by (4.29). In addition since ¢ is of class C', decreasing ¢ if necessary, there exits
¢ > 0 such that

1—q(f(ey)) < e Vge SuppwnRF, Ve e (0,e),
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by (4.28). From this we deduce that

|€g|2 1—q(f(e7)) -1 as € — 0,

uniformly in y € Suppw. We then have from the dominated convergence theorem
and using (4.27) together with (4.28)

2
(N—k-2?° _ 1 /RNWw'dy

Vw e C(RYF\ {0} x RY).

4 - 1+C o
0 / 1572 w? dy
RN
This is in contradiction with the well know fact that

[ Ivubdy | Ivulay )

inf RN _ inf RN _ (N—-k—-2)
weCX (RN —F\{0}xRF) / |g|—2 w2 dy weC (RN) / |g|—2 w2 dy 4
RN RN

because N — k > 2, see for instance [[25], Section 2.1.6] and [[26], Lemma 1.1]. [

4.2 Existence

Proposition 4.4 Let 1 < p < %:Igfg Then if B is small, there exists u € LP(I'g)
satisfying

(4.30) —Au—%é”quzup inTg\T,
u>0 z'nl“g.

Proof. Set
U=WwW)y — w_1 = w()(l — X_l(é))

Then by Lemma 4.3 there exits C' > 0 such that
Lgu>20"2X_35(86)6 % —CX1(8)6726 inTy\T.

Hence, provided 3 is small, we have u > 0 and

(N —k—2)?
4

—Au — 6 2qu>82X_5(0)u inTg\T.
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We thus want
5_2X_5(5)u > uP in FB \ T.

Or equivalently
§2X _5(8)07 (1 — X_1(6)) > 67P*(1 — X_1(6))? inTg\T.
That is

(4.31) sHPDax ()1 - X 1(0)'P>1 inTg\T.

We observe that for 1 < p < %:if% we have for every x € I'g \ T

N—-k-2
This implies that if 8 is small enough, (4.31) holds so that u satisfies (4.30). The
fact that u € LP(I'g) is easy to check, we skip the details. O
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