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Abstract We first establish a local Faber–Krahn isoperimetric comparison in terms of
scalar curvature pinching. Secondly we derive estimates of Cheeger constants related to the
Dirichlet and Neumann problems via the (relative) isoperimetric profiles which allow us to
obtain, in particular, lower bounds for first non-zero eigenvalues of the problem of Dirichlet
and Neumann. These estimates involve scalar curvature and mean curvature respectively.
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1 Introduction

Let (Mn+1, g) be a Riemannian manifold. For � ⊂ M a bounded smooth domain (open
connected) we consider the Dirichlet and Neumann eigenvalue problems:

�g f + λ f = 0 �, f = 0 ∂�;
�g f + µ f = 0 �, 〈∇ f, η〉g = 0 ∂�,

with �g f = divg(∇ f ) and η is the outer unit normal to ∂�.
The set of eigenvalues, counted with multiplicities, in the above eigenvalue problems

consists of

0 < λ1(�, g) < λ2(�, g) ≤ · · · + ∞;
0 = µ1(�, g) < µ2(�, g) ≤ · · · + ∞.

By the Max–Min Theorem (see for example [3, p. 17]), one knows that the best possible
constants in the Poincaré and Poincaré–Wirtinger inequalities are given by λ1(�, g) and
µ2(�, g). The purpose of the present paper is to obtain local lower bounds on λ1(�, g) and
µ2(�, g) via curvature pinching. Before stating our results, some preliminaries are required.
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438 M. M. Fall

Letting 0 < v < |M|g , define the Faber–Krahn (FK) isoperimetric profile of M as

F KM(v, g) := inf
�⊂M, |�|g=v

λ1(�, g).

Here � ranges over the smooth domains of M. For example by the variational charac-
terization for the lowest Dirichlet eigenvalue and the properties of symmetric decreasing
rearrangements of functions, the Faber–Krahn isoperimetric profile of R

n+1 is

F KRn+1(v) =
( |B|
v

) 2
n+1

λ1(B),

where B is the unit ball of R
n+1.

Explicit lower bounds for the profile F KM are very important in applications and are
called physical isoperimetric inequalities for instance see [3].

Let

IM(v, g) := inf
�⊂M, |�|g=v

|∂�|g,

be the isoperimetric profile of M. Lower bounds for the profile IM are called geometric
isoperimetric inequalities. It is well know that the two above profiles are intimately linked,
one can see for example [3, Sect. 2] for more details.

Recently Druet [6], has established the following (local) geometric isoperimetric inequal-
ity : let x ∈ M and scalar curvature satisfies S(x) < (n + 1)n k for some k ∈ R. There exists
rx > 0 such that for any v ∈ (0 , |Bg(x, rx)|g) and any ball E of volume v in (Mn+1, gk),
the space of constant sectional curvature k, there holds

IBg(x,rx)(v, g) > |∂E |gk ,

where Bg(x, r) is the geodesic sphere centered at x with radius r . We prove here the coun-
terpart for the Faber–Krahn profile.

Theorem 1.1 Let (Mn+1, g) be a complete Riemannian manifold, n ≥ 2 and let x ∈ M.
Assume that the scalar curvature at x satisfies S(x) < (n + 1)n k for some k ∈ R. Then
there exists rx > 0 such that for any v ∈ (0 , |Bg(x, rx)|g) and any ball E of volume v in
(Mn+1, gk), there holds

F K Bg(x,rx)(v, g) > λ1(E, gk),

where Bg(x, r) is the geodesic sphere centered at x with radius r in M and (Mn+1, gk) is
the space of constant sectional curvature k and dimension n + 1.

Cheeger [4], provided lower bound of λ1 and µ2 by isoperimetric constants: the Cheeger
constants. Therefore to obtain lower bound for these eigenvalues, one may rely on estimating
the Cheeger constants. As we will see in Sect. 4, it turns out that the latter can be estimated
via the (relative) isoperimetric profiles. And, using such argument, we have lower bounds
for λ1 in terms of volume.

Theorem 1.2 Let (Mn+1, g) be a compact Riemannian manifold, n ≥ 2. For any ε > 0,
there exists vε > 0 such that for any v ∈ (0, vε), there holds

F KM(v, g) ≥
(

1 − (βn Sm + ε)

(
v

|B|
) 2

n+1
)2

(n + 1)2

4

( |B|
v

) 2
n+1

,

where Sm is the maximum of the scalar curvature of M and βn = 1
(n+1)(n+3) .
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Some local eigenvalue estimates involving curvatures 439

Now concerning the Neumann problem, we let M1 be a smooth bounded domain of a
Riemannian manifold (Mn+1, g), n ≥ 2. We ask for a lower bound for the quantity

inf
�⊂M1, |�|g=v

µ2(�, g).

Taking into account the role of the mean curvature of ∂M1 in the expansion of the relative
isoperimetric profile which is:

I N
M1
(v, g) := inf

�⊂M1, |�|g=v
|∂� ∩ M1|g,

we can prove the following result.

Theorem 1.3 Let M1 be a smooth bounded domain of a Riemannian manifold (Mn+1, g),
n ≥ 2. For any ε > 0, there exists vε > 0 such that for any v ∈ (0, vε), there holds

inf
�⊂M1, |�|g=v

µ2(�, g) ≥
(

1 − (αn Hm + ε)

(
v

|B+|
) 1

n+1
)2

(n + 1)2

4

( |B+|
v

) 2
n+1

,

where Hm is the maximum of the mean curvature of ∂M1, αn = n
(n+1)(n+2)

|Bn |
|B+| , B+ is a

half-ball of R
n+1 and Bn is a unit ball of R

n.

The proof of the first theorem relies on PDE techniques and fine asymptotic analysis of
solutions of elliptic equations this is carried out in Sect. 3. The second and third theorem are
consequences of estimates of Cheeger isoperimetric profiles. To achieve this, we use the fine
expansions of the isoperimetric profile near zero by Druet [6] and Narduli [12] in compact
Riemannian manifolds and the relative isoperimetric profile near zero by the author in [7],
see Sect. 4. The relevance of the scalar curvature when studying the sharpness of the F K
isoperimetric inequality was first noticed by [13] where the authors prove the existence of
critical domains closed to geodesic balls centered near non-degenerate critical points of the
scalar curvature.

Let us mention that when this manuscript was already typed, we have learned that
Druet [5], by using the isoperimetric inequality in [6] and symmetrization arguments, gave
the asymptotic expansions of the FK isoperimetric prole for compact Riemannian as v tends
to zero.

2 Preliminaries and notations

We start by recalling the well known F K isoperimetric inequality which is an imme-
diate consequence of the spherical symmetric rearrangement argument, see for instance
Pölya-Szegö [15].

Theorem 2.1 for any f ∈ H1,2(Rn+1) with |{ f > 0}| < ∞, there holds

|{ f > 0}| 2
n+1

∫

Rn+1

|∇ f |2 dx ≥ |B| 2
n+1 λ1(B)

∫

Rn+1

f 2 dx. (1)

In particular for any open subset � of R
n+1 with finite measure,

λ1(�) ≥ F KRn+1(|�|), (2)
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440 M. M. Fall

where

F KRn+1(v) =
( |B|
v

) 2
n+1

λ1(B).

Equality holds in (2), for some �, if and only if � is a ball.

We will denote by φ1(|x|) > 0 the first L2-normalized radial positive eigenfunction
corresponding to λ1(B) with φ1(1) = 0 where B is the unit ball of R

n+1 centered at the
origin.

Let y0 ∈ M and E1, . . . , En+1 an orthonormal basis of Ty0M. We consider the geodesic
coordinate system centered at y0 defined by

f y0(y) := Expy0

(
yi Ei

)
for y = (

y1, . . . , yn+1) ∈ R
n+1.

We define geodesic balls of M centered at y0 with radius r > 0 as Bg(y0, r) = f y0(r B).
If q = f y0(y) ∈ M near the point y0 = f (0) ∈ M, one can expand the metric gi j (q) =
〈Yi , Y j 〉 in y.

The proof of the following results can be found in [14].

Lemma 2.2 In the above notations, for any i, j = 1, . . . , n + 1, we have

gi j (q) = δi j + 1

3
〈Ry0(Y, Ei )Y, E j 〉g + Oy0(|y|3);

dvg =
(

1 − 1

6
Ricy0(Y, Y )+ Oy0(|y|3)

)
dy,

where Y := yi Ei and dvg (resp. dy) is the volume element of M (resp. R
n+1).

There holds

∣∣Bg(y0, r)
∣∣
g

= rn+1 |B|
(

1 − 1

6(n + 3)
r2S(y0)+ Oy0(r

3)

)
;

where S is the scalar curvature of M.

If Bg(y0, r) is a geodesic ball centered at some point y0 ∈ M with radius r , it is shown
in Chavel [3, Sect. 8] that the first Dirichlet eigenvalue for geodesic ball has the following
expansion in terms of its radius:

λ1(Bg(y0, r), g) = λ1(B)

r2 − S(y0)

6
+ Oy0(r).

Using the expansion of geodesic balls (see the above lemma), one has the expansion in
terms of volume

λ1(�0, g) =
(

1 − 2λ1(B)+ (n + 3)(n + 1)

6(n + 3)(n + 1)λ1(B)

( |�0|g
|B|

) 2
n+1

S(y0)+ O

(
|�0|

3
n+1
g

))

×F KRn+1(|�0|g),
for any small geodesic ball �0 of M centered at y0.

If then E is a ball in (Mn+1, gk), one has that

λ1(E, gk) =
(

1 − γn

( |E |gk

|B|
) 2

n+1

n(n + 1) k + O

(
|E |

3
n+1
gk

))
F KRn+1(|E |gk ),
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Some local eigenvalue estimates involving curvatures 441

where γn = 2λ1(B)+(n+3)(n+1)
6(n+3)(n+1)λ1(B)

. Therefore to prove Theorem 1.1 it is enough to show that for
every ε > 0 there exits rε > 0 such that

F K Bg(x0,rε)(v, g) ≥
(

1 − (γn S(x0) + ε)

(
v

|B|
) 2

n+1
)

F KRn+1(v),

for every 0 < v <
∣∣Bg(x0, rε)

∣∣
g
.

3 Proof of Theorem 1.1

Proposition 3.1 Let x0 ∈ M. For any ε > 0, there exists rε > 0 such that

F K Bg(x0,rε)(v, g) ≥
(

1 − (γn S(x0) + ε)

(
v

|B|
) 2

n+1
)

F KRn+1(v),

for all 0 < v <
∣∣Bg(x0, r)

∣∣
g

with γn = 2λ1(B)+(n+3)(n+1)
6(n+3)(n+1)λ1(B)

and S is the scalar curvature
of M.

Proof Assume by contradiction that there exists ε0 > 0 such that for every r > 0 there exits
vr ∈ (0 , |Bg(x0, r)|g) such that

F K Bg(x0,r)(vr , g) <

(
1 − (γn S(x0)+ ε0)

(
vr

|B|
) 2

n+1
)

F KRn+1(vr ).

We define ρr → 0 as r → 0 by vr = |ρr B|. (To simplify notations, we will set r = r j ,
where r j is a sequence decreasing to 0 when j → +∞.) Also there exist �r ⊂ Bg(x0, r)
smooth domains with |�r |g = |ρr B| such that

λ1(�r , g) <
(
1 − (γn S(x0) + ε0) ρ

2
r

)
F KRn+1(|ρr B|).

We let ur ∈ C1,α(�r ) be the positive eigenfunction corresponding to λ1(�r , g), which is
normalized by ∫

�r

u2
r dvg = 1,

∫
�r

|∇ur |2g dvg = λ1(�r , g).

Letting �′
r = Exp−1

x0
(�r ) ⊂ R

n+1 and ḡ(y) = Exp∗
x0

g(y), one has that

|�r |g = |�′
r |ḡ, λ1(�r , g) = λ1(�

′
r , ḡ),

so that using Lemma 2.2,

λ1(�
′
r ) ≤

∫
�′

r
|∇ur ◦ Expx0

|2 dy∫
�′

r
|ur ◦ Expx0

|2 dy

≤ (
1 + c r2)

∫
�′

r
|∇ur ◦ Expx0

|2ḡ dvḡ∫
�′

r
|ur ◦ Expx0

|2 dvḡ

≤ (
1 + c r2)

∫
�r

|∇ur |2g dvg∫
�r

|ur |2 dvg

≤ (
1 + c r2) λ1(�r , g).
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442 M. M. Fall

Therefore by the assumption together with Lemma 2.2, we get

λ1(�
′
r ) ≤ (

1 + c r2) F KRn+1(|ρr B|), |�′
r | = (

1 + O(r2)
) |�r |g. (3)

We define Ur := 1
ρr
�′

r ⊂ r
ρr

B. For any x ∈ 1
ρr

B, we set

gr (x) = ḡ(ρrx).

Using Lemma 2.2, we have

(gr )i j (x) = δi j − ρ2
r
3 〈Rx0(X, Ei )X, E j 〉 + Ox0(ρ

3
r );

dvgr =
(

1 + ρ2
r
6 Ricx0(X, X)+ Ox0(ρ

3
r )

)
dx,

(4)

Clearly

gr → euc on K compact subset of R
n+1, (5)

where euc denote the Euclidean metric on R
n+1.

We also let

wr (x) = ρ
n+1

2
r ur ◦ Expx0

(ρrx) for x ∈ Ur , wr (x) = 0 for x ∈ R
n+1\Ur .

One easily sees that wr satisfies

�grwr + λ1(Ur , gr )wr = 0 R
n+1; {wr > 0} = Ur (6)

and ∫

Rn+1

|wr |2 dvgr = 1. (7)

By (22), and recalling that F KRn+1(|B|) = λ1(B),

λ1(Ur , gr ) =
∫

Rn+1

|∇wr |2gr
dvgr <

(
1 − (γn S(x0) + ε0) ρ

2
r

)
λ1(B). (8)

Clearly since the functional E �→ |E |
2

n+1
g λ1(E, g) is scale invariant, we have

|�r |
2

n+1
g λ1(�r , g) = |Ur |

2
n+1
gr λ1(Ur , gr ).

Dividing the second equation in (3) by ρn+1
r yields

|Ur | → |B| when r → 0. (9)

Multiplying the first inequality (3) by ρ2
r , gives

λ1(Ur ) ≤ (
1 + c r2) λ1(B).

We have thus by stability result in [8] that, if r is small, there exists xr ∈ R
n+1 such that

|(Ur + xr )� B| → 0. (10)

Up to changing wr by wr (· − xr ) we will assume that xr = 0.
Now by [11, Lemma 4.1], (5), (8) and (10), we may assume thatwr is uniformly bounded

on compact sets of R
n+1. Therefore for any compact sets K ∈ R

n+1, ‖�gr wr‖L∞(K ) ≤ CK
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Some local eigenvalue estimates involving curvatures 443

so by [10], ‖∇wr‖C1,α(K ) is uniformly bounded. By Ascoli’s theorem, this leads to the exis-
tence of some ψ ∈ C0(Rn+1) such that after passing to a sub-sequence, and for any compact
subset K of R

n+1,

lim
r→0

wr = ψ. (11)

We first make the following observation that ψ ≡ 0 on R
n+1\B. In fact if there is

y0 ∈ R
n+1\B such thatψ(y0) > 0 then by continuity, we haveψ > 0 on B(y0, η) ⊂ R

n+1\B
for some η > 0. But then for every r less than some r(y0), one has wr > 0 on B(y0, η)

because of the uniform convergence on compact sets. Namely B(y0, η) ⊂ Ur\B because
Ur = {wr > 0} and then

0 < C ≤ |B(y0, η)| ≤ |Ur\B| ≤ |Ur � B| → 0

which is not possible.
We conclude that by continuity {ψ > 0} is an open subset of B.
Claim: ψ = φ1.
Observe that by (3),∫

Ur

|∇wr |2 dx = ρ2
r

∫
�′

|∇ur ◦ Expx0
|2 dy

≤ ρ2
r

(
1 + c r2) ∫

�r

|∇ur |2ḡ dvḡ ≤ (
1 + c r2) λ1(B), (12)

similarly one can verify easily, by Lemma 2.2, that∫
Ur

|wr |2 dx =
∫
�′

|ur ◦ Expx0
|2 dy = (

1 + c r2) ∫
�′

r

|ur |2 dvḡ = (
1 + c r2) . (13)

By (12), (wr ) is bounded in H1,2(Rn+1) thus we get the existence of some w ∈ H1,2(Rn+1)

such that

wr ⇀ w in H1,2(Rn+1). (14)

In particular using (12), we conclude that∫

Rn+1

|∇w|2 dx ≤ lim sup
r→0

∫

Rn+1

|∇wr |2 dx ≤ λ1(B). (15)

We show that wr converges strongly in L2(Rn+1). To this end, thanks to the uniform bound
on the L2 norm of the Dirichlet energy in (12), it will suffice to show that no L2-mass is
concentrated by wr at infinity, i.e. that for every δ > 0 there exists R > 0 such that

sup
r

‖wr‖L2(Rn+1\RB) < δ.

By Hölder inequality (recall that {wr > 0} = Ur ),

∫

Rn+1\RB

|wr |2 dx ≤
⎛
⎜⎝

∫

Rn+1\RB

|wr |2∗
dx

⎞
⎟⎠

2
2∗

|Ur\RB| 2∗−2
2∗ ,
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444 M. M. Fall

where 2∗ = 2(n+1)
n−1 . Since by Sobolev embeddings∫

Rn+1

|wr |2∗
dx ≤ c(n)

∫

Rn+1

|∇wr |2 dx,

we get using (9), (10) and (12)

lim sup
r→0

∫

Rn+1\RB

|wr |2 dx ≤ c(n) |B\RB| 2∗−2
2∗

as desired.
Now up to a sub-sequence wr converges to w pointwise therefore it must be w = ψ

by (11).
Clearly using (10), (13) and the strong convergence,∫

Rn+1

|wr |2 1Ur dx →
∫
B

|w|2 dx = 1. (16)

Recall that {w > 0} is an open subset of B thus |{w > 0}| ≤ |B|. If we now use (1) and (15),
we conclude that |{w > 0}| ≥ |B|. Therefore

|{w > 0}| = |B|.
The minimizing property of first eigenvalue imply, using (15) and (16), that

λ1({w > 0}) ≤
∫

Rn+1 |∇w|2 dx∫
Rn+1 w2 dx

≤ λ1(B).

Therefore equality holds in the FK isoperimetric inequality (2) thus {w > 0} = B + z0 for
some z0 ∈ R

n+1 and with the normalization (16), w = φ1(| · −z0|). Up to translation, we
will also assume that z0 = 0.

Pointwise estimates of wr on Ur\B.
Letting qr a sequence with qr ↗ 2, consider the function

fr (x) := |x|− 1
2−qr .

A calculation yields, for small r ,

|x| 1
2−qr

(−�gr fr − λ1(Ur , gr ) fr
) ≥ |x|−2

[(
1

2 − qr

)2

− cr2

]
− λ1(Ur , gr ),

in Ur\B, for some constant c independent of r . Thanks to (7) and the fact that qr ↗ 2 as
r → 0, one gets that

−�gr fr − λ1(Ur , gr ) fr ≥ 0 in Ur\B

while fr = 1 on ∂B. Now since wr converges uniformly to zero on ∂B and satisfies (6), by
the maximum principle (see for instance [1, Lemma 3.4]), we get that if r is small enough,

wr (x) ≤ |x|− 1
2−qr in Ur\B. (17)

We shall finish the proof of the proposition. From (4) one has

|∇wr |2gr
= |∇wr |2

{
1 − 2ρ2

r

6
|∇wr |−2 〈Rx0(X,∇wr )X,∇wr 〉g + ρ3

r O(|x|3)
}
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Some local eigenvalue estimates involving curvatures 445

again by (4) we get

λ1(Ur , gr ) =
∫
Ur

|∇wr |2gr
dvgr

=
∫
Ur

|∇wr |2 dx − ρ2
r

6

∫
Ur

Ricx0(X, X)|∇wr |2 dx

−2ρ2
r

6

∫
Ur

〈Rx0(X,∇wr )X,∇wr 〉g dx + O

⎛
⎜⎝ρ3

r

∫
Ur

|x|3|∇wr |2 dx

⎞
⎟⎠.

Since by Ascoli’s theorem, ∇wr converges to ∇φ1 pointwise, by (10),

∫
Ur ∩B

Ricx0(X, X) |∇wr |2 dx −→
∫
B

Ricx0(X, X) |∇φ1|2 dx.

We estimate
∫

Ur \B Ricx0(X, X) |∇wr |2 dx (this argument will be used very often in the
sequel). First note that by Lemma 2.2 as in (12), we have the estimate

∫
Ur \B

|∇wr |2
∣∣Ricx0(X, X)

∣∣ dx ≤ C
∫

Ur \B

|∇wr |2gr
|x|2 dvgr .

Call F(x) = |x|2 and multiply the equality (6) by Fwr and integrate by parts to get

∫
Ur \B

|∇wr |2gr
F dvgr = −

∫
Ur \B

wr 〈∇wr ,∇F〉gr
dvgr + λ1(Ur , gr )

∫
Ur \B

|wr |2 F dvgr

+
∮
∂B

wr F〈∇wr , X〉gr
dσ.

Here dσ is the surface measure on ∂B and X , the position vector, is the outer unit normal to
∂B. By Hölder inequality,

∣∣∣∣∣∣∣
∫

Ur \B

|∇wr |2gr
F dvgr

∣∣∣∣∣∣∣
≤

⎛
⎜⎝

∫
Ur \B

|∇wr |2gr
dvgr

⎞
⎟⎠

1
2

⎛
⎜⎝

∫
Ur \B

|wr |2|∇F |2gr
dvgr

⎞
⎟⎠

1
4

+ λ1(Ur , gr )

∫
Ur \B

|wr |2 F dvgr + C
∮
∂B

|∇wr |grwr F dσ.

≤ (λ1(Ur , gr ))
1
2

⎛
⎜⎝

∫
Ur \B

|wr |2|∇F |2gr
dvgr

⎞
⎟⎠

1
2

+ λ1(Ur , gr )

∫
Ur \B

|wr |2 F dvgr + C
∮
∂B

|∇wr |grwr F dσ.
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446 M. M. Fall

By uniform convergence of wr to zero with uniform bound of ∇wr on compact sets and (4),
we have ∮

∂B

|∇wr |grwr F dσ → 0.

Using (8) and (17), we conclude that

lim
r→0

∫
Ur \B

|∇wr |2gr
F dvgr = 0.

In the same way as above, there holds
∫
Ur

|x|3|∇wr |2 dx → O(1).

Clearly we have

|〈Rx0(X,∇wr )X,∇wr 〉g| ≤ C |x|2 |∇wr |2,
and also since φ1 is radial, ∇φ1 = X

|X |φ
′
1 namely 〈Rx0(X,∇φ1)X,∇ φ1〉 = 0 and since

wr (x) → φ1(x) in B, we infer that as above
∫

Ur ∩B

〈Rx0(X,∇wr )X,∇wr 〉g dx −→ 0,
∫

Ur \B

〈Rx0(X,∇wr )X,∇wr 〉g dx −→ 0.

Finally we obtain that

λ1(Ur , gr ) =
∫
Ur

|∇wr |2 dx − ρ2
r

6

∫
B

Ricx0(X, X) |∇φ1|2 dx + O(r)ρ2
r . (18)

From the FK isoperimetric inequality (1) one has

∫
Ur

|∇wr |2 dx ≥
( |B|

|Ur |
) 2

n+1

λ1(B)
∫
Ur

|wr |2 dx.

We use (4) (recall that
∫

Ur
w2

r dvgr = 1) and (17) to have

∫
Ur

|wr |2 dx = 1 + r2

6

∫
Ur

Ricx0(X, X) |wr |2 dx + O

⎛
⎜⎝ρ3

r

∫
Ur

|x|3|wr |2 dx

⎞
⎟⎠

= 1 + r2

6

∫
B

Ricx0(X, X) φ2
1 dx + O(r)ρ2

r .

By (10), there holds
∣∣�′

r � ρr B
∣∣∣∣�′

r

∣∣ → 0
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and by Lemma 2.2 we get the following expansion

|�′
r | = |ρr B|

⎛
⎜⎝1 + 1

6

∫

Rn+1

Ricx0(Y, Y )
1

|�′
r |

1ρr B dy + O(r)ρ2
r

⎞
⎟⎠.

Moreover since ρn+1
r |Ur | = |�′

r | and
∫
ρr B

Ricx0(Y, Y ) dy = ρ2
r |ρr B|
n + 3

S(x0),

we get, using also the second equation in (3),

|Ur | ≤ |B| + ρ2
r |B|

6(n + 3)
S(x0)+ cr3,

for some constant c > 0 independent on r . Consequently we have

∫
Ur

|∇wr |2 dx≥
(

1− 2ρ2
r

6(n + 3)(n + 1)
S(x0)

) ⎛
⎝1+ ρ

2
r

6

∫
B

Ricx0(X, X) φ2
1 dx

⎞
⎠ λ1(B)− cr3.

Putting this in (18), we therefore obtain that

λ1(Ur , gr ) ≥
(

1 − 2ρ2
r

6(n + 3)(n + 1)
S(x0)

)
λ1(B)

− ρ2
r

6

∫
B

Ricx0(X, X)
(|∇φ1|2 − λ1(B)φ

2
1

)
dx − cr3.

Using the fact that φ1 is radial, one has

∫
B

Ricx0(X, X)
(|∇φ1|2 − λ1(B)φ

2
1

)
dx = |B|S(x0)

1∫
0

tn+2
((
φ′

1

)2 − λ1(B)φ
2
1

)
dt.

Recall that φ1 solves

φ′′
1 + n

t
φ′

1 + λ1(B)φ1 = 0, φ1(1) = 0. (19)

Multiply the first equation above by tn+2φ1 and integrate by parts to have

1∫
0

tn+2
((
φ′

1

)2 − λ1(B)φ
2
1

)
dt = −2

1∫
0

tn+1φ′
1φ1 dt

= (n + 1)

1∫
0

tnφ2
1 dt

= 1

|B|
∫
B

φ2
1 dx

= 1

|B| .
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Collecting these and using (8) we arrive to
(
1 − βn ρ

2
r S(x0)− cr3)

)
λ1(B) ≤ λ1(Ur , gr ) <

(
1 − (βn S(x0)+ ε0) ρ

2
r

)
λ1(B),

namely 0 < ε0 < cr → 0, as r → 0, which is the contradiction. ��

4 Proof of Theorems 1.2 and 1.3

In order to prove the theorems, we need to recall the Cheeger constants, h D(�, g) and
hN (�, g) relative to the Dirichlet and Neumann eigenvalue problems respectively,

h D(�, g) = inf
ω⊂⊂�

|∂ω|g
|ω|g ; hN (�, g) = inf

ω⊂�
|∂ω ∩�|g

min{|ω|g, |�\ω|g} .

Here the range of ω is the set of smooth sub-domains of �. For example in R
n+1, for any

r > 0, the Cheeger constant of r B is given by

h D(r B) = n + 1

r
.

Referring to [2] (see also [9]) for a proof, we have the following Cheeger’s inequalities:

λ1(�, g) ≥
(

h D(�, g)

2

)2

, µ2(�, g) ≥
(

hN (�, g)

2

)2

.

Similarly we define the Cheeger isoperimetric profiles of M as

H∗
M(v, g) := inf

�⊂M, |�|g=v
h∗(�, g),

with ∗ = D, N .
As mentioned earlier Theorem 1.2 is a direct consequence of the expansion of the isoperi-

metric profile near zero for compact Riemannian manifolds that we recall here, see [6,12].
Letting

IM(v, g) = inf
E⊂M, |E |g=v

|∂E |g,

for any δ > 0 there exists vδ > 0 such that for any v ∈ (0, vδ)(
1 − (βn Sm + δ)

(
v

|B|
) 2

n+1
)

IRn+1(v) ≤ IM(v, g)

≤
(

1−(βn Sm −δ)
(
v

|B|
) 2

n+1
)

IRn+1(v), (20)

where IRn+1(v) = (n + 1)|B| 1
n+1 v

n
n+1 and Sm is the maximum of the scalar curvature of M

while βn = 1
2(n+3)(n+1) .

Notice that if r is sufficiently small, the Cheeger constant of geodesic balls can be estimated
as

h D(Bg(x0, r), g) = inf
ω⊂⊂Bg(x0,r)

|∂ω|g
|ω|g ≤ lim

ρ→1−

∣∣∂Bg(x0, ρr)
∣∣
g∣∣Bg(x0, ρr)

∣∣
g

.
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We choose x0 to be the maximum point of the scalar curvature,

Sm = S(x0),

then by simple computations using Lemma 2.2, we have

h D(Bg(x0, r), g) ≤
(

1 − βn

( |Bg(x0, r)|g
|B|

) 2
n+1

Sm

+ O

(
|Bg(x0, r)|

3
n+1
g

))
HD

Rn+1(|Bg(x0, r)|g), (21)

where the Cheeger isoperimetric profile of R
n+1 is given by

HD
Rn+1(v) = (n + 1)

( |B|
v

) 1
n+1

.

Clearly by Cheeger’s inequality (Dirichlet), Theorem 1.2 is a consequence of the following

Theorem 4.1 Let (Mn+1, g) be a compact Riemannian manifold, n ≥ 2. Near v = 0
(v > 0), there holds

HD
M(v, g) =

(
1 + O(v

3
n+1 )

) IM(v, g)

IRn+1(v)
HD

Rn+1(v).

Observe that according to (21), the proof of the above theorem is contained in the

Proposition 4.2 For any ε > 0, there exists rε > 0 such that for any r ∈ (0, rε) there holds

HD
M(|r B|, g) ≥ (

1 − (βn Sm + ε) r2) HD
Rn+1(|r B|),

where βn = 1
2(n+3)(n+1) and Sm is the maximum of the scalar curvature of M.

Proof We proceed here also by contradiction by supposing that there exists ε0 > 0 and a
sequence r ↘ 0 such that

HD
M(|r B|, g) < (

1 − (βn Sm + ε0) r2) HD
Rn+1(|r B|),

so there exist �r ⊂ M domains with |�r |g = |r B| such that

h D(�r , g) <
(
1 − (βn Sm + ε0) r2) HD

Rn+1(|r B|),
this imply the existence of domains ωr ⊂⊂ �r such that

|∂ωr |g
|ωr |g <

(
1 − (βn Sm + ε0) r2) HD

Rn+1(|r B|). (22)

Letting δ > 0, by (20), there exists rδ > 0 such that

|∂ωr |g
|ωr |g ≥

(
1 − (βn Sm + δ)

( |ωr |g
|B|

) 2
n+1

)
HD

Rn+1(|ωr |g), (23)

for any r ∈ (0, rδ). Recalling that

HD
Rn+1(|ωr |g) = (n + 1)

( |B|
|ωr |g

) 1
n+1

.
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Therefore (23) with (22) imply, if r is small, that

|ωr |g
|r B| ≥ (1 − cr) , (24)

for some constant c > 0.
Since |ωr |g ≤ |�r |g = |r B|, we get from (24) that, as r → 0,

|ωr |g
|r B| → 1. (25)

Now note that

HD
Rn+1(|ωr |g) ≥ HD

Rn+1(|�r |g).
Hence by the assumption (22) and using (23) we get

− (βn Sm + ε0) r2 ≥ − (βn Sm + δ)

( |ωr |g
|B|

) 2
n+1

.

Therefore dividing by r2 and using (25) we get 0 < ε0 ≤ δ + O(r) which is the contradic-
tion. ��

As a consequence, we have the following Cheeger isoperimetric comparison:

Corollary 4.3 Let (Mn+1, g) be a compact Riemannian manifold, n ≥ 2. Assume that the
scalar curvature satisfies Sm < (n + 1)n k for some k ∈ R. Then there exists v0 > 0 such
that for any v ∈ (0, v0), and any E a ball of volume v in (Mn+1, gk), there holds

HD
M(v, g) > h D(E, gk).

Here also (Mn+1, gk) is the space of constant sectional curvature k.

In the same way Theorem 1.3 is a direct consequence of the expansion of the relative
isoperimetric profile I N

M1
near zero for a smooth bounded domain M1 of a Riemannian

manifold (Mn+1, g) (not necessary compact). Letting

I N
M1
(v, g) = inf

E⊂M1, |E |g=v
|∂E ∩ M1|g,

one has, see [7], for any δ > 0 there exists vδ > 0 such that for any v ∈ (0, vδ)
(

1 − (αn Hm + δ)

(
v

|B+|
) 1

n+1
)

I N
R

n+1+
(v) ≤ I N

M1
(v, g)

≤
(

1 − (αn Hm − δ)

(
v

|B+|
) 1

n+1
)

I N
R

n+1+
(v),

where I N
R

n+1+
(v) = (n + 1) |B+| 1

n+1 v
n

n+1 and Hm is the maximum of the mean curvature of

∂M1 while αn = n
(n+1)(n+2)

|Bn |
|B+| . Here Bn is a unit ball of R

n and B+ is a half ball of R
n+1.

Likewise the proof as the above proposition carries over for the following result.
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Proposition 4.4 For any ε > 0, there exists vε > 0 such that for any v ∈ (0, vε) there holds

HN
M1
(v, g) ≥

(
1 − (αn Hm + ε)

(
v

|B+|
) 1

n+1
)

HN
R

n+1+
(v),

where αn = n
(n+1)(n+2)

|Bn |
|B+| , Hm is the maximum of the mean curvature of ∂M1 and

HN
R

n+1+
(v) = (n + 1)

( |B+|
v

) 1
n+1

.

Theorem 1.3 follows at once by applying the Cheeger inequality (Neumann).
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