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Abstract. We consider a compartmental model from which we incorporate a time-
dependent health care capacity having a logistic growth. This allows us to take
into account the Senegalese authorities response in anticipating the growing number
of infected cases. We highlight the importance of anticipation and timing to avoid
overwhelming that could impact considerably the treatment of patients and the well-
being of health care workers. A condition, depending on the health care capacity and
the flux of new hospitalized individuals, to avoid possible overwhelming is provided.
We also use machine learning approach to project forward the cumulative number of
cases from March 02, 2020, until 1st December, 2020.
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1. Introduction

COVID-19, declared a pandemic by the World Health Organization (WHO) [25] on 11
March 2020, is still spreading around the world up to date 26 September 2020. The num-
ber of people infected is beyond 32 million on 26 September 2020 with 989,380 deaths
[24]. In Senegal, the number of cumulative cases is currently 14839 with 2624 individu-
als undergoing treatment on 25 September 2020[13]. The first cases, from Wuhan, were
notified to WHO on 31 December 2019 [25, 26] while, Senegal notified its first case on
02 March 2020 [13]. Because of its limited resources, as in many sub-Saharan African
countries, it is therefore valuable to understand the growth and the timing in responding
to the logistic needs of their health system. We note that several developed countries
that nevertheless have high-capacity health structures have been overwhelmed and this
considerably impacted negatively in the combat against the pandemic. In [14] it is dis-
covered that the growing number of COVID-19 cases in the United States could gravely
challenge the critical care capacity, thereby exacerbating case fatality rates. As pointed
out in [23], under-resourced health systems may pose a threat to patient care as well as
the safety and well-being of health care workers.
From the appearance of the first cases of COVID-19, the Senegalese authorities decided to

This work was completed with the support of the NLAGA project.

ar
X

iv
:2

01
1.

06
27

8v
1 

 [
q-

bi
o.

PE
] 

 1
2 

N
ov

 2
02

0



2 Fall M.M., Ndiaye B.M., Seydi O. and Seck D.

anticipate by increasing gradually the capacity of its hospitals to take care of patients suf-
fering from COVID-19. One of the aims of the present paper is to study different scenarios
of involution of the number of virus patients by varying the growth rate and the number
of, say, beds or rooms. As an approach, we use a mathematical model that integrates
the different stages of individuals (Susceptible, Exposed, Asymptomatic, Symptomatic,
Removed) with the parameters depending on the health resources availability. To this
cope, we consider a modified SEWIR model [16] in which we include a time-dependent
carrying capacity K(t) representing the evolution of the Senegalese hospitals’ capacity
in response to the growing number of cases in Senegal. Our analysis highlights the im-
portance of anticipation and timing to avoid overwhelming in the health system. More
precisely, our analysis shows, in particular, that, while the epidemic growths exponen-
tially fast, by respecting a certain logistic growth (at which the number of beds is being
added) in the health system, the epidemic might remain under control. As a consequence,
a non-negligible number of expenses can be saved.
Finally, a machine learning approach to project forward the cumulative number of virus
infected cases is provided. Let us mention that several studies have been conducted in
different contexts to assess the impact of hospital saturation in COVID-19. We refer
for examples to [5, 7, 8, 14, 21] and the references therein. Our work complements
several studies that have been carried out on the spread of Sars-CoV-2 in Senegal
[2, 3, 4, 6, 15, 16, 17, 18]. It should be noted that the aforementioned studies did not
address the impact of saturation on patients care in Senegal. However, some studies on
the prediction of the number of new cases for Senegal have already been carried out
using machine learning [2, 3, 15, 16] and on the impact of contaminated objects using
compartmental models [6].
The paper is organized as follows. In section 2, we describe in detail our model as well
as the parameters involved. It is followed by Section 3 concerning the estimation of the
unknown parameters. In section 4 we derive the time-dependent effective reproduction
number which is a key function that informs about the impact of the various decisions
taken by the authorities during the epidemic. In Section 5, we first present the calibration
of the model to the cumulative number of reported cases. We then present numerical sim-
ulations on the impact of the dynamics of health capacity on the patients care. Finally,
in Section 6, we use machine learning to project forward the number of cumulative cases
until 1st December 2020.

2. Model description

We consider compartmental epidemic model that incorporates a time-dependent carry-
ing capacity K(t) of health structures for the treatment of COVID-19 patients at the
hospitals. The model reads as follow

S′(t) = −β1(t)[W (t) + εI(t)]S(t)

E′(t) = β1(t)[W (t) + εI(t)]S(t)− β2E(t)

W ′(t) = β2E(t)− β3W (t)

I ′(t) = (1− α1)β3W (t)− γI(t) (1− I(t)/K(t))+ − ηI(t)

R′(t) = α1β3W (t) + γI(t) (1− I(t)/K(t))+ + ηI(t)

(2.1)
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with initial conditions

S(t0) = S0, E(t0) = E0, W (t0) = W0, I(t0) = I0, R(t0) = R0 (2.2)

and

(1− I(t)/K(t))+ =

{
1− I(t)/K(t) if I(t) ≤ K(t)

0 if I(t) > K(t).
(2.3)

The state variable S(t) is the number of susceptible individuals at time t, E(t) the
number of exposed individuals at time t and W (t) the number of waiting cases for
confirmation (with infectiousness) at time t. The number of confirmed and monitored
cases at time t is denoted by I(t). The variable K(t) describes the effective carrying
capacity of the health structure, which is the maximum number of I(t) individuals that
can be correctly monitored. Finally R(t) represents the removed individuals at time t
due to death or recovery. The figure below represents the diagram flux of the model.
The term εβ1(t)I(t)S(t) represents the transmission of the disease within the health

Figure 1. Flow diagram of the model.

structures where ε > 0 can be interpreted as the probability that a susceptible individual
is working in the health system. More precisely we set ε = NH/S0 with NH the number
of health care workers and S0 the initial number of susceptible individuals. The quantity
of 1/β2 is the average incubation period. We assume that the average waiting time for
confirmation is 1/β3 days. After the waiting time, a fraction 1 − α1 is monitored while
the remaining fraction α1 is removed due to death or recovered. The removal rate of the
confirmed cases is described by t→ γ (1− I(t)/K(t))+ + η in order to take into account
the saturation effect of the public health structures. The term γ (1− I(t)/K(t))+ + η
which is a decreasing function of I(t) describes the efficiency of the health structures. The
maximal efficiency is γ + η while the minimal efficiency η is reached when the number
of confirmed cases becomes greater than the carrying capacity K(t). In our modeling
procedure, we have introduced a time-dependent carrying capacity which is motivated
by the fact that in Senegal, the carrying capacity of the health structures was gradually
increased in response to the increase in the number of infected individuals. The dynamics
of the increase in the number of beds remains unknown because only announcements have
been made. We chose a logistic equation to mimic the growth of the public health capacity
to its saturation. Indeed, from the onset of the epidemic, the authorities announced a
carrying capacity of 30 which gradually increased according to the number of cases. The
maximum capacity of the structures remains unknown but in view of the announcements
made, we assume that it is approximately 3000. The growth rate r = 0.1 of t → K(t)
is chosen such that it increases from 30 on 02 March to approximately 3000 on 10 June
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and that the number of hospitalized individuals is below the effective carrying capacity.
There are other possibilities of choosing the growth rate r but the value r = 0.1 appears
to give the best fit to the data. The figure below describes the evolution of K(t) with
respect to time and the evolution of the number of hospitalized individuals.
The evolution of the public health capacity and number of monitored are illustrated in
Figure 2.

Figure 2. Evolution of the hospital carrying capacity and the number
of hospitalized individuals.

More precisely the dynamic of the carrying capacity is given by:

dK

dt
=

{
rK(1−K/Kmax) if K ≤ Ksa

0 if K > Ksa
(2.4)

with
K0 = 30, r = 0.1 and Kmax = 3000.

The parameter Ksa will serve to explore different scenarios in which the efforts of in-
creasing health capacities are aborted. In model (2.1)-(2.4), we use a time-dependent
transmission rate to take into account the various events that have impacted the spread
of disease. Indeed several government actions such as partial lockdown, social distancing,
interurban traffic ban, border closure have impacted the progression of the disease. The
time-dependent transmission rate has the following form

β1(t) =


β10 if t0 ≤ t < t1
max

(
β10e

−θ1(t−t1), θ2β10
)

if t1 ≤ t < t2
min(β11e

θ1(t−t2), θ3β10) if t2 ≤ t < t3
max

(
β12e

−θ1(t−t3), θ4β10
)

if t ≥ t3,

(2.5)

where the parameters are estimated by using the data on reported cases. More precisely
we have

β11 = max
(
β10e

−θ1(t2−t1), θ2β10

)
and β12 = min(β11e

θ1(t3−t2), θ3β10)
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with t0 = 02 March the date at which the first case was reported [13], t1 = 24 March,
t2 = 12 April and t3 = 20 April. We distinguish three phases. Phase 1 takes place between
the dates t0 = 02 March, the beginning of the epidemic, until the first government actions
at date t1 = 24 March. Phase 2 which begins at t1, the date on which decisions such
as public closing, interurban traffic ban, border closure were taken, is ended at date
t2 = 12 April. The date t2 corresponds to a sudden increase in the number of cases with
a decline on approximately date t3 = 20 April where Phase 3 began and cover the period
of 20 April to 28 June the date at which we stop our study. The cause of the sudden
increase in 12 April remains unknown to us at this time. More accurate data would be
needed in order to understand the advent of this phenomenon. However, we can follow the
evolution of the dynamics of the epidemic using the time-dependent transmission rate.
The parameter θ1 describes the intensity of the government actions or sudden events that
impacted the transmission rate. We refer to [10] where such interpretation has been used
to describes the government actions. The parameters θ2, θ3 and θ4 allow us to measure
the impact of each phase on the transmission rate β10. The values of the parameters θi,
i = 1, 2, 3, 4 estimated in Section 3 are

θ1 = 5.1366, θ2 = 0.1224, θ3 = 1.7130, θ4 = 0.356, (2.6)

and the estimated value of β10 in Section 3 is

β10 = 3.8593× 10−8. (2.7)

The figure below describes the transmission rate t → β1(t). Next we summarize the

Figure 3. Time-dependent transmission t → β1(t) of the period from
02 March to 28 June 2020.

descriptions of the remaining symbols in the table below. The values of fixed parameters
in Table 1 are given in the next table
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Symbol Description Method

t0 Onset of the epidemic fixed

S0 Number of susceptible at time t0 fixed

E0 Number of exposed individuals at time t0 fitted

W0 Number of wating individuals at time t0 fitted

I0 Number of monitored infectious at time t0 fitted

β1(t) Transmission rate fitted

1/β2 average latent period fixed

β3 Removal rate of the wating individuals fixed

1 − α1 Fraction of wating individuals that become monitored fitted

η Rate at which monitored individuals are removed at hospital saturation fixed

γ + η Maximal removal rate of the monitored individuals fixed

Kmax Maximal hospital carrying capacity fixed

r Intrinsic growth rate of the hospital carrying capacity fixed

ε Number of healthcare worker per susceptible individual fixed

Table 1. Parameters of the model.

Symbol Value Reference

t0 02 March 2020 [13]

S0 7857353 [1]

1/β2 1 day [11]

1/β3 10 days WHO

α1 30 % Assumed

1/η 30 days Assumed

1/(γ + η) 15 days Assumed

Kmax 3000 Assumed

K0 30 Assumed

r 0.1 Assumed

ε 1000/S0 Assumed

Table 2. Values of the fixed parameters.

3. Parameter estimates using the early phase

In this section, will use the approach developed in [9, 10, 11, 12] in order to estimate the
parameters from the early phase of the epidemic. Let C(t) be the cumulative number of
reported cases at time t be defined by

C(t) = C(t0) + (1− α1)β3

∫ t

t0

W (s)ds (3.1)

with t0 = 02 Mars 2020 the date of the first reported cases in Senegal so that C(t0) = 1.
The early phase of the epidemic corresponds to the period from the announcement of
the first case on 02 Mars 2020 to the first government actions at t1 = 24 March 2020.



Analysis of COVID-19 evolution in Senegal: impact of health care capacity 7

In this phase we assume that the number of infected individuals growth exponentially.
Hence with such assumption, the cumulative number of cases has the following form

C(t) = C(t0) + χ2e
χ1(t−t0) − χ2, t ∈ [t0, t1]. (3.2)

The Figure 4 below shows the comparison between the t → C(t) and the data from 02
March until 24 March 2020 that allows us to estimate the parameters χ1 and χ2 to

χ1 = 0.1612 and χ2 = 1.979. (3.3)

Assuming that S(t) is approximately equal to S(t0) in the short time interval [t0, t1] and

Figure 4. Comparison between the cumulative number of reported
cases (data) and the map t→ C(t) defined in (3.2).

that for each t ∈ [t0, t1]

E(t) = E0e
χ1(t−t0), W (t) = W0e

χ1(t−t0), I(t) = I0e
χ1(t−t0)

and

β1(t) = β10,

it follows that we have the following approximation for a short time period χ1E0 = β10S0(W0 + εI0)− β2E0

χ1W0 = β2E0 − β3W0

χ1I0 = (1− α1)β3W0 − (γ + η)I0.
(3.4)

Furthermore differentiating (3.1) and (3.2) with respect to t we obtain

C ′(t) = χ1χ2e
χ1(t−t0) = (1− α1)β3W (t) = (1− α1)β3W0e

χ1(t−t0)

that is

W0 =
χ1χ2

(1− α1)β3
. (3.5)

Solving the second and the third equation of (3.4) we get:

E0 =
χ1 + β3
β2

W0 and I0 =
(1− α1)β3
χ1 + γ + η

W0. (3.6)
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Plugging (3.5) and (3.6) into the first equation of (3.4), it follows that

β10 =
χ1 + β2

S0(W0 + εI0)
E0. (3.7)

Therefore using (3.3) together with (3.5)-(3.7) and the values of the parameters of Table
1 we obtain

E0 = 1.18, W0 = 4.55, I0 = 1.39 (3.8)

and
β10 = 3.8593× 10−8. (3.9)

In order to obtain the values of the parameters θi, i = 1, 2, 3, 4 that appear in the
transmission rate t → β1(t) we perform a curve fitting by using the data from t1 = 23
March 2020 until 28 June 2020. The estimated values are listed below

θ1 = 5.1366, θ2 = 0.1224, θ3 = 1.7130, and θ4 = 0.356.

4. The effective reproduction number

The effective reproduction number, Re, is the expected number of secondary cases pro-
duced by one typical infection joining a healthy population during its infectious period
while the time-dependent effective reproduction numberRe(t) is the instantaneous trans-
missibility of the disease at time t. The time-dependent effective reproduction number
allows to follow the evolution of the epidemic as the time evolves in particular how Re(t)
is far above or far below 1.
In order to obtain Re(t) we note that β1(t)S(t) is the number of new infections per unit
of time generated by one infectious individual. Thus assuming β1(t)S(t) approximately
constant during 1/β3, it follows that the term

β1(t)S(t)

β3

is the average number of new infections generated by one infectious individual (W) during
its period of infectiousness 1/β3. Moreover one infectious individual (W) generates on
average

(1− α1)β3 × 1× 1

β3
= 1− α1

infectious individual(s) (I). Those 1−α1 infectious (I) has a maximum mean infectiousness
period 1/(γ + η) so that they generate

εβ1(t)S(t)× (1− α1)× 1

γ + η

new infections after
1

γ + η
times.

We finally define the time-dependent effective reproduction number as

Re(t) =
β1(t)S(t)

β3
+

(1− α1)εβ1(t)S(t)

γ + η
. (4.1)

The figure below gives the evolution of the effective reproduction number. We observe
that the effective reproduction number is larger than 1 (approximately 3) during the early
phase of the epidemic that is from 02 March to 24 March and is smaller than 1 during the
second Phase. We can therefore observe that the first actions of the government had a
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Figure 5. The effective reproduction t→ Re(t) of the period from 02
March to 28 June 2020.

positive effect on the spread of the epidemic because it tended to disappear if the effective
measures would have been kept in the same trend. However, the sudden increase in cases
on April 12th impacted the effective reproduction number to bring it to around 5. It goes
down until it is close to but greater than 1 from April 20th. The cause of this increase is
unknown to us but a better knowledge of the data may allow us to find an explanation.

5. Numerical simulations

In this section we perform numerical simulations of the dynamics of the spread of the
COVID-19 epidemic based on our proposed model (2.1)-(2.4). We consider the regions of
Dakar, Thies and Diourbel which concentrate around 95% of the reported cases. To do
so we assume that the initial number of susceptibles is the population of Dakar, Thies
and Diourbel, that is to say S0 = 7857353 [1]. The values of the parameters of the model
are listed in Table 2. The time-dependent transmission rate is given in (2.5)-(2.7) while
the estimated initial conditions in Section 3 are E0 = 1.18, W0 = 4.55, I0 = 1.39. In
Figure 6 below we compare the cumulative number of cases t → C(t) defined in (3.1)
with 95% of the cumulative number of reported cases showing that our model agrees
with the data. In order to illustrate the impact of the saturation of health structures on
the number of monitored individuals, we consider several scenarios. Indeed, we consider
the same evolution of the reception capacity with interruptions in growth at predefined
values. More precisely we consider the following dynamic

dK

dt
=

{
rK(1−K/Kmax) if K ≤ Ksa

0 if K > Ksa
(5.1)

where Ksa, the saturation level, is respectively 3000, 2500, 2000, 1500 and 1000 and
is illustrated by the following figure. In Figure 8 we plot the corresponding number of
monitored individuals that is t → I(t) when the dynamics of the carrying capacity is
given by (5.1) with Ksa = 3000, 2500, 2000, 1500 and 1000 while the growth rate is fixed
at r = 0.1. We see that the epidemic is under control, until 28 June only when Ksa = 3000
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Figure 6. Comparison between 95 % of the cumulative number of
reported cases to the model for the population of Dakar, Thies and
Diourbel.

Figure 7. Evolution of the carrying capacity with saturation at Ksa =
3000, 2500, 2000, 1500 and 1000.

and Ksa = 2500. This shows that the maximum value of the carrying capacity, Ksa, may
impact significantly the efficiency of public health structures by slowing down the rate
at which individuals are removed from the hospital. In Figure 9 we look at the influence
of the growth rate r on the number of monitored individuals. We see that increasing r
from 0.1 to 0.5, does not impact significantly the number of monitored individuals and
the dates at which overwhelming occurs. This is the case for all values of Ksa.
For r = 0.05, Figure 10, we see that the number of monitored individuals becomes larger
than the maximum number of available resources at the early stage of the epidemic,
around 20 April. We also observe that I(t) remains unchanged for different values of Ksa.
Thus our model captures and validates the obvious fact that the faster you increase the
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number of beds, the better you can handle the hospitalized people. Figure 10 emphasizes
more the sensibility of the growth rate r which can also be seen/interpreted as the timing
in anticipating overwhelming. Indeed we observe that for the maximal value of resources
Ksa = Kmax = 3000, K(t) stay larger than I(t) until 28 June for r ≥ 0.06 while for
r ≤ 0.05 we see that the number monitored becomes larger than available resources from
mid-April to the end of June.

(a) (b)

Figure 8. Number of monitored individuals with respect to the saturation
carrying capacities values Ksa = 3000, 2500, 2000, 1500 and 1000. The growth
rate is r = 0.1. Figure (A) shows the difference K(t) − I(t) and Figure (B)
shows the evolution of monitored individuals I(t).

(a) (b)

Figure 9. Number of monitored individuals with respect to the saturation
carrying capacities values Ksa = 3000, 2500, 2000, 1500 and 1000. The growth
rate is r = 0.5. Figure (A) shows the difference K(t) − I(t) and Figure (B)
shows the evolution of monitored individuals I(t).
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(a) (b)

Figure 10. Number of monitored individuals with carrying capacities values
Ksa = 3000, 2500, 2000, 1500 and 1000. The growth rate is r = 0.05. Figure
(A) shows the difference K(t) − I(t) and Figure (B) shows the evolution of
the monitored individuals I(t).

Figure 11. Number of monitored individuals with carrying capacity
values Ksa = 3000. The growth rates are r = 0.05 and r = 0.06.

In view of our discussion, it would be important to have a condition that guarantees the
unsaturation of health structures. It is contained in the following

Lemma 5.1. Assume that K0 > I0. Assume in addition that t→ K(t) is increasing and
differentiable with respect to t. If

(1− α1)β3W (t)

η
< K(t), ∀t ∈ [t0, T ] (5.2)
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for some T > 0 then we have

I(t) < K(t), ∀t ∈ [t0, T ].

Proof. Define
J(t) := K(t)− I(t), ∀t ≥ t0.

Then, by assumption J(t0) = K0 − I0 > 0 and by continuity there is t1 > t0 such that
J(t) > 0 for each t ∈ [t0, t1]. Define

t̄ := sup {t0 < t ≤ T : J(s) > 0, ∀s ∈ [t0, t]} .
Next, we show that t̄ ≥ T . Assume by contradiction that t̄ < T . Then we have J(t̄) = 0
that is I(t̄) = K(t̄) so that by (5.2)

J ′(t̄) = K ′(t̄)− I ′(t̄) ≥ ηI(t̄)− (1− α1)β3W (t̄) = ηK(t̄)− (1− α1)β3W (t̄) > 0.

This means that J is locally strictly increasing from t̄ which contradict the definition of
t̄. �

Remark 5.2. Let us note that condition (5.2) can be used in practice. Indeed 1/η is known
and (1−α1)β3W (t) is the flux of new monitored individuals which is bounded above by
the daily number of COVID-19 positive tests. Since K(t) is a controllable quantity, the
condition (5.2) may serve to anticipate an overwhelming over time.
It is important to note that in the above Lemma, we do not require K(t) to have logistic
growth. We only require K(t) to be an increasing function.

6. Machine learning for forecasting

In this section, we present a machine learning approach for the forecasting of the cu-
mulative number of confirmed cases C(t). First, we collect the pandemic data from [13],
from March 02, 2020, to October 22, 2020. Then, we perform a forecast with Prophet to
predict the final size of coronavirus epidemy
The numerical tests are performed by using Python with the Panda library [20], and
were executed on a computer with the following characteristics: intel(R) Core-i7 CPU
2.60GHz, 24.0Gb of RAM, under the UNIX system.

6.1. Prophet model

Prophet [19, 22], is a procedure for forecasting time series data based on an additive model
where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday
effects. It works best with time series that have strong seasonal effects and several seasons
of historical data. Prophet is robust in dealing with missing data and shifts in the trend
and typically handles well outliers. For the averaging method, the forecasts of all future
values are equal to the average (or “mean”) of the historical data. If we let the historical
data be denoted by y1, ..., yT , then we can write the forecasts as

ŷT+h|T = ȳ = (y1 + y2 + ...+ yT )/T

The notation ŷT+h|T is a short-hand for the estimate of yT+h based on the data y1, ..., yT .
A forecasting interval gives an interval within which we expect yt to lie on, with a specified
probability. For example, assuming that the forecast errors are normally distributed, a
95% forecasting interval for the h-step forecast is

ŷT+h|T ± 1.96σ̂h
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where σh is an estimate of the standard deviation of the h-step forecast distribution.

6.1.1. Diagnostics. Here, we make some diagnostics by using the cross validation (see
Table 3) and the performance metrics (see Table 4) using mse, rmse, mae and mape.
The Figure 15 illustrate these cross validation metrics, making 10 forecasts with cutoffs
between 2020-10-08, 00:00:00 and 2020-10-17, 00:00:00 (initial=’220 days’, period=’1
days’, horizon = ’5 days’).

(a) mape (b) mae

(c) rmse (d) mse

Figure 12. Senegal: cross validation metrics

ds ŷ ŷlower ŷupper y cutoff
2020-10-09 15495.491181 15364.133271 15630.001589 15213 2020-10-08
2020-10-10 15549.266664 15412.256057 15684.595605 15244 2020-10-08
2020-10-11 15596.622824 15460.701411 15730.823401 15268 2020-10-08
2020-10-12 15635.801860 15501.234167 15775.220030 15292 2020-10-08
2020-10-13 15666.025418 15524.679008 15804.770389 15307 2020-10-08

Table 3. Senegal: cross validation

From Table 3, by comparing the values obtained on October 13, 2020 (column y=15307)
with the predicted one (column ŷ=15666.025418), we see that the error is 2.29%. The
predicted value is always within the confidence interval. So, Prophet seems to give us
good value.



Analysis of COVID-19 evolution in Senegal: impact of health care capacity 15

horizon mse rmse mae mape
1 days 52758.210719 229.691556 227.994396 0.014891
2 days 61956.779147 248.911187 247.169729 0.016120
3 days 70940.217291 266.346048 264.104073 0.017201
4 days 81284.637112 285.104607 282.785870 0.018392
5 days 93627.316861 305.985812 303.367943 0.019704

Table 4. Senegal: performance metrics

6.1.2. Trend changepoints and forecasting. The rmse for Prophet Model is 53.358002.
The Prophet forecasting of confirmed cases, with trend changepoints, is given by Figure
13, and the trends and weekly increase are given by Figure 14.
With Prophet, at ∼ November 12, 2020 we may obtain > 16330 confirmed cases and >
16950 confirmed cases at ∼ December 01, 2020 (see Tables 5 and 6, respectively). The
forecastes of confirmed cases are illustrated in Figures 15a and 15b.

Figure 13. Senegal: changepoints of confirmed cases

ds ŷ ŷlower ŷupper

2020-11-08 16213.793455 15776.476419 16625.216492
2020-11-09 16237.542798 15730.499926 16673.834380
2020-11-10 16254.670226 15734.183777 16750.503940
2020-11-11 16297.865380 15743.971264 16792.203760
2020-11-12 16335.788237 15755.096121 16875.197916

Table 5. Prophet: predicted cumulative confirmed cases ∼November
12, 2020.
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Figure 14. Senegal: Trends and weekly indrease of confirmed cases

ds ŷ ŷlower ŷupper

2020-11-27 16841.363557 15724.240087 17997.233129
2020-11-28 16878.418793 15728.625383 18059.596350
2020-11-29 16911.177665 15665.479745 18162.293121
2020-11-30 16934.927009 15683.579005 18193.215306
2020-12-01 16952.054437 15654.901112 18268.706253

Table 6. Prophet: predicted cumulative confirmed cases ∼December
01, 2020.

(a) 3 weeks forecasting (b) 40 days forecasting

Figure 15. Senegal: Prophet for forecasting of confirmed cases
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