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1 On the Hardy-Poincaré inequality with boundary

singularities

Mouhamed Moustapha Fall ∗

Abstract. Let Ω be a smooth bounded domain in RN with N ≥ 1. In this paper we study the

Hardy-Poincaré inequality with weight function singular at the boundary of Ω. In particular we

provide sufficient and necessary conditions on the existence of minimizers.

Key Words: Hardy inequality, extremals, existence, non-existence.

1 Introduction

Let Ω be a domain in RN , N ≥ 1, with 0 ∈ ∂Ω. In the framework of Brezis and

Marcus [1], we study the existence and non-existence of minima for the following

quotient

(1.1) µλ(Ω) := inf
u∈H1

0
(Ω)

∫

Ω
|∇u|2 dx− λ

∫

Ω
|u|2 dx

∫

Ω
|x|−2|u|2 dx

,

in terms of λ ∈ R and Ω. The existence and non-existence of extremals for (1.1) were

studied in [3], [4], [6], [7], [8], [12], [13], [14] and the references there in. Especially

in [7], the authors proved that for every smooth bounded domain Ω of RN , N ≥ 2,

with 0 ∈ ∂Ω

(1.2) sup
λ∈R

µλ(Ω) =
N2

4
= µ0

(

RN
+

)

,
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where RN
+ =

{

x ∈ RN : x1 > 0
}

, see also Lemma 3.4. In addition they showed that

there exists λ∗ = λ∗(Ω) ∈ [−∞,+∞) such that µλ(Ω) <
N2

4 and it is achieved for

all λ > λ∗. If Ω is locally convex at 0, they proved that λ∗ ∈ R. Moreover if λ∗ ∈ R

and Ω is locally concave at 0 then there is no minimizer for µλ∗(Ω) = N2

4 .

The questions to know whether λ∗ is finite for every smooth domain Ω and the

non-existence of minimizers for µλ∗(Ω) remained open.

We shall show that, indeed, the supremum in (1.2) is always attained by λ∗ ∈ R and

that there is no extremals for µλ∗(Ω). Our main result is the following,

Theorem 1.1 Let Ω be a bounded smooth domain in RN , N ≥ 2, with 0 ∈ ∂Ω.

Then there exists λ∗(Ω) ∈ R such that µλ(Ω) is attained if and only if λ > λ∗(Ω).

We notice that if N = 1 then by [6] we have that λ∗(Ω) ≥ 0 and thus µλ∗(Ω) is

not achieved by [8]. We mention that, as observed in [7] and [6], there are various

smooth bounded domains such that λ∗(Ω) < 0.

The fact that λ∗(Ω) ∈ R is a consequence of the following local Hardy inequality,

for r > 0 small,

(1.3)

∫

Ω∩Br(0)
|∇u|2 dx ≥

N2

4

∫

Ω∩Br(0)
|x|−2|u|2 dx ∀u ∈ H1

0 (Ω ∩Br(0)).

On the other hand the above inequality implies that µ0(Ω ∩ Br(0)) =
N2

4 by (1.2).

In particular, even if a domain has negative principal curvatures at 0, its Hardy

constant may be equal to N2

4 the Hardy constant of the half-space RN
+ . This is

not the case for the Hardy-Sobolev constant, see Ghoussoub-Kang [10]. Hence the

existence of extremals for µ0 depends on all the geometry of the domain instead of

the geometric quantities at the origin, see Proposition 4.2.

In Section 2, we introduce the system of normal coordinates and the modified ground

states used in the hall paper. In section 3, we show that λ∗ ∈ R and we provide an

improvement of (1.3). In Section 4, we show that the problem

−∆u−
N2

4
|x|−2u = λu, in Ω

does not possess a non trivial and nonnegative supersolution in H1
0 (Ω) ∩ C(Ω). In

Section 5 we prove Theorem 1.1. Finally in Section 6, we generalize Theorem 1.1 by

studying variational problems of type (1.1) with some weights.
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2 Preliminaries and Notations

For N ≥ 2, we denote by {E1, E2, . . . , EN} the standard orthonormal basis of RN ;

RN
+ = {y ∈ RN : y1 > 0}; Br(y0) = {y ∈ RN : |y− y0| < r}; B+

r = Br(0)∩RN
+ and

SN−1
+ = ∂B1(0) ∩ RN

+ .

Let U be an open subset of RN with boundary M := ∂U a smooth closed hyper-

surface of RN and 0 ∈ M. We write NM for the unit normal vector-field of M

pointed into U . Up to a rotation, we assume that NM(0) = E1. For x ∈ RN , we

let dM(x) = dist(M, x) be the distance function of M. Given x ∈ U and close to

M then it can be written uniquely as x = σx + dM(x)NM(σx), where σx is the

projection of x on M. We further use the Fermi coordinates (y2, . . . , yN ) on M so

that for σx close to 0, we have

σx = Exp0

(

N
∑

i=2

yiEi

)

,

where Exp0 : R
N → M is the exponential mapping on M endowed with the metric

induced by RN . In this way a neighborhood of 0 in U can be parameterized by the

map

FM(y) = Exp0

(

N
∑

i=2

yiEi

)

+ y1NM

(

Exp0

(

N
∑

i=2

yiEi

))

, y ∈ B+
r ,

for some r > 0. In this coordinates, the Laplacian ∆ is given by

∆ =

N
∑

i=1

∂2

(∂xi)2
=

∂2

(∂y1)2
+ hM ◦ FM

∂

∂y1
+

N
∑

i,j=2

∂

∂yi

(

√

|g|gij
∂

∂yj

)

,

where hM(x) = ∆ dM(x); for i, j = 2 . . . , N , gij = 〈∂FM

∂yi
, ∂FM

∂yj
〉; the quantity

|g| is the determinant of g and gij is the component of the inverse of the matrix

(gij)2≤i,j≤N .

Since gij = δij +O(y1) +O(|y|2), we have the following Taylor expansion

(2.1) ∆ =

N
∑

i=1

∂2

(∂yi)2
+ hM ◦ FM

∂

∂y1
+

N
∑

i=2

Oi(|y|)
∂

∂yi
+

N
∑

i,j=2

Oij(|y|)
∂2

∂yi∂yj
.

For a ∈ R, we put Xa(t) := | log t|a, t ∈ (0, 1). Let

ωa(y) := y1|y|−
N
2 Xa(|y|) ∀y ∈ RN

+

3



and put

Ly := −

N
∑

i=1

∂2

(∂yi)2
−
N2

4
|y|−2 + a(a− 1)|y|−2X−2(|y|).

Then one easily verifies that



















Ly ωa = 0 in RN
+ ,

ωa = 0 on ∂RN
+ \ {0},

ωa ∈ H1(B+
R ) ∀R > 0, a < −

1

2
.

For K ∈ R, we define

ωa,K(y) = eKy1 ωa(y).

This function satisfies similar boundary and integrability conditions as ωa. In addi-

tion it holds that

(2.2) Ly ωa,K = −
2K

y1
ωa,K + 2K

(

N

2
+ aX−1(|y|)

)

y1

|y|2
ωa,K −K2ωa,K .

Furthermore for all a ∈ R

N
∑

i=2

Oi(|y|)
∂ωa,K

∂yi
+

N
∑

i,j=2

Oij(|y|)
∂2ωa,K

∂yi∂yj
= y1 eKy1O

(

|y|−
N
2
−1Xa(|y|)

)

= Oa,K(|y|−1)ωa,K(y).

Here the error term Oa,K has the property that for any A > 0, there exist positive

constants c = c(Ω, A,K) and s0 = s0(Ω, A,K) such that

(2.3) |Oa,K(s)| ≤ c s ∀s ∈ (0, s0), ∀a ∈ [−A,A].

Let

Wa,K(x) := ωa,K(F−1
M (x)), ∀x ∈ B+

r := FM(B+
r ).

Then using (2.1), (2.2) and the fact that |x| = |y|+O(|y|2) we obtain the following

expansion

(2.4) LWa,K = −

(

2K + hM(x)

dM(x)

)

Wa,K +Oa,K(|x|−1)Wa,K in B+
r ,
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with L := −∆− N2

4 |x|−2 + a(a− 1)|x|−2X−2(|x|). Moreover it is easy to see that

(2.5)



















Wa,K > 0 in B+
r ,

Wa,K = 0 on M∩ ∂B+
r \ {0},

Wa,K ∈ H1(B+
r ), ∀a < −1

2 .

3 λ
∗(Ω) is finite

We start with the following local improved Hardy inequality.

Lemma 3.1 Let U = RN \B1(−E1). Then there exist constants c = c(N) > 0 and

r0 = r0(N) > 0 such that for all r ∈ (0, r0) the inequality
∫

B+
r

|∇u|2 dx−
N2

4

∫

B+
r

|u|2

|x|2
dx ≥ c

∫

B+
r

|u|2

|x|2| log |x||2
dx+ (N − 1)

∫

B+
r

|u|2

dM(x)
dx

holds for all u ∈ H1
0 (B

+
r ).

Proof. It is easy to see that hM(x) = N−1
1+dM(x) and thus

(3.1) −
2(1−N) + hM(x)

dM(x)
≥
N − 1

dM(x)
∀x ∈ U .

For r > 0 small, we set

w̃(x) = ω 1

2
,1−N (F−1

M (x)), ∀x ∈ B+
r .

By (2.4) and (3.1), we have

−
∆w̃

w̃
≥
N2

4
|x|−2 +

1

4
|x|−2X−2(|x|) +

N − 1

dM(x)
+O(|x|−1) in B+

r .

Hence there exists r0 = r0(N) > 0 such that for all r ∈ (0, r0)

(3.2) −
∆w̃

w̃
≥
N2

4
|x|−2 + c|x|−2X−2(|x|) +

N − 1

dM(x)
in B+

r ,

for some positive constant c depending only on N . Fix r ∈ (0, r0) and let u ∈

C∞
c (B+

r ). We put ψ = u
w̃
. Then one has |∇u|2 = |w̃∇ψ|2 + |ψ∇w̃|2 +∇(ψ2) · w̃∇w̃.

Therefore |∇u|2 = |w̃∇ψ|2 +∇w̃ · ∇(w̃ψ2). Integrating by parts, we get
∫

B+
r

|∇u|2 dx =

∫

B+
r

|w̃∇ψ|2 dx+

∫

B+
r

(

−
∆w̃

w̃

)

u2 dx.

The proof is then complete by (3.2) and a desnsity argument.
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As a consequence, we have

Corollary 3.2 Let Ω be Lipschitz domain and of class C2 at 0 ∈ ∂Ω. Then there

exist constants c = c(Ω) > 0 and r0 = r0(Ω) > 0 such that for all r ∈ (0, r0), the

inequality

∫

Ω∩Br(0)
|∇u|2 dx−

N2

4

∫

Ω∩Br(0)

|u|2

|x|2
dx ≥ c

∫

Ω∩Br(0)

|u|2

|x|2| log |x||2
dx

holds for all u ∈ H1
0 (Ω ∩Br(0)).

Proof. Since Ω is of class C2 at 0 ∈ ∂Ω, there exits a ball with 0 ∈ ∂B and

Ω ⊂ U = RN \B. Therefore by Lemma 3.1, we get the result.

Remark 3.3 We should notice that Lemma 3.1 implies that ”Ω is locally concave

at 0 ∈ ∂Ω” does not necessarly implies that µ(Ω) < N2

4 as it happens in the Hardy-

Sobolev case, see [10], [11], [5].

For sake of completeness, we include the proof of (1.2) in the following lemma.

Lemma 3.4 Let Ω be a Lipschitz domain and of class C2 at 0 ∈ ∂Ω. Then there

exists λ∗(Ω) ∈ R such that

µλ(Ω) =
N2

4
, ∀λ ≤ λ∗(Ω),

µλ(Ω) <
N2

4
, ∀λ > λ∗(Ω).

Proof. Claim: supλ∈R µλ ≤ N2

4 .

It is well known that µ0(R
N
+ ) = N2

4 , see for instance [9] or [14]. So for any δ > 0, we

let uδ ∈ C∞
c (RN

+ ) such that

∫

RN
+

|∇uδ|
2 dy ≤

(

N2

4
+ δ

)
∫

RN
+

|y|−2u2δ dy.

We let B a ball contained in Ω and such that 0 ∈ ∂B. If ε > 0, put

v(x) = ε
2−N

2 uδ
(

ε−1F−1
∂B (x)

)

.
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Clearly, provided ε is small enough, we have that v ∈ C∞
c (Ω) thus by the change of

variable formula

µλ(Ω) ≤

∫

Ω
|∇v|2 dx+ λ

∫

Ω
v2 dx

∫

Ω
|x|−2v2 dx

≤ (1 + cε)

∫

RN
+

|∇uδ|
2 dy

∫

RN
+

|y|−2u2δ dy

+ cε2|λ|,

where we have used the fact that F−1
∂B (x) = x+O(|x|2) and c is a constant depending

only on Ω. We conclude that

µλ(Ω) ≤ (1 + cε)

(

N2

4
+ δ

)

+ cε2|λ|.

Taking the limit in ε and then in δ, the claim follows.

Claim : There exists λ̃ ∈ R such that µ
λ̃
= N2

4

For δ > 0 small, we let ψ ∈ C∞(Bδ(0)) be a cut-off function, satisfying

0 ≤ ψ ≤ 1 , ψ ≡ 0 in RN \B δ
2

(0) , ψ ≡ 1 in B δ
4

(0) .

We write any u ∈ H1
0 (Ω) as u = ψu+ (1− ψ)u, to get

(3.3)

∫

Ω
|x|−2|u|2 dx ≤

∫

Ω
|x|−2|ψu|2 dx+ c

∫

Ω
|u|2 dx ,

where the constant c depends only on δ. Since ψu ∈ H1
0 (Ω∩Bδ(0)), if δ is sufficiently

small, Corollary 3.2 implies that

(3.4)
N2

4

∫

Ω
|x|−2|ψu|2 dx ≤

∫

Ω
|∇(ψu)|2 dx.

In addition, we have
∫

Ω
|∇(ψu)|2 dx ≤

∫

Ω
|∇u|2 dx+

1

2

∫

Ω
∇(ψ2) · ∇(u2) dx+ c

∫

Ω
|u|2 dx .

Using integration by parts we get
∫

Ω
|∇(ψu)|2 dx ≤

∫

Ω
|∇u|2 dx−

1

2

∫

Ω
∆(ψ2)|u|2 dx+ c

∫

Ω
|u|2 dx.

Combining this with (3.3) and (3.4) we infer that there exits a positive constant c

depending only on δ and Ω such that

N2

4

∫

Ω
|x|−2|u|2 dx ≤

∫

Ω
|∇u|2 dx+ c

∫

Ω
|u|2 dx ∀u ∈ H1

0 (Ω).
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This together with the first calim implies that µ−c(Ω) =
N2

4 .

Finally, noticing that µλ(Ω) is decreasing in λ, we can set

(3.5) λ∗(Ω) := sup

{

λ ∈ R : µλ(Ω) =
N2

4

}

so that µλ(Ω) <
N2

4 for all λ > λ∗(Ω).

4 Non-existence result

In this section we prove the following non-existence result.

Theorem 4.1 Let Ω be a bounded Lipschitz domain of class C2 at 0 ∈ ∂Ω and let

λ ≥ 0. Suppose that u ∈ H1
0 (Ω) ∩ C(Ω) is a non-negative function satisfying

(4.1) −∆u−
N2

4
|x|−2u ≥ −λu in Ω.

Then u ≡ 0.

Proof. Up to scaling and rotation, we may assume that Ω contains the ball B =

B1(E1) such that B∩Ω = {0}. We will use the coordinates in Section 2 with U = B

and M = ∂B. For r > 0 small we define G+
r := F∂B(B

+
r ).

We suppose that u does not identically vanish near 0 and satisfies (4.1) so that u > 0

in Ω ∩Br0(0) by the maximum principle, for some r0 > 0.

We define

wa(x) := ωa,N−1(F
−1
∂B (x)), ∀x ∈ G+

r .

Letting L := −∆− N2

4 |x|−2 + λ then by (2.4)

Lwa ≤ −
2(N − 1) + h∂B

d∂B
wa +

(

λ−
3

4
|x|−2X−2(|x|)

)

wa +Oa(|x|
−1)wa,

for every a < −1
2 . Since −h∂B(x) = (N − 1) (1 +O(|x|)) in G+

r , by (2.3) we can

choose r > 0 small, independent on a ∈ (−1,−1
2 ), so that

(4.2) Lwa ≤ 0 in G+
r , ∀a ∈ (−1,−

1

2
).
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Let R > 0 so that

Rwa ≤ u on F∂B

(

rSN−1
+

)

∀a < −
1

2
.

By (2.5), setting va = Rwa−u, it turns out that v
+
a = max(va, 0) ∈ H1

0 (G
+
r ) because

wa = 0 on ∂B ∩ ∂G+
r . Moreover by (4.1) and (4.2),

Lva ≤ 0 in G+
r , ∀a ∈ (−1,−

1

2
).

Multiplying the above inequality by v+a and integrating by parts yields

∫

G+
r

|∇v+a |
2 dx−

N2

4

∫

G+
r

|x|−2|v+a |
2 dx+ λ

∫

G+
r

|v+a |
2 dx ≤ 0.

But then Corollary 3.2 implies that v+a = 0 in G+
r . Therefore u ≥ Rwa for all

a ∈ (−1,−1
2) and this contradicts the fact that u

|x| ∈ L2(Ω) because
∫

G+
r

wa
2

|x|2
≥

c
∫

B+
r

ω2
a,N−1

|y|2
≥ c

2a+1 | log r|
2a+1, for some positive constant c depending only on B.

Consequently u vanish identically in G+
r and thus by the maximum principle u ≡ 0

in Ω.

As in [6], starting from exterior domains, we can see that, in general, existence

of extremals for µ0 depends on all the geometry of the domain rather than the

geometric constants at the origin. Indeed, let G be a smooth bounded domain of

RN , N ≥ 2 with 0 ∈ ∂G. For r > 0, set Ωr = Br(0) ∩ (RN \ G). It was shown in

[6] that there exits r1 > 0 such that µ0(Ωr) <
N2

4 for all r ∈ (r1,∞) and µ0(Ωr)

is achieved. But Corollary 3.2 and (1.2) yields µ0(Ωr) = N2

4 for r ∈ (0, r0). In

particular by Theorem 4.1, we get,

Proposition 4.2 There exit r0, r1 > 0 such that the problem



















∆u+ µ0(Ωr) |x|
−2u = 0, in Ωr,

u ∈ H1
0 (Ωr),

u 	 0 in Ωr

has a solution for all r ∈ (r1,∞) and does not have a solution for every r ∈ (0, r0).

9



Remark 4.3 Let Ω be as in Theorem 4.1. Then by similar argument, one can show

that there is no positive function u ∈ H1
0 (Ω) ∩ C(Ω) that satisfies

−∆u−
N2

4

u

|x|2
≥ −

η(x)

|x|2
u in Ω,

with η is continuous, non-negative and | log |x||2η(x) → 0 as |x| → 0.

Remark 4.4 We should mention that some sharp non-existence results of distri-

butional solution was obtained in [8]. Indeed assume that Ω contains a half-ball

centered at 0 ∈ ∂Ω and that u ∈ L2(Ω; |x|−2 dx) satisfies

−

∫

Ω
u

(

∆ϕ+
N2

4

ϕ

|x|2

)

dx ≥ −
3

4

∫

Ω
u

ϕ

|x|2| log |x||2
dx ∀ϕ ∈ C∞

c (Ω)

then u vanish in a neighborhood of 0.

5 Proof of Theorem 1.1

The proof of the ”if” part is similar to the one given in [1], see also [7]. Secondly,

since the mapping λ 7→ µλ(Ω) is constant on (0, λ∗(Ω)], it is not difficult to see that

µλ(Ω) is not achieved for all λ < λ∗(Ω). Now we assume that µλ∗(Ω) is attained by

a mapping u ∈ H1
0 (Ω). Then it is also achieved by |u| so we can assume that u 	 0.

Furthermore since u solves

−∆u−
N2

4
|x|−2u = λ∗u in Ω,

by standard elliptic regularity theory, u is smooth in Ω. Therefore, Theorem 4.1

implies that u = 0 in Ω which is not possible.

6 Hardy inequality with weight

Let Ω be a smooth bounded domain of RN , N ≥ 2 with 0 ∈ ∂Ω. Following [1] and

[2], we study the existence of extremals of the following quotient:

(6.1) Jλ := inf
u∈H1

0
(Ω)

∫

Ω
|∇u|2p dx− λ

∫

Ω
|x|−2|u|2η dx

∫

Ω
|x|−2|u|2q dx

,

10



where the weights p, q and η are nonnegative, nontrivial and satisfy

(6.2) p ∈ C1(Ω), q, η ∈ C(Ω), p, η > 0 in Ω and η(0) = 0.

We have the following generalization of Theorem 1.1:

Theorem 6.1 Let Ω be a smooth bounded domain of RN , N ≥ 2 with 0 ∈ ∂Ω.

Assume that the weight functions in (6.1) satisfy (6.2) and that

(6.3) p(0) = q(0) > 0.

Then, there exists λ∗ = λ∗(p, q, η,Ω) such that

Jλ =
N2

4
, ∀λ ≤ λ∗,

Jλ <
N2

4
, ∀λ > λ∗.

Furthermore Jλ is achieved if and only if λ > λ∗.

Proof. Step I: We first show that

(6.4) sup
λ∈R

Jλ ≤
N2

4
.

Recall the notation in Section 2. For ρ > 0 small, we will put B+
ρ = F∂Ω(B

+
ρ ). By

(6.3), for any ε > 0 we can let rε > 0 such that

p ≤ (1 + ε)p(0), q ≥ (1− ε)p(0), η ≤ ε in B+
rε .

By Corollary 3.2 and Lemma 3.4, µ0(B
+
rε) = N2

4 , so for any δ > 0 we can let

u ∈ C∞
c (B+

rε
) such that

∫

B+
rε

|∇u|2 ≤

(

N2

4
+ δ

)
∫

B+
rε

|x|−2u2.

It turns out that

Jλ ≤

∫

Ω
|∇u|2p− λ

∫

Ω
|x|−2u2η

∫

Ω
|x|−2u2q

≤
1 + ε

1− ε

(

N2

4
+ δ

)

+
ε|λ|

(1− ε)q(0)
.
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Sending δ and ε to zero, (6.4) follows immediately.

Step II: There exists λ̃ ∈ R such that J
λ̃
= N2

4 .

We fix r0 > 0 positive small and put

(6.5) K0 =
1

2
min
B+
r0

(−∇p · ∇d∂Ω − h∂Ω) .

For every r ∈ (0, r0), we set

w̃(x) = ω 1

2
,K0

(F−1
∂Ω (x)), ∀x ∈ B+

r .

Notice that div(p∇w̃) = p∆w̃+∇p ·∇w̃. For r > 0 small, using (2.4) we get, in B+
r ,

(6.6)

−div(p∇w̃) = p
N2

4
|x|−2w̃+

p

4
|x|−2X−2(|x|)w̃+

−∇p · ∇d∂Ω − h∂Ω − 2K0

d∂Ω
w̃+O(|x|−1)w̃.

Hence by (6.3) and (6.5) there exist constants c > 0 and r1 > 0 (depending on p, q,

η and Ω) such that for all r ∈ (0, r1)

(6.7) −div(p∇w̃) ≥ q
N2

4
|x|−2w̃ + c|x|−2X−2(|x|)w̃ B+

r .

Fix r ∈ (0, r1) and let u ∈ C∞
c (B+

r ). We put ψ = u
w̃
. Then one has |∇u|2 =

|w̃∇ψ|2 + |ψ∇w̃|2 + ∇(ψ2) · w̃∇w̃. Therefore |∇u|2p = |w̃∇ψ|2p + p∇w̃ · ∇(w̃ψ2).

Integrating by parts, we get
∫

B+
r

|∇u|2p dx =

∫

B+
r

|w̃∇ψ|2p dx+

∫

B+
r

(

−
div(p∇w̃)

w̃

)

u2 dx.

This together with (6.7) yields

(6.8)

∫

B+
r

|∇u|2p dx ≥
N2

4

∫

B+
r

|x|−2u2q dx+ c

∫

B+
r

|x|−2X−2(|x|)u
2.

We can now proceed as in the proof of Lemma 3.4 (since η > 0 in Ω) to conclude

that there exists a constant C = C(p, q, η,Ω) > 0 such that

N2

4

∫

Ω
|x|−2u2q dx ≤

∫

Ω
|∇u|2p dx+ C

∫

Ω
|x|−2u2η dx ∀u ∈ H1

0 (Ω).

Therefore we can define λ∗ as in (3.5) to end the proof of this step.

Step III: Let u ∈ H1
0 (Ω) ∩ C(Ω) is a non-negative function satisfying

(6.9) −div(p∇u)−
N2

4
q|x|−2u ≥ −λ|x|−2ηu in Ω.
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Then u ≡ 0.

Here, we assume that Ω contains the ball B = B1(E1) such that B ∩ Ω = {0} and

set G+
r = F∂B(B

+
r ). As in the previous step, we put

(6.10) K1 =
1

2
max
G+

r0

(−∇p · ∇d∂Ω − h∂Ω) .

For r ∈ (0, r0) and a < −1
2 , we set

wa(x) = ωa,K1
(F−1

∂B (x)), ∀x ∈ G+
r = F∂B(B

+
r ).

Letting L = −div(p∇·)− N2

4 q|x|
−2 + |λ||x|−2η then by (6.10) and (6.3), we get

Lwa ≤

(

|λ||x|−2η −
3

4
p|x|−2X−2(|x|)

)

wa +Oa(|x|
−1)wa in G+

r .

Therefore by (2.3) we can choose r > 0 small, independent on a ∈ (−1,−1
2 ), so that

(6.11) Lwa ≤ 0 in G+
r , ∀a ∈ (−1,−

1

2
).

If u � 0 near the origin then by the maximum principle, we can assume that u > 0

in G+
2r. Hence we can let R > 0 so that

Rwa ≤ u on F∂B

(

rSN−1
+

)

∀a < −
1

2
.

By (2.5), setting va = Rwa − u, it turns out that v+a = max(va, 0) ∈ H1
0 (G

+
r ).

Moreover by (6.9) and (6.11),

Lva ≤ 0 in G+
r , ∀a ∈ (−1,−

1

2
).

Multiplying the above inequality by v+a and integrating by parts yields

∫

G+
r

|∇v+a |
2p dx−

N2

4

∫

G+
r

|x|−2|v+a |
2q dx+ |λ|

∫

G+
r

|x|−2|v+a |
2η dx ≤ 0.

But then (6.8) implies that v+a = 0 in G+
r . Therefore u ≥ Rwa for all a ∈ (−1,−1

2 )

and this contradicts the fact that u
|x| ∈ L2(Ω). Consequently u vanish identically in

G+
r and thus by the maximum principle u ≡ 0 in Ω.

Step IV: If Jλ <
N2

4 then it is achieved.

The proof of the existence part, since η(0) = 0, is similar to the one given in [1] so

we skip it.
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Remark 6.2 Let Ω be a smooth smooth bounded domain of RN , N ≥ 2. Let Σk be

a smooth compact sub-manifold of ∂Ω with dimension 0 ≤ k ≤ N − 1. Here Σ0 is a

single point. Consider the problem (P λ
k ) of finding minimizers for the quotient:

(6.12) Jk
λ := inf

u∈H1
0
(Ω)

∫

Ω
|∇u|2p dx− λ

∫

Ω
dist(x,Σk)

−2|u|2η dx
∫

Ω
dist(x,Σk)

−2|u|2q dx

,

where the weights p, q and η are smooth positive in Ω with η = 0 on Σk and the

following normalization

(6.13) min
Σk

p

q
= 1

holds. We put

(6.14) Ik =

∫

Σk

dσ
√

1− (q(σ)/p(σ))
, 1 ≤ k ≤ N − 1 and I0 = ∞.

It was shown in [1] that there exists λ∗ such that if λ > λ∗ then JN−1
λ < 1

4 and

(P λ
N−1) has a solution while for λ ≤ λ∗, JN−1

λ = 1
4 and (P λ

N−1) does not have a

solution whenever λ < λ∗. The critical case (P λ∗

N−1) was treated in [2], where the

authors proved that (P λ∗

N−1) admits a solution if and only if IN−1 <∞. This clearly

holds here for (P λ∗

0 ) by Theorem 6.1. We believe that such type of results remain

true for all k by taking in to account that in the flat case,

inf
u∈H1

0
(RN

+
)

∫

RN
+

|∇u|2 dx

∫

RN
+

u2

x21 + · · ·+ x2N−k

dx

=
(N − k)2

4
,

see [9], with RN
+ =

{

x ∈ RN : x1 > 0
}

.
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