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Sharp local estimates for the Szegö-Weinberger profile in

Riemannian manifolds

Mouhamed Moustapha Fall and Tobias Weth

Abstract

We study the local Szegö-Weinberger profile in a geodesic ball Bg(y0, r0) centered at
a point y0 in a Riemannian manifold (M, g). This profile is obtained by maximizing the
first nontrivial Neumann eigenvalue µ2 of the Laplace-Beltrami Operator ∆g on M among
subdomains of Bg(y0, r0) with fixed volume. We derive a sharp asymptotic bounds of this
profile in terms of the scalar curvature of M at y0. As a corollary, we deduce a local
comparison principle depending only on the scalar curvature. Our study is related to previous
results on the profile corresponding to the minimization of the first Dirichlet eigenvalue of
∆g, but additional difficulties arise due to the fact that µ2 is degenerate in the unit ball in
R

N and geodesic balls do not yield the optimal lower bound in the asymptotics we obtain.

1 Introduction

Let (M, g) be a complete Riemannian manifold of dimension N , N ≥ 2. For a bounded regular
domain Ω ⊂ M we consider the Neumann eigenvalue problem

∆gf + µ f = 0 in Ω, 〈∇f, η〉g = 0 on ∂Ω, (1)

where ∆gf = divg(∇f) is the Laplace-Beltrami operator on M and η is the outer unit normal to
∂Ω. The set of eigenvalues, counted with multiplicities, in the above eigenvalue problem is given
as an increasing sequence

0 = µ1(Ω, g) < µ2(Ω, g) ≤ · · ·+∞.

By results of Szegö [13] and Weinberger [14], balls maximize µ2 among domains having fixed
volume in M = R

N . More precisely, in [13] this was proved for the planar case N = 2, whereas
in [14] the case N ≥ 3 was considered. As remarked in [4] and [2], this result extends to the
case of the N -dimensional hyperbolic space. Moreover, the same conclusion holds for domains
contained in a hemisphere [2] and – under further restrictions on the domain – also in rank-1
symmetric spaces [1].
The aim of the present paper is to study the geometric variational problem of maximizing µ2(Ω, g)
among domains with fixed volume locally in a general complete Riemannian manifold (M, g). In
order to state our results, we need to introduce some notations. For a subset Ω ⊂ M, we let
|Ω|g denote the volume of Ω with respect to the metric g. For 0 < v < |M|g, we define the
Szegö-Weinberger profile of M as

SWM(v, g) := sup
Ω⊂M, |Ω|g=v

µ2(Ω, g).

Here and in the following, we assume without further mention that only regular bounded domains
Ω ⊂ M are considered. For open subsets A ⊂ M and 0 < v < | A |g, we also define

SWA(v, g) := sup
Ω⊂A, |Ω|g=v

µ2(Ω, g),
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assuming again without further mention that only regular bounded domains Ω ⊂ A are consid-
ered. By Weinberger’s result in [14], we then have

SWRN (v) =

( |B|
v

)
2

N

µ2(B).

where B denotes the unit ball in R
N . The eigenvalue µ2(B) has multiplicity N with corresponding

eigenfunctions x 7→ ϕ(|x|) xi

|x| , i = 1, . . . , N , where ϕ can be expressed in terms of a rescaled Bessel

function of the first kind and satisfies ϕ(0) = ϕ′(1) = 0. For matters of convenience, we normalize
ϕ such that

∫ 1

0

ϕ2(t)tN−1dt =
1

|B| , (2)

see Section 2 below. We are interested in the local effect of curvature terms on the Szegö-
Weinberger profile. For this we study the profile in a small geodesic ball Bg(y0, r) of M centered
at a point y0 ∈ M with radius r. In our main result, we obtain the following optimal two-sided
local bound.

Theorem 1.1 Let M be a complete N -dimensional Riemannian manifold with N ≥ 2, and let
S denote the scalar curvature function on M. Moreover, let y0 ∈ M, and let

γN =
2µ2(B) + (N + 2)(N − 2)− (N + 2)|B|ϕ2(1)

6N(N + 2)µ2(B)

=
1

3N(N + 2)
+

N − 2

6Nµ2(B)
− 1

3N(µ2(B) −N + 1)
(3)

Then we have:

(i) As v → 0,
SWM(v)

SWRN (v)
≥ 1− γNS(y0)

( v

|B|
)

2

N

+ o(v
2

N ). (4)

(ii) For every y0 ∈ M and every ε > 0 , there exists rε > 0 such that

1− (γN S(y0) + ε)
( v

|B|
)

2

N ≤
SWBg(y0,rε)(v)

SWRN (v)
≤ 1− (γN S(y0)− ε)

( v

|B|
)

2

N

(5)

for v ∈
(

0 , |Bg(y0, rε)|g
)

.

(iii) γN < 0 for all N ≥ 2, and γN → 0 as N → ∞.

Some remarks are in order. The right hand side of (4) can be replaced by

1− γN

[

sup
y0∈M

S(y0)
]( v

|B|
)

2

N

+ o(v
2

N )

if the supremum of the scalar curvature is attained on M, e.g. if M is compact. The equality (3)

is derived from an integral identity for Bessel functions which gives |B|ϕ2(1) = 2µ2(B)
µ2(B)−N+1 , see

Lemma 2.1 below. The coefficient γN is uniquely determined by the two-sided estimate (5) and
therefore sharp. To determine the sign of γN for large N , fine estimates on µ2(B) are needed. In
Lemma 2.1 below, we will prove that

N + 1 ≤ µ2(B) <







N + 2, for N = 2, 3, 4,

N + 1 +
2

N − 2
for N ≥ 5.

(6)

From this we then deduce part (iii) of Theorem 1.1. The bounds in (6) might not be new,
but we could not find any suitable bound in the literature. It seems natural to deduce bounds
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on µ2(B) from the fact that
√

µ2(B) is the first positive zero of the derivative of the function
t 7→ t(2−N)/2JN/2(t), where JN/2 is the Bessel function of the first kind of order N/2. However,
to obtain the upper bound in (6), we use the variational characterization of µ2(B) instead. See
Section 2 below for details.

As a consequence of Theorem 1.1, we readily deduce the following local isochoric comparison
principle related to the Szegö-Weinberger profile.

Corollary 1.2 Let (M1, g1), (M2, g2) be two N -dimensional complete Riemannian manifolds,
N ≥ 2 with scalar curvature functions S1, S2 respectively. Let y1 ∈ M1 and y2 ∈ M2 such that
S1(y1) < S2(y2). Then there exists r > 0 such that

SWBg1
(y1,r)(v) < SWBg2

(y2,r)(v) (7)

for any v ∈ (0,min{|Bg1(y1, r)|g1 , |Bg2(y2, r)|g2}).

We emphazise that in the special case where (M2, g2) is a space form of constant curvature,
the right hand side in (7) may be replaced with µ2(E, g2), where E is any geodesic ball of volume
v in M2. This follows from the local expansion of µ2 in small geodesic balls in these manifolds,
see Remark 3.3(ii) below.

Corollary 1.2 should be seen in comparison with the results in [6, 7, 9] concerning the isoperi-
metric profile IM and the Faber-Krahn profile FKM of M. More precisely, set

IM(v, g) := inf
Ω⊂M, |Ω|g=v

|∂Ω|g

and
FKM(v, g) := inf

Ω⊂M, |Ω|g=v
λ1(Ω, g),

with λ1(Ω, g) being the first Dirichlet eigenvalue of −∆g in Ω. Let y ∈ M and k ∈ R be such
that S(y) < (N − 1)N k, where S(y) denotes the scalar curvature of M at y. Furthermore, let
(MN , gk) denote the space form of constant sectional curvature k. Then there exists ry > 0 such

that for any v ∈
(

0 , |Bg(y, ry)|g
)

and any geodesic ball E of volume v in (MN , gk), we have

IBg(y,ry)(v, g) > |∂E|gk , (8)

FKBg(y,ry)(v, g) > λ1(E, gk). (9)

Inequality (8) was established by Druet [7], and (9) was derived independently by Druet [6]
and the first author [9]. The first ingredient in the proof of (9) is the following expansion of
λ1(Bg(y, r), g) when r → 0:

λ1(Bg(y, r), g) =
λ1(B)

r2
− S(y0)

6
+O(r) (10)

This expansion had already been obtained by Chavel in [4, Chapter 8]. In the proof of Theo-
rem 1.1, we need to derive a corresponding expansion for µ2(Bg(y, r), g). This is more difficult
since µ2(B) is degenerate with multiplicity N and the corresponding eigenfunctions are nonradial.
As a consequence, an anisotropic curvature term appears in the corresponding expansion. More
precisely, we have

µ2(Bg(y0, r), g) =
µ2(B)

r2
+ α−

NS(y0) + 2α+
NRmin(y0) + o(1) as r → 0 (11)

with suitable constants α±
N and Rmin(y0) = inf{Ricy0

(A,A) : A ∈ Ty0
M, |A| = 1}, see Propo-

sition 3.1 below. In order to obtain an expansion depending only on the scalar curvature, we
need to consider suitable geodesic ellipsoids with small eccentricity. This is a crucial step in the
proof of Theorem 1.1, since – in contrast to the Faber-Krahn profile – geodesic balls do not give
rise to optimal two-sided bounds. As a further tool, we need a quantitative version of the Szegö-
Weinberger inequality, which has been obtained very recently in the euclidean case by Brasco
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and Pratelli [3]. In the proof of Theorem 1.1 we combine these tools with variants of ideas in [9]
and [1, 2, 14] to control error terms and to construct suitable test functions for the variational
characterization of µ2, see Section 5 below.
We like to mention that [9] also contains a statement about the local expansion of a profile related
to minimizing µ2 among domains of fixed volume relative to an open set, see [9, Theorem 1.3].
However, the proof of this statement is not correct since it relies on a comparison with a relative
isoperimetric profile which does not correspond to the Neumann boundary conditions in (1) but
rather to mixed boundary conditions.
Theorem 1.1 gives a first hint that critical domains for µ2 which are nearly balls, if they exists,
might be located near critical points of the scalar curvature of M (at least in the twodimen-
sional case). Here, roughly speaking, by a critical domain we mean a domain where µ2 is critical
with respect to volume preserving perturbations. Pacard and Sicbaldi [12] showed that close
to nondegenerate critical points of the scalar curvature there exist small critical domains for
the first Dirichlet eigenvalue of ∆g. The corresponding problem for the Neumann eigenvalue µ2

seems much more difficult. We note that Zanger [15] derived a Hadamard type formula (in the
spirit of [10, p. 522]) for a Neumann eigenvalue which depends smoothly on domain variations.
However, due to possible degeneracy, µ2 might not depend smoothly on domain variations, and
therefore it is not clear how critical domains should be defined. On the other hand, in [8] a notion
of critical domains for higher Dirichlet eigenvalues, which may also be degenerate, is derived via
analytic perturbation theory. It therefore seems natural – but far from obvious – to develop and
analyze a similar notion for µ2. We wish to address this problem in future work.

The paper is organized as follows. In Section 2 we collect properties of µ2(B) and the function
ϕ appearing in the definition of the corresponding eigenfunctions. In particular, we prove the
bounds (6) and part (iii) of Theorem 1.1 in Lemma 2.1 below. We close this section by recall-
ing some basic notations from Riemannian geometry. In Section 3 we provide an expansion of
µ2(Bg(y0, r)) as r → 0. In Section 4 we calculate a corresponding expansion for suitably cho-
sen geodesic ellipsoids with small eccentricity. As shown by Corollary 4.2, these ellipsoids are
suitable test domains to derive Part (i) of Theorem 1.1, and from this the lower bound in Part
(ii) follows. Section 5 is devoted to collect all tools needed for the proof of the upper bound
in Theorem 1.1(ii). In particular, we use the above-mentioned stability estimate of Brasco and
Pratelli [3] in this section, see Lemma 5.2. Arguing by contradiction, we then complete the proof
of Theorem 1.1 in Section 6.

Acknowledgments: This work is supported by the Alexander von Humboldt foundation.
The authors wish to thank Gerhard Huisken and the anonymous referee for helpful comments.

2 Preliminaries and Notations

We denote by B the unit ball in R
N . Moreover, for a smooth bounded domain Ω of a complete

Riemannian manifold (M, g), we write µ2 = µ2(Ω, g) for the first nontrivial eigenvalue of (1).
The variational characterization of µ2(Ω, g) is given by

µ2(Ω, g) = inf

{

∫

Ω |∇u|2gdvg
∫

Ω
u2dvg

: u ∈ H1(Ω) \ {0},
∫

Ω

u dvg = 0

}

, (12)

where vg denotes the volume element of the metric g. We recall that the minimizers of this
minimization problem are precisely the eigenfunctions corresponding to µ2(Ω, g). If M = R

N

and g is the euclidean metric, we simply write µ2(Ω) in place of µ2(Ω, g). As noted already, µ2(B)
is of multiplicity N with corresponding eigenfunctions given by ϕ(|x|) xi

|x| , i = 1, . . . , N with

ϕ′′ +
N − 1

t
ϕ′ +

(

µ2(B)− N − 1

t2

)

ϕ = 0, t ∈ (0, 1), ϕ(0) = ϕ′(1) = 0. (13)

Throughout this paper, we assume the normalization (2), which equivalently yields
∫

B

ϕ2(|x|) dx = N and

∫

B

ϕ2(|x|)
(

xi

|x|

)2

dx = 1 for i = 1, . . . , N. (14)
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The function ϕ and the eigenvalue µ2(B) are obtained via JN/2, the Bessel function of the first kind

of order N/2. Indeed,
√

µ2(B) is the first positive zero of the derivative of t 7→ t(2−N)/2JN/2(t),
and ϕ is a scalar multiple of the function

t 7→ g(t) = t(2−N)/2JN/2(
√

µ2(B)t). (15)

More precisely, by (2) we have

ϕ(t) =
g(t)

√

|B|
∫ 1

0
g2tN−1dt

. (16)

Lemma 2.1 We have:

(i) µ2(B) ≥ N + 1 for every dimension N ∈ N, and

µ2(B) <







N + 2, for N = 2, 3, 4,

N(N − 1)

N − 2
for N ≥ 5.

(17)

(ii) |B|ϕ2(1) = 2µ2(B)
µ2(B)−N+1 for every N ∈ N.

(iii) γN < 0 for all N ≥ 2.

(iv) γN → 0 as N → ∞.

Proof. Set µ2 := µ2(B). We start with the proof of (ii). Since
√
µ2 is the first zero of the

derivative of the function t 7→ t(2−N)/2JN/2(t), we infer that

(J ′
N/2)

2(
√
µ2) =

(N − 2)2

4

1

µ2
J2
N/2(

√
µ2). (18)

Moreover, for the function g defined in (15) we have by [11, p.129, formula (5.14.5)]

∫ 1

0

tN−1g2dt =

∫ 1

0

tJ2
N/2(

√
µ2t)dt =

1

2

[

(J ′
N/2)

2(
√
µ2) +

(

1− N2

4µ2

)

J2
N/2(

√
µ2)
]

. (19)

Inserting (18) in (19) yields

∫ 1

0

tN−1g2dt =
µ2 −N + 1

2µ2
J2
N/2(

√
µ2). (20)

In particular, this implies µ2 > N − 1. Moreover, since g(1) = JN/2(
√
µ2), we conclude by (16)

that

|B|ϕ2(1) =
g2(1)

∫ 1

0
tN−1g2dt

=
2µ2

µ2 −N + 1
,

as claimed.
We now turn to (i), and we first prove that µ2 ≥ N + 1. Let u, v : B → R be given by u(x) = x1

and v(x) = x1

|x|ϕ(|x|), so that −∆v = µ2v in B and ∂ηv = 0 on ∂B. Hence we find

|B|ϕ(1) =
∫

∂B

x2
1

|x|ϕ(|x|) dσ =

∫

∂B

uv dσ =

∫

∂B

(

v∂νu− u∂νv
)

dσ

=

∫

B

(

v∆u− u∆v
)

dx = µ2

∫

B

uv dx =
µ2

N

∫

B

|x|ϕ(|x|) dx

= µ2|B|
∫ 1

0

tNϕ(t) dt ≤ µ2|B|
(

∫ 1

0

tN+1 dt
)

1

2

(

∫ 1

0

tN−1ϕ2(t) dt
)

1

2

=
µ2

√

|B|√
N + 2

,

using Hölder’s inequality and (2) in the last two steps. Using (ii) we therefore get

µ2
2 − (N − 1)µ2 − 2(N + 2) ≥ 0,

5



and this gives

µ2 ≥ 1

2

(

N − 1 +
√

(N − 1)2 + 8(N + 2)
)

≥ N + 1.

To prove (17), we consider the functions x 7→ us(x) = x1|x|s for s > −N
2 , so that u ∈ H1(B)

and
∫

B
us dx = 0. Since these functions are not eigenfunctions corresponding µ2, the variational

characterization (12) gives

µ2 <

∫

B |∇us|2 dx
∫

B
u2
s dx

=

∫

B

(

|x|2s + (s2 + 2s)x2
1|x|2(s−1)

)

dx
∫

B
x2
1|x|2s dx

=
(N + s2 + 2s)

∫

B |x|2s dx
∫

B
|x|2s+2 dx

=
(N + s2 + 2s)(N + 2s+ 2)

N + 2s
.

If N ∈ {2, 3, 4}, we may take s = 0 and obtain the first inequality in (17). If N ≥ 5, we may take
s = −1 and obtain the second inequality in (17). This finishes the proof of (i).
To prove (iii), we consider the function

σN : (N − 1,∞) → R, σN (t) =
1

3N(N + 2)
+

N − 2

6Nt
− 1

3N(t−N + 1)

and recall from (3) that γN = σN (µ2). We note that

σ′
N (t) =

2t2 − (N − 2)(t−N + 1)2

6N(t−N + 1)2t2
=

(4−N)t2 + (N − 2)(N − 1)[2t− (N − 1)]

6N(t−N + 1)2t2
. (21)

Hence σ′
N (t) > 0 in (N − 1,∞) if N ∈ {2, 3, 4}, and therefore (17) implies that

γN = σN (µ2) < σN (N + 2) =
N − 4

18N(N + 2)
≤ 0 if N ∈ {2, 3, 4}.

If N ≥ 5, the zeros of the numerator in (21) are given by τ±N = N−1
N−4 [N−2 ±

√

2(N − 2)], whereas

τ−N < N − 1 < N(N−1)
N−2 < τ+N . Moreover, σ′

N (t) > 0 on (N − 1, τ+N ), and thus (17) implies that

γN = σ(µ2) < σN (
N(N − 1)

N − 2
) =

4−N

3N2(N + 2)(N − 1)
< 0 if N ≥ 5.

This ends the proof of (iii).
(iv) simply follows from the definition of γN and the fact that γN ≥ N + 1, as shown in (ii).

Let (M, g) be a complete Riemannian manifold of dimension N . We fix y0 ∈ M and con-
sider an orthonormal basis E1, . . . , EN of Ty0

M. In the sequel, it will be convenient to use the
(somewhat sloppy) notation

X := xiEi ∈ Ty0
M for x ∈ R

N .

Here and in the following, we sum over repeated upper and lower indices as usual. We consider
the geodesic coordinate system

R
N ∋ x 7→ Ψ(x) := Expy0

(X) (22)

A geodesic ball in M centered at y0 with radius r > 0 is defined as Bg(y0, r) = Ψ(rB). The map
Ψ induces coordinate vector fields Yi := Ψ∗

∂
∂xi , which are pointwise given by

Yi(x) = dExpy0
(X)Ei ∈ TΨ(x)M, i = 1, . . . , N.

As usual, we write the metric in local coordinates by setting

gij(x) = 〈Yi(x), Yj(x)〉g for x ∈ R
N .

The following local expansions are well known and can be found e.g. in [5, §II.8].
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Lemma 2.2 In the above notations, for any i, j = 1, ..., N , we have

gij(x) = δij +
1

3
〈Ry0

(X,Ei)X,Ej〉g +O(|x|3) and dvg(x) =
(

1− 1

6
Ricy0

(X,X)+O(|x|3)
)

dx.

Here dx is the volume element of RN , dvg is the volume element of M,

Ry0
: Ty0

M× Ty0
M× Ty0

M → Ty0
M

is the Riemannian curvature tensor at y0 and

Ricy0
: Ty0

M× Ty0
M → R, Ricy0

(X,Y ) = −
N
∑

i=1

〈Ry0
(X,Ei)Y,Ei〉

is the Ricci tensor at y0. Moreover, the volume expansion of metric balls is given by

|Bg(y0, r)|g = rN |B|
(

1− 1

6(N + 2)
r2S(y0) +O(r4)

)

; (23)

where S is the scalar curvature function on M.

Here and in the following, once y0 is fixed, we also write 〈·, ·〉 in place of 〈·, ·〉g to denote the scalar
product on Ty0

M induced by the metric g. It will turn out useful to put

Rijkl := 〈Ry0
(Ei, Ej)Ek, El〉 and Rij := Ricy0

(Ei, Ej) for i, j = 1, . . . , N . (24)

The scalar curvature of M at y0 is given by S(y0) =
N
∑

i=1

Rii. We point out that the orthonormal

basis Ei, i = 1, . . . , N can be chosen such that

Rij = 0 for i 6= j, (25)

and we will fix such a choice from now on. We finally note that the euclidean scalar product of
x, y ∈ R

N will simply be denoted by x · y.

3 Expansion of µ2 for small geodesic balls

The main goal of the this section is the derivation of the the following expansion for µ2 on small
geodesic balls centered at y0.

Proposition 3.1 For r > 0 we have

µ2(Bg(y0, r), g) =
µ2(B)

r2
+ α−

NS(y0) + 2α+
NRmin(y0) + o(1),

where

α−
N =

1

6

( |B|ϕ2(1)

N + 2
− 1

)

, α+
N =

1

6

( |B|ϕ2(1)

N + 2
+ 1

)

, Rmin(y0) = inf
A∈Ty0

M,|A|=1
Ricy0

(A,A)

and o(1) → 0 as r → 0.

Proof. Let r > 0 be smaller than the injectivity radius ofM at y0, so that Bg(y0, r) is a regular

domain. Let ur ∈ C3(Bg(y0, r)) be an eigenfunction corresponding to the eigenvalue problem

∆gur + µ2(Bg(y0, r), g)ur = 0 in Bg(y0, r), 〈∇ur, ηr〉g = 0 on ∂Bg(y0, r),

where ηr denotes the outer unit normal on ∂Bg(y0, r). Replacing ur by a scalar multiple if
necessary, we may assume that ur is a minimizer of the minimization problem

µ2(Bg(y0, r), g) = inf

{

∫

Bg(y0,r)

|∇f |2g dvg : f ∈ H1(Bg(y0, r)),

∫

Bg(y0,r)

f2 dvg = 1,

∫

Bg(y0,r)

f dvg = 0

}

.
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Via the exponential map, we pull back the problem to the unit ball B ⊂ R
N . For this we consider

the pull back metric of g under the map B → M, x 7→ Ψ(rx), rescaled with the factor 1
r2 .

Denoting this metric on B by gr, we then have, in euclidean coordinates,

[gr]ij(x) = 〈 ∂

∂xi
,

∂

∂xj
〉gr
∣

∣

∣

x
= 〈Yi(Ψ(rx)), Yj(Ψ(rx))〉g = gij(rx),

so that

[gr]ij(x) = δij +
r2

3
〈Ry0

(X,Ei)X,Ej〉+O(r3) (26)

and

gijr (x) = δij − r2

3
〈Ry0

(X,Ei)X,Ej〉+O(r3) (27)

uniformly for x ∈ B as a consequence of Lemma 2.2. Here, as usual, (gijr )ij denotes the inverse

of the matrix ([gr]ij)ij . Setting |gr| = det([gr]ij)ij , we also have
√

|gr|(x) = 1− r2

6 Ricy0
(X,X)+

O(r3) for x ∈ B by Lemma 2.2. Since this expansion is valid in the sense of C1-functions on B,
we have

∂

∂xi

√

|gr| = −r2

3
Ricy0

(X,Ei) +O(r3) for i = 1, . . . , N . (28)

We now consider the rescaled eigenfunction

Φr : B → R, Φr(x) = r
N
2 ur(Ψ(rx))

which satisfies

∆grΦr + µ2(B, gr)Φr = 0 in B, 〈∇Φr, η〉gr = 0 on ∂B,

with

∆grΦr =
1

√

|gr|
∂

∂xi

(

√

|gr|gijr
∂Φr

∂xj

)

and µ2(B, gr) = r2µ2(Bg(y0, r), g).

Moreover,
∫

B Φ2
r dvgr = 1 and

∫

B Φr dvgr = 0 with dvgr =
√

|gr|dx. Since gr converges to

the Euclidean metric in B, it is easy to see from the variational characterization of µ2 that
µ2(B, gr) → µ2(B). Moreover, by using standard elliptic regularity theory and compact Sobolev
embeddings, one may show that, along a sequence rk → 0, we have Φrk → Φ in H1(B) for some
function Φ ∈ C2

loc(B) ∩ C1(B) satisfying

∆Φ + µ2(B)Φ = 0 in B, 〈∇Φ, η〉 = 0 on ∂B,

∫

B

Φ2 dx = 1 and

∫

B

Φ dx = 0.

Hence there exists a = (a1, . . . , aN ) = (a1, . . . , aN) ∈ R
N with |a| = 1 and such that

Φ(x) = ϕ(|x|)a · x
|x| for x ∈ B.

For matters of convenience, we will continue to write r instead of rk in the following. By integra-
tion by parts, using 〈∇Φr, η〉gr = 0 and dvgr =

√

|gr|dx, we have

µ2(B, gr)

∫

B

ΦΦrdvgr = −
∫

B

Φ∆grΦrdvgr =

∫

B

√

|gr|gijr
∂Φ

∂xi

∂Φr

∂xj
dx.

In the following, it will be convenient to use the notation

∇̃h =

N
∑

i=1

∂h

∂xi
Ei : B → Ty0

M for a C1-function h defined on B.
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With this notation we find, using (27) and (28) and integrating by parts again,

∫

B

√

|gr|gijr
∂Φ

∂xi

∂Φr

∂xj
dx =

∫

B

√

|gr|
(

∇Φr · ∇Φ− r2

3

∫

B

〈Ry0
(X, ∇̃Φr)X, ∇̃Φ〉

)

dx+O(r3) (29)

= −
∫

B

√

|gr|(∆Φ)Φr dx−
∫

B

Φr∇
√

|gr| · ∇Φ dx− r2

3

∫

B

〈Ry0
(X, ∇̃Φr)X, ∇̃Φ〉 dx+O(r3)

= µ2(B)

∫

B

ΦΦr dvgr +
r2

3

∫

B

Φr Ricy0
(X, ∇̃Φ) dx− r2

3

∫

B

〈Ry0
(X, ∇̃Φr)X, ∇̃Φ〉 dx+O(r3).

Therefore, since
∫

B
ΦΦr dvgr → 1 and Φr → Φ in H1(B) as r → 0, we obtain

µ2(B, gr) = µ2(B) +
r2

3

∫

B

ΦRicy0
(X, ∇̃Φ) dx− r2

3

∫

B

〈Ry0
(X, ∇̃Φ)X, ∇̃Φ〉 dx+ o(r2). (30)

Noticing that

∇̃Φ(x) =
1

|x|2
(

ϕ′(|x|) − ϕ(|x|)
|x|

)

〈A,X〉X +
ϕ(|x|)
|x| A with A := aiEi ∈ Ty0

M, (31)

we find
∫

B

〈Ry0
(X, ∇̃Φ)X,∇̃Φ〉 dx =

∫

B

ϕ2(|x|)
|x|2 〈Ry0

(X,A)X,A〉 dx = 〈Ry0
(Ei, A)Ej , A〉

∫

B

ϕ2(|x|)
|x|2 xixj dx

= 〈Ry0
(Ei, A)Ej , A〉

∫ 1

0

ϕ2tN−1 dt

∫

∂B

xixj dσ = −Ricy0
(A,A). (32)

Here we used the identity
∫

∂B xixj dσ = δij |B| and the normalization (2) in the last step. More-
over, we compute via integration by parts, using (25),

2

∫

B

ΦRicy0
(X, ∇̃Φ) dx = 2Rij

∫

B

xi ∂Φ

∂xj
Φ dx = Rii

∫

B

xi ∂Φ
2

∂xi
dx

= −
(

N
∑

i=1

Rii

)

∫

B

Φ2 dx+Rii

∫

∂B

[xi]2Φ2 dσ

= −S(y0)

∫

B

(a · x)2
|x|2 ϕ2(|x|) dx + ϕ2(1)Rii

∫

∂B

[xi]2(a · x)2 dσ.

Recalling (14) and using the identities

∫

∂B

[x1]4dσ = 3

∫

∂B

[xi]2[xj ]2dσ =
3|B|
N + 2

and

∫

∂B

xixj [xk]2dσ = 0 for i, j, k = 1, . . . , N , i 6= j,

we find that

2

∫

B

ΦRicy0
(X, ∇̃Φ) dx = −S(y0) + ϕ2(1)Riiakal

∫

∂B

[xi]2xkxl dσ

= −S(y0) + ϕ2(1)Rii[ak]
2

∫

∂B

[xi]2[xk]2 dσ = −S(y0) +
ϕ2(1)|B|
N + 2

(

S(y0) + 2Rkk[a
k]2
)

=
(ϕ2(1)|B|

N + 2
− 1
)

S(y0) + 2
ϕ2(1)|B|
N + 2

Ricy0
(A,A). (33)

Combining (30), (31) and (32), we get

µ2(B, gr) = µ2(B) +
r2

6

( |B|ϕ2(1)

N + 2
− 1
)

S(y0) +
r2

3

( |B|ϕ2(1)

N + 2
+ 1
)

Ricy0
(A,A) + o(r2)

and therefore

µ2(Bg(y0, r), g) =
µ2(B, gr)

r2
=

µ2(B)

r2
+ α−

NS(y0) + 2α+
NRicy0

(A,A) + o(1). (34)
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We now need to recall that – more precisely – here we have passed to a sequence r = rk → 0.
Nevertheless, the argument implies that

µ2(Bg(y0, r), g) ≥
µ2(B)

r2
+ α−

NS(y0) + 2α+
NRmin(y0) + o(1) as r → 0. (35)

Indeed, if - arguing by contradiction - there is a sequence rk → 0 such that

lim sup
k→∞

[

µ2(Bg(y0, rk), g)−
µ2(B)

r2k

]

< α−
NS(y0) + 2α+

NRmin(y0), (36)

then by the above argument there exists a subsequence along which the expansion (34) holds with
some A ∈ Ty0

M with |A| = 1, thus contradicting (36). By (35), the proof of Proposition 3.1 is
finished once we have shown that

µ2(Bg(y0, r), g) ≤
µ2(B)

r2
+ α−

NS(y0) + 2α+
NRicy0

(A,A) + o(1) (37)

for all A ∈ Ty0
M with |A| = 1. So now consider a = (a1, . . . , aN ) ∈ R

N arbitrary with |a| = 1,
and let A = aiEi ∈ Ty0

M. We define

Φ̃ : B → R, Φ̃(x) = ϕ(|x|)a · x
|x|

and

cr :=
1

|B|gr

∫

B

Φ̃dvgr .

Then, by Lemma 2.2,

cr =
( 1

|B| +O(r2)
)(

∫

B

Φ̃(x)[1 − 1

6
Ricy0

(X,X)]dx+ O(r3)
)

=
( 1

|B| +O(r2)
)

O(r3) = O(r3),

since the function x 7→ Φ̃(x)[1 − 1
6Ricy0

(X,X)] is odd with respect to reflection at the origin.
Hence, using the variational characterization of µ2(B, gr), we find that

µ2(B, gr) ≤

∫

B

|∇(Φ̃− cr)|2gr dvgr
∫

B

(Φ̃− cr)
2 dvgr

=

∫

B

|∇Φ̃|2gr dvgr
∫

B

Φ̃2 +O(r3) dvgr

=

∫

B

|∇Φ̃|2gr dvgr +O(r3)
∫

B

Φ̃2 dvgr

and therefore

µ2(B, gr)

∫

B

Φ̃2 dvgr ≤
∫

Bg(y0,r)

|∇Φ̃|2gr dvgr +O(r3) =

∫

B

√

|gr|gijr
∂Φ̃

∂xi

∂Φ̃

∂xj
dx+O(r3).

It is by now straightforward that the same estimates as above – starting from (29) – hold with
both Φr and Φ replaced by Φ̃. We thus obtain (37), as required.

Corollary 3.2 We have

µ2(Bg(y0, r), g) =

(

1− β(y0)

(

v

|B|

)
2

N

+ o

(

v

|B|

)
2

N

)

SWRN (v) (38)

as v = |Bg(y0, r)|g → 0 with

β(y0) =
µ2(B)S(y0)− 3N(N + 2)

(

α−
NS(y0) + 2α+

NRmin(y0)
)

3N(N + 2)µ2(B)
.
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Proof. By the volume expansion (23) of geodesic balls we have

( v

rN |B|
)

2

N

=
( |Bg(y0, r)|g

rN |B|
)

2

N

= 1− 1

3N(N + 2)
S(y0)r

2 + o(r2)

= 1− 1

3N(N + 2)
S(y0)

( v

|B|
)

2

N

+ o
( v

|B|
)

2

N

as v = |Bg(y0, r)|g → 0. Together with Lemma 3.1 this yields

µ2(Bg(y0, r), g) =
µ2(B)

r2
+ α−

NS(y0) + 2α+
NRmin(y0) + o(1)

=

(

(

v

rN |B|

)
2

N

+
α−
NS(y0) + 2α+

NRmin(y0)

µ2(B)

(

v

|B|

)
2

N

+ o

(

v

|B|

)
2

N

)

SWRN (v)

=

(

1−
(

1

3N(N + 2)
S(y0)−

α−
NS(y0) + 2α+

NRmin(y0)

µ2(B)

)(

v

|B|

)
2

N

+ o

(

v

|B|

)
2

N

)

SWRN (v)

=

(

1− β(y0)

(

v

|B|

)
2

N

+ o

(

v

|B|

)
2

N

)

SWRN (v)

as v = |Bg(y0, r)|g → 0.

Remark 3.3 (i) Since

Rmin(y0) ≤
S(y0)

N
, (39)

and

α−
N +

2α+
N

N
=

|B|ϕ2(1)− (N − 2)

6N
, (40)

Proposition 3.1 and Corollary 3.2 yield

µ2(Bg(y0, r), g) ≤
µ2(B)

r2
+ (α−

N +
2α+

N

N
)S(y0) + o(1) (41)

=

(

1− γN

(

v

|B|

)
2

N

S(y0) + o

(

v

|B|

)
2

N

)

SWRN (v)

as v = |Bg(y0, r)|g → 0 (and therefore r → 0) with γN as in (3). Notice that when N = 2,

equality holds in (39) and (41). Therefore the two-dimensional version of (38) is

µ2(Bg(y0, r), g) =

(

1− γ2
v

|B| S(y0) + o

(

v

|B|

))

SWR2(v).

(ii) Denote by (MN , gk) a space of constant sectional curvature k. Then equality holds in (39)
because Ric = (N − 1)k gk on M

N . In particular if E is a ball in (MN , gk) with small volume,
one has that

µ2(E, gk) =

(

1− γN

( |E|gk
|B|

)
2

N

N(N − 1) k + o

( |E|gk
|B|

)
2

N

)

SWRN (|E|gk). (42)

4 Expansion of µ2 for small geodesic ellipsoids

As before we fix y0 ∈ M, and we continue to assume that the orthonormal basis E1, . . . , EN of
Ty0

M is chosen such that (25) holds. In the following, we consider

νN =
2µ2(B) +N |B|ϕ2(1)

N + 2
> 0,
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and we let

bi = bi :=
α+
N

νN
(Rii −

S(y0)

N
) for i = 1, . . . , N , (43)

where α+
N is defined in Proposition 3.1. The reason for this choice will become clear later. We

note that
N
∑

i=1

bi = 0 since S(y0) =
N
∑

i=1

Rii. For r > 0, we now consider the geodesic ellipsoids

E(y0, r) := Fr(B) ⊂ M, where

Fr : B → M, Fr(x) = Expy0

(

r(1 + r2bi)x
iEi

)

.

The special choice of the values bi gives rise to the following asymptotic expansion where the
local geometry only enters via the scalar curvature at y0.

Proposition 4.1 As r → 0, we have

µ2(E(y0, r), g) =
µ2(B)

r2
+ (α−

N +
2α+

N

N
)S(y0) + o(1), (44)

with α±
N as in Proposition 3.1 and

|E(y0, r)|g = |Bg(y0, r)|g +O(rN+4) = rN |B|
(

1− 1

6(N + 2)
r2S(y0) +O(r4)

)

. (45)

Proof. We consider the pull back metric hr on B of g under the map Fr rescaled with the
factor 1

r2 . Then we have

[hr]i,j(x) = (1 + r2bi)(1 + r2bj)[gr]ij((1 + r2bk)x
kek) = [gr]ij(x) + r2(bi + bj)δij +O(r4) (46)

= δij + r2
(1

3
〈Ry0

(X,Ei)X,Ej〉+ (bi + bj)δij

)

+O(r3)

uniformly in x ∈ B. Setting |hr| = det([hr]ij)ij , we deduce the expansion

|hr|(x) = |gr|(x) + 2r2
N
∑

i=1

bi +O(r4) = |gr|(x) +O(r4) for x ∈ B.

This implies that

|E(y0, r)|g = rN |B|hr
= rN

(

|B|gr +O(r4)
)

= |Bg(y0, r)|g +O(rN+4),

as claimed in (45).
We now turn to (44). We first note that µ2(B, hr) = r2µ2(E(y0, r), g); therefore (44) is equivalent
to

µ2(B, hr) = µ2(B) + r2(α−
N +

2α+
N

N
)S(y0) + o(r2). (47)

Let Φr be an eigenfunction for µ2(B, hr), normalized such that
∫

B Φ2
r dvhr

= 1 with dvhr
=

√

|hr|dx. Then we have

∆hr
Φr + µ2(B, hr)Φr = 0 in B, 〈∇Φr, η〉hr

= 0 on ∂B,

where

∆hr
Φr =

1
√

|hr|
∂

∂xi

(

√

|hr|hij
r

∂Φr

∂xj

)

.

Since hr converges to the Euclidean metric in B, the variational characterization of µ2 implies
that µ2(B, hr) → µ2(B). Moreover, as in the proof of Proposition 3.1 we have Φrk → Φ in H1(B)
along a sequence rk → 0 with some function Φ ∈ C2

loc(B) ∩ C1(B) satisfying

∆Φ + µ2(B)Φ = 0 in B, 〈∇Φ, η〉 = 0 on ∂B,

∫

B

Φ2 dx = 1 and

∫

B

Φ dx = 0.
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Hence there exists a vector a = (a1, . . . , aN ) = (a1, . . . , aN ) ∈ R
N with |a| = 1 and such that

Φ(x) = ϕ(|x|)a · x
|x| for x ∈ B.

For matters of convenience, we will continue to write r instead of rk in the following. By multiple
integration by parts, using (46) and (28), we have

µ2(B, hr)

∫

B

ΦΦrdvhr
= −

∫

B

Φ∆hr
Φrdvhr

=

∫

B

√

|hr|hij
r

∂Φ

∂xi

∂Φr

∂xj
dx

=

∫

B

√

|hr|
[

∇Φr∇Φ− r2
(1

3
〈Ry0

(X, ∇̃Φr)X, ∇̃Φ〉+ 2bi
∂Φ

∂xi

∂Φr

∂xi

)]

dx+O(r3)

=−
∫

B

√

|hr|(∆Φ)Φr dx−
∫

B

Φr∇
√

|hr| · ∇Φ dx− r2

3

∫

B

〈Ry0
(X, ∇̃Φr)X, ∇̃Φ〉 dx

− 2r2
∫

B

bi
∂Φ

∂xi

∂Φr

∂xi
dx+O(r3)

= µ2(B)

∫

B

ΦΦr dvhr
+

r2

3

∫

B

Ricy0
(∇̃Φ, X)Φr dx− r2

3

∫

B

〈Ry0
(X, ∇̃Φr)X, ∇̃Φ〉 dx

− 2r2
∫

B

bi
∂Φ

∂xi

∂Φr

∂xi
dx+O(r3).

Since
∫

B ΦΦr dvhr
→ 1 and Φr → Φ in H1(B) as r → 0, we may use the calculations in the proof

of Proposition 3.1 starting from (30) to obtain

µ2(B, hr) = µ2(B) +
r2

3

∫

B

Ricy0
(∇̃Φ, X)Φr dx − r2

3

∫

B

〈Ry0
(X, ∇̃Φr)X, ∇̃Φ〉 dx

− 2r2
∫

B

bi
∂Φ

∂xi

∂Φr

∂xi
dx+ o(r2)

= µ2(B) + r2
(

α−
NS(y0) + 2r2α+

NRicy0
(A,A) − 2

∫

B

bi
( ∂Φ

∂xi

)2

dx
)

+ o(r2) (48)

with A := aiEi ∈ Ty0
M. It remains to compute

∫

B
bi
(

∂Φ
∂xi

)2

dx.

We have ∂Φ
∂xi =

(

ϕ′(|x|) − ϕ(|x|)
|x|

)

xi

|x|2ajx
j + ai

ϕ(|x|)
|x| and thus

( ∂Φ

∂xi

)2

=
1

|x|4
(

ϕ′(|x|)− ϕ(|x|)
|x|

)2

ajak[x
i]2xjxk +a2i

ϕ2(|x|)
|x|2 +2

ϕ(|x|)
|x|3

(

ϕ′(|x|)− ϕ(|x|)
|x|

)

aiajx
ixj

for x ∈ B and i = 1, . . . , N . Noting the oddness of some of the integrands and passing to polar
coordinates, we therefore obtain

∫

B

bi
( ∂Φ

∂xi

)2

dx = bia
2
j

∫

B

1

|x|4
(

ϕ′(|x|) − ϕ(|x|)
|x|

)2

[xi]2[xj ]2 dx+ bia2i

∫

B

ϕ2(|x|)
|x|2 dx

+ 2bia2i

∫

B

ϕ(|x|)
|x|3

(

ϕ′(|x|) − ϕ(|x|)
|x|

)

[xi]2

= bia
2
j

∫ 1

0

tN−1
(

ϕ′(t)− ϕ(t)

t

)2

dt

∫

∂B

[xi]2[xj ]2 dσ + bia2i |∂B|
∫ 1

0

tN−3ϕ2 dt

+ 2bia2i

∫ 1

0

tN−2ϕ(t)
(

ϕ′(t)− ϕ(t)

t

)

dt

∫

∂B

[xi]2 dσ. (49)

Put dN :=
∫ 1

0
tN−3ϕ2 dt. By (13), we have

∫ 1

0

tN−1(ϕ′)2(t) dt =
µ2(B)

|B| − (N − 1)dN and

∫ 1

0

tN−2ϕ′(t)ϕ(t) dt =
ϕ2(1)

2
− N − 2

2
dN
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hence

∫ 1

0

tN−1
(

ϕ′(t)−ϕ(t)

t

)2

dt =
µ2(B)

|B| −ϕ2(1) and

∫ 1

0

tN−2ϕ(t)
(

ϕ′(t)−ϕ(t)

t

)

dt =
1

2

(

ϕ2(1)−NdN

)

.

Inserting this in (49), we get

∫

B

bi
( ∂Φ

∂xi

)2

dx = bia
2
j

(µ2(B)

|B| − ϕ2(1)
)

∫

∂B

[xi]2[xj ]2 dσ + bia2i |∂B|dN + bia2i

(

ϕ2(1)−NdN

)

∫

∂B

[xi]2 dσ.

Recalling furthermore the identities

∫

∂B

[xi]4 dσ = 3

∫

∂B

[xi]2[xj ]2 dσ =
3

N + 2
|B|,

∫

∂B

(xi)2 dσ =
|∂B|
N

= |B|

for i, j = 1, . . . , N , i 6= j and also that
N
∑

i=1

bi = 0, we obtain

bi

∫

∂B

[xi]2[xj ]2 dσ =
2|B|
N + 2

bj for j = 1, . . . , N

and thus
∫

B

bi
( ∂Φ

∂xi

)2

dx = bja2j

(µ2(B)

|B| − ϕ2(1)
) 2|B|
N + 2

+ bia2iN |B|dN + bia2i

(

ϕ2(1)−NdN

)

|B|

= bia2i
2µ2(B) +N |B|ϕ2(1)

N + 2
= νN bia2i .

Inserting this in (48), we obtain

µ2(B, hr) = µ2(B) + r2
[

α−
NS(y0) + 2(α+

NRicy0
(A,A) − νNbia2i )

]

+ o(r2)

= µ2(B) + r2
[

(α−
N +

2a+N
N

)S(y0) + 2(α+
N (Ricy0

(A,A)− S(y0)

N
)− νNbia2i )

]

+ o(r2),

where

α+
N (Ricy0

(A,A) − S(y0)

N
)− νNbia2i = [ai]2

(

α+
N (Rii −

S(y0)

N
)− νNbi

)

= 0

by our choice of the bi = bi in (43). This shows (47), as required.

Corollary 4.2 We have

µ2(E(y0, r), g) =

(

1− γN

(

v

|B|

)
2

N

+ o

(

v

|B|

)
2

N

)

SWRN (v), (50)

as v = |E(y0, r)|g → 0 with γN as in (3).

Proof. This follows readily by combining (40), (44) and (45).

5 A local upper bound for µ2

We fix r0 > 0 less than the convexity radius of M at y0, so that r0 is also less than the injectivity
radius of M at y0. As in [14], we consider the function

G : R → R, G(t) =

{

ϕ(t) if t ≤ 1,

ϕ(1) if t > 1,

14



where ϕ is the function defined in Section 2. Throughout this section, we consider a sequence
of numbers rk ∈ (0, r0

3 ) such that rk → 0 as k → ∞, and we suppose that we are given regular
domains Ωrk ⊂ Bg(y0, rk), k ∈ N. In order to keep the notation as simple as possible, we will
write r instead of rk in the following. By [1, Theorem 3], there exists a point pr ∈ Bg(y0, r) such
that

∫

Ωr

G(|Exp−1
pr

(q)|g)
|Exp−1

pr
(q)|g

Exp−1
pr

(q) dvg = 0. (51)

Moreover, there exists a unique ρr ∈ (0, r) such that that |Ωr|g = |Bg(pr, ρr)|g. We have that,
for every r > 0 small, Bg(pr, ρr) ⊂ Bg(y0, 2r) and also Ωr ⊂ Bg(pr, 2r). Now we need to extend
some of the notations introduced in Section 2. For this we let

y 7→ Ey
i ∈ TyM, i = 1, . . . , N

denote a smooth orthonormal frame on Bg(y0, r0), and we define

Ψr : R
N → M, Ψr(x) = Exppr

(xiEy
i ).

We also define

Br :=
2r

ρr
B and Ur :=

1

ρr
Ψ−1

r (Ωr) ⊂ Br, (52)

and we consider the pull back metric of g under the map Br → M, x 7→ Ψr(ρrx), rescaled with
the factor 1

ρ2
r
. We denote this metric on Br by gr, and we point out that this definition differs

from the notation used in the proof of Proposition 3.1. By (51), it is plain that

∫

Ur

G(|x|)
|x| xidvgr = 0 for i = 1, . . . , N . (53)

We also write

Rr
ijkl := 〈Ry(E

pr

i , Epr

j )Epr

k , Epr

l 〉 and Rr
ij := Ricpr

(Epr

i , Epr

j )

for i, j, k, l = 1, . . . , N . To be consistent with the notation introduced in the end of Section 2, we
also write

Rijkl := 〈Ry0
(Ey0

i , Ey0

j )Ey0

k , Ey0

l 〉 and Rij := Ricy0
(Ey0

i , Ey0

j ).

Since dist(pr, y0) = O(r), we then have

Rr
ijkl = Rijkl +O(r) and Rr

ij = Rij +O(r) for i, j, k, l = 1, . . . , N . (54)

By Lemma 2.2 we also have

(gr)ij(x) = δij +
ρ2

r

3 Rr
kiljx

kxl + |x|3O(ρ3r);

dvgr (x) =
√

|gr(x)| dx =
(

1− ρ2

r

6 Rr
lkx

lxk + |x|3O(ρ3r)
)

dx,
(55)

uniformly on Br, where |gr| is the determinant of gr, so in particular

(gr)ij(x) = δij +O(r2) and dvgr (x) = (1 +O(r2))dx uniformly on Br. (56)

Observe that

|Ur|gr = ρr
−N |Ωr|g = ρr

−N |Bg(pr, ρr)|g = |B|gr and µ2(Ur, gr) =
µ2(Ωr, g)

ρ2r
. (57)

Moreover, since Ur ⊂ Br and B ⊂ Br, we infer from (56) that

|Ur| = (1 +O(r2))|Ur|gr = (1 +O(r2))|B|gr = (1 +O(r2))|B|. (58)
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Setting

fi : R
N → R, fi(x) =

G(|x|)
|x| xi,

we find that
∫

Ur
fidvgr = 0 for i = 1, . . . , N by (53), and hence the variational characterization

of µ2 yields

µ2(Ur, gr) ≤

N
∑

i=1

∫

Ur

|∇fi|2grdvgr

N
∑

i=1

∫

Ur

f2
i dvgr

. (59)

We also note that

∂fi
∂xk

=
G′

|x|2 x
ixk +

G

|x| [δik − xixk

|x|2 ] for every i, k = 1, . . . , N (60)

and, by direct calculation as in [14],

N
∑

i=1

f2
i = G2,

N
∑

i=1

|∇fi|2 = (G′)2 + (N − 1)
G2

|x|2 . (61)

Here and in the following, we simply write G instead of G(| · |) or G(|x|) and G′ instead of G′(| · |)
or G′(|x|) if the meaning is clear from the context. In particular, using (61), (14) and recalling
that ϕ and G coincide in [0, 1], we observe that

∫

B

(

(G′)2 + (N − 1)
G2

|x|2
)

dx =

N
∑

i=1

∫

B

|∇fi|2 dx = µ2(B)

N
∑

i=1

∫

B

|fi|2 dx (62)

= µ2(B)

∫

B

ϕ2(|x|) dx = Nµ2(B).

Lemma 5.1 In the above setting, we have

µ2(Ur, gr) ≤

∫

Ur

(

(G′)2 + (N − 1)
G2

|x|2
)

dvgr +
ρ2r
3

∫

Ur

G2

|x|2R
r
lkx

lxk dvgr
∫

Ur

G2 dvgr

+O(rρ2r). (63)

as r → 0. Moreover,
(1 +O(r2))µ2(Ur, gr) ≤ µ2(Ur) (64)

and
∫

Ur

G2 dvgr ≥ N − |B|ρ2r
6

S(y0)

∫ 1

0

ϕ2tN+1dt+O(rρ2r). (65)

Proof. We start by proving (65). Clearly
∫

Ur

G2 dvgr =

∫

B

G2 dvgr +

∫

Ur\(Ur∩B)

G2 dvgr −
∫

B\(Ur∩B)

G2 dvgr .

Using (57), the fact that G is non-decreasing and that G = ϕ(1) on Ur \ (Ur ∩B) we get
∫

Ur

G2 dvgr ≥
∫

B

G2 dvgr + ϕ(1)2 (|Ur \ (Ur ∩B)|gr − |B \ (Ur ∩B)|gr ) =
∫

B

G2 dvgr .

Now by (55) and (14) we have

∫

B

G2 dvgr =

∫

B

ϕ2(|x|) dx − ρ2r
6

∫ 1

0

ϕ2tN+1dt

∫

∂B

Rr
lkx

lxkdσ +O(ρ3r)

= N − |B|ρ2r
6

S(y0)

∫ 1

0

ϕ2tN+1dt+O(rρ2r).
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From this we conclude
∫

Ur

G2 dvgr ≥ N − |B|ρ2r
6

S(y0)

∫ 1

0

ϕ2tN+1dt+O(rρ2r),

so that (65) holds. Moreover, by (55) we have

|∇fi|2gr = |∇fi|2 −
ρ2r
3
Rr

jklmxj ∂fi
∂xk

xl ∂fi
∂xm

+O
(

ρ3r|x|3|∇fi|2
)

,

in Br. Using furthermore that, by general properties of the Riemannian curvature tensor,
Rr

jklmxjxk = 0 for every l,m and Rr
jklmxlxm = 0 for every j, k, we obtain

Rr
jklmxj ∂fi

∂xk
xl ∂fi
∂xm

=
G2

|x|2R
r
jilix

jxl

by (60). Therefore, summing over i and using (61), we find that

N
∑

i=1

|∇fi|2gr = (G′)2 + (N − 1)
G2

|x|2 +
ρ2rG

2

3|x|2 R
r
jlx

jxl +O

(

ρ3r|x|3
(

(G′)2 + (N − 1)
G2

|x|2
))

. (66)

To estimate the last term in (66), we first note that, since G′ ≡ 0 in Ur \ (Ur ∩B) ⊂ Br,

ρ3r

∫

Ur\(Ur∩B)

|x|3
(

(G′)2 + (N − 1)
G2

|x|2
)

dvgr = ρ3rG(1)2
∫

Ur\(Ur∩B)

|x|3
|x|2 dvgr

≤ rρ2rG(1)2|U |gr = O(rρ2r).

Moreover, since |x| ≤ 1 in B we have

ρ3r

∫

B

|x|3
(

(G′)2 + (N − 1)
G2

|x|2
)

dvgr = O(ρ3r) = O(rρ2r).

Hence we deduce that
∫

Ur

O

(

ρ3r|x|3
(

(G′)2 + (N − 1)
G2

|x|2
))

dvgr = O(rρ2r). (67)

Now (63) follows immediately from (59), (61), (65), (66) and (67). Combining (63) and (65), we
also deduce that

µ2(Ur, gr) ≤ C +O(r2) as r → 0 with a constant C > 0. (68)

Now to prove (64), we consider a normalized eigenfunction hr corresponding to µ2(Ur), i.e.
hr ∈ H1(Ur) satisfies

∫

Ur

h2
r dx = 1,

∫

Ur

hr dx = 0 and

∫

Ur

|∇hr|2 dx = µ2(Ur).

By (56) and (58) we then have

∣

∣

∣

1

|Ur|gr

∫

Ur

hr dvgr

∣

∣

∣
= O(r2)

1

|Ur|gr

∫

Ur

|hr| dx ≤ O(r2)

√

|Ur|
|Ur|gr

= O(r2),

With cr = 1
|Ur|gr

∫

Ur
hr dvgr we therefore deduce

∫

Ur

(hr − cr)
2 dvgr =

∫

Ur

(hr +O(r2))2(1 +O(r2)) dx = 1 +O(r2).

Therefore the variational characterization of µ2(Ur, gr) yields

µ2(Ur, gr) ≤
1

1 +O(r2)

∫

Ur

|∇hr|2gr dvgr = (1+O(r2))

∫

Ur

|∇hr|2(1+O(r2)) dx = (1+O(r2))µ2(Ur),

and (64) follows.

The following lemma controls the symmetric distance between B and Ur with the help of a recent
stability estimate of Brasco and Pratelli [3] for µ2 in the euclidean setting.
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Lemma 5.2 Assume that µ2(Ur, gr) ≥ µ2(B)(1 + o(1)) as r → 0 for the family of domains Ur

defined in (52), and let Ur △B = (Ur ∪B) \ (Ur ∩B). Then

|Ur △B| → 0 as r → 0. (69)

Proof. We consider the rescaled set U ′
r = (1+δ(r))Ur, where δ(r) is chosen such that |U ′

r| = |B|.
Then δ(r) = O(r2) by (58). By (64) and by assumption, we see that

µ2(U
′
r) = (1 + δ(r))−2µ2(Ur) ≥ (1 +O(r2))µ2(Ur, gr) ≥ µ2(B)(1 + o(1)) as r → 0,

whereas µ2(U
′
r) ≤ µ(B) by Weinberger’s result [14]. By [3, Theorem 4.1], there exist points

xr ∈ R
N such that

|U ′
r △B(xr)|2 ≤ C(µ2(B)− µ2(U

′
r)) → 0 as r → 0 (70)

with some constant C > 0, where B(xr) stands for the ball in R
N centered at xr with radius 1.

Since δ(r) = O(r2), it is easy to see that

lim
r→0

|Ur △B(xr)| = lim
r→0

|U ′
r △ B(xr)| = 0. (71)

Consequently, (69) follows once we have shown that xr → 0 as r → 0. So we suppose by
contradiction that, after passing to a subsequence, infr |xr| > 0 and xr

|xr|
→ x0 as r → 0 for some

x0 ∈ R
N with |x0| = 1. From (53), (56) and (71), we then infer that

∫

B

G(|x + xr|)
x+ xr

|x+ xr |
· x0 dx =

∫

B(xr)

G(|x|) x

|x| · x0 dx =

∫

Ur

G(|x|) x

|x| · x0 dx+ o(1) → 0

as r → 0. If |xr | → ∞ for a subsequence, it would follow by the definition of G that
∫

B

x+ xr

|x+ xr |
· x0 dx → 0 as r → 0,

whereas, on the other hand, x+xr

|x+xr|
→ x0 uniformly on B. This is impossible, so we conclude that

the sequence xr is bounded and therefore, along a subsequence, xr → x̃ 6= 0 as r → 0 for some
x̃ ∈ R

N \ {0}. Using (53), (56) and (71) similarly as before, we now infer that
∫

B

G(|x + x̃|) x+ x̃

|x+ x̃| · x̃ dx = 0 (72)

Let D := {x ∈ B : x · x̃ > 0}, and let σ : B → B denote the reflection at the hyperplane
{x ∈ R

N : x · x̃ = 0} given by σ(x) = x− 2x · x̃
|x̃|2 x̃. Elementary geometric considerations show

that

|x+ x̃| > |σ(x) + x̃| and
x+ x̃

|x+ x̃| · x̃ >
∣

∣

∣

σ(x) + x̃

|σ(x) + x̃| · x̃
∣

∣

∣
for x ∈ D \ Rx̃.

Since G(|x|) is nondecreasing in |x| and positive for x 6= 0, we conclude by a change of variable
that
∫

B

G(|x+ x̃|) x+ x̃

|x+ x̃| · x̃ dx =

∫

D

[

G(|x+ x̃|) x+ x̃

|x+ x̃| · x̃+G(|σ(x) + x̃|) σ(x) + x̃

|σ(x) + x̃| · x̃
]

dx > 0,

contradicting (72). The contradiction shows that xr → 0 as r → 0, which, as remarked before,
yields the claim.

Lemma 5.3 Assume that
|Ur △ B| → 0 as r → 0 (73)

for the family of domains Ur defined in (52). Then

µ2(Ur, gr) ≤
(

1− N − 2− |B|ϕ(1)2
6Nµ2(B)

ρ2r S(y0) + o(ρ2r)

)

µ2(B) as r → 0. (74)
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Proof. We shall estimate the terms in (63) to reach the upper bound (74). First note that, by
(73), (54) and (14),

∫

Ur

G2

|x|2R
r
lkx

lxkdvgr =

∫

B

G2

|x|2R
r
lkx

lxkdvgr + o(1) = Rkk

∫

B

ϕ2(|x|) [x
k]2

|x|2 dx+ o(1)

= S(y0) + o(1). (75)

Since, as noted in [14, p. 636], the mapping |x| 7→ (G′)2(|x|) + (N − 1)G(|x|)2

|x|2 is non-increasing,

we have by (57)
∫

Ur

(

(G′)2 + (N − 1)
G2

|x|2
)

dvgr =

∫

B

. . . dvgr +

∫

Ur\(Ur∩B)

. . . dvgr −
∫

B\(Ur∩B)

. . . dvgr

≤
∫

B

(

(G′)2 + (N − 1)
G2

|x|2
)

dvgr . (76)

Moreover, using (55) and (62), we compute
∫

B

(

(G′)2 + (N − 1)
G2

|x|2
)

dvgr =

∫

B

(

(G′)2 + (N − 1)
G2

|x|2
)

(

1− ρ2r
6

Rr
lkx

lxk + |x|3O(ρ3r)
)

dx

=

∫

B

(

(G′)2 + (N − 1)
G2

|x|2
)

dx− ρ2r
6

∫

∂B

Rr
lkx

lxk dσ

∫ 1

0

(

(ϕ′)2 + (N − 1)
ϕ2

t2

)

tN+1dt+O(ρ3r)

= Nµ2(B)− |B|ρ2r
6

S(y0)

∫ 1

0

(

(ϕ′)2 + (N − 1)
ϕ2

t2

)

tN+1dt+ o(ρ2r).

Notice that, by (13),

∫ 1

0

(

(ϕ′)2 + (N − 1)
ϕ2

t2

)

tN+1dt =
1

|B|

∫

B

ϕ2(|x|)dx − ϕ(1)2 + µ2(B)

∫ 1

0

ϕ2tN+1dt

=
N

|B| − ϕ(1)2 + µ2(B)

∫ 1

0

ϕ2tN+1dt

The two equalities above and (76) yield
∫

Ur

(

(G′)2 + (N − 1)
G2

|x|2
)

dvgr ≤ Nµ2(B)− ρ2rN

6
S(y0) +

|B|ϕ(1)2
6

ρ2rS(y0)

− |B|ρ2r
6

µ2(B)S(y0)

∫ 1

0

ϕ2tN+1dt+ o(ρ2r).

Combining this with (65) and (75), we obtain

µ2(Ur, gr) ≤ µ2(B)− N − 2− |B|ϕ(1)2
6N

ρ2rS(y0) + o(ρ2r)

and the proof is complete.

6 Proof of the main result

In this section we complete the proof of Theorem 1.1. Part (i) follows immediately from Corollary
4.2, and the lower bound in Part (ii) is a direct consequence of Part (i). Hence it remains to
prove the upper bound in Part (ii). For this we assume by contradiction that there exists ε0 > 0
and sequences of numbers rk > 0 and vrk ∈ (0 , |Bg(y0, rk)|g) such that rk → 0 as k → ∞ and

SWBg(y0,rk)(vrk) >

(

1− (γNS(y0)− ε0)

(

vrk
|B|

)
2

N

)

SWRN (vrk).
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Then there exist regular domains Ωrk ⊂ Bg(y0, rk) with |Ωrk |g = vrk and such that

µ2(Ωrk , g) >

(

1− (γNS(y0)− ε0)

(

vrk
|B|

)
2

N

)

SWRN (vrk). (77)

As in Section 5, we write r instead of rk in the following. We obtain pr ∈ Bg(y0, r) such that
(51) holds and we define ρr, gr and Ur accordingly as above. It is easy to see from (77) and the

scale invariance of Ω 7→ |Ω|
2

N
g µ2(Ω, g) that

|Ur|
2

N
grµ2(Ur, gr) >

(

1− (γNS(y0)− ε0)

( |Bg(pr, ρr)|g
|B|

)
2

N

)

|B| 2

N µ2(B). (78)

By (23) and (57), we also find

( |B|
|Ur|gr

)
2

N

=
( ρNr |B|
|Bg(pr, ρr)|g

)
2

N

= 1 +
1

3N(N + 2)
S(y0)ρ

2
r + o(ρ2r)

and
( |Bg(pr, ρr)|g

|B|
)

2

N

= ρ2r + o(ρ2r).

Combining this with (78), we obtain

µ2(Ur, gr) >

(

1 +
(

[ 1

3N(N + 2)
− γN

]

S(y0) + ε0

)

ρ2r + o(ρ2r)

)

µ2(B)

=

(

1−
(N − 2− |B|ϕ(1)2

6Nµ2(B)
S(y0)− ε0

)

ρ2r + o(ρ2r)

)

µ2(B) (79)

and in particular µ2(Ur, gr) ≥ µ2(B)(1 + o(1)) as r → 0. From this, we can apply Lemma 5.2 to
get that

|Ur △B| → 0 as r → 0.

Therefore by Lemma 5.3 we get

µ2(Ur, gr) ≤
(

1− N − 2− |B|ϕ(1)2
6Nµ2(B)

S(y0) ρ
2
r + o(ρ2r)

)

µ2(B) as r → 0,

and this contradicts (79). Hence Theorem 1.1 is proved.
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