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A FRACTIONAL HADAMARD FORMULA AND APPLICATIONS

SIDY MOCTAR DJITTE, MOUHAMED MOUSTAPHA FALL, TOBIAS WETH

ABSTRACT. We consider the domain dependence of the best constant in the subcritical
fractional Sobolev constant,

Aep(Q) = inf {[ulregany, w € CZ(Q), Jullorio =1},

where s € (0,1), Q is bounded of class C"' and p € [1,25-) if 25 < N, p € [1,00)
if 2s > N = 1. Explicitly, we derive formula for the one-sided shape derivative of the
mapping Q +— A p(Q2) under domain perturbations. In the case where A, ,(2) admits a
unique positive minimizer (e.g. p = 1 or p = 2), our result implies a nonlocal version of
the classical variational Hadamard formula for the first eigenvalue of the Dirichlet Laplacian
on 2. Thanks to the formula for our one-sided shape derivative, we characterize smooth
local minimizers of Asp(€2) under volume-preserving deformations, and we find that they are
balls if p € {1} U [2, 00). Finally, we consider the maximization problem for A ,(£2) among

annular-shaped domains of fixed volume of the type B \EI, where B is a fixed ball and B’ is

ball whose position is varied within B. We prove that, for p € {1,2}, the value X; ,(B\ B)
is maximal when the two balls are concentric.

1. INTRODUCTION

Let s € (0,1) and © a bounded open subset of RY of class C!''. The best constant in the
subcritical fractional Sobolev inequality is given by

)\s,p(Q) := inf {[uﬁ{S(RN)y UAS /H(S)(Q)v ||u||Lp(Q) = 1} 5 (11)

where p € [1, <2 No5s 2 ) if 2s < N and p € [1,00) if 2s > N = 1. Here and in the following, we
consider the square of the fractional seminorm

bN,s (u(z) = u(y))?
2 P )
[U]HS(RN) - 2 /]RNX]RN ‘.’L’— ‘N+2s dmdy,

where the normalization constant is given by

N
—N/243M
re2-s)’
so that [u]? o (V) = [ [€7%]0(€)[*d€ with @ the Fourier transform of u. Moreover, H§(f) is

defined as the space of functions w € H*(RY) with w = 0 on R \ Q. We note that, since
2 has a continuous boundary by assumption, the space H{(§2) is equivalently given as the
closure of C°(Q2) in H*(RY), see e.g. [15, Theorem 1.4.2.2].

bns =s(l—s)m (1.2)
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Thanks to the compact embedding H{(€2) — LP(2), a direct minimization argument shows
that A ,(€2) admits a positive minimizer u € H{(€2) with |lu[[z»q) = 1. Moreover, every such
minimizer solves, in the weak sense, the semilinear problem

(—A)u = A p(QuP~!  in Q and u=0 inRY\Q, (1.3)

where (—A)® stands for the fractional Laplacian. Recall that for smooth functions ¢ €
o ’I(RN ), the fractional Laplacian is given by

—A — vV P ¥ b s 290:E—<,0:E—|— — plxr —
( yole) = bwP /RN |33(—)y|NJE§/8) dy ];7 /RN . (|y|Ni/2)8 ( . .
(1.4)

Of particular interest are the cases p = 1 and p = 2 which correspond to the fractional torsion
rigidity problem and the first Dirichlet fractional eigenvalue problem, respectively. In these
cases Agp(§2) possesses a unique positive minimizer.

Our goal in this paper is to derive a formula for a one-sided shape derivative of Q — X, ,(€2).
More precisely, we consider a family of deformation ®., e € (—1,1) with the following prop-
erties:

®. € CVYRN;RY) for € € (—1,1), g = idgn, and
the map (—1,1) — COYRY RY), & — @, is of class C2.

We note that (L5 implies that ®. : RY — RY is a global diffeomorphism if |¢| is small
enough. From the variational characterization of Ag,(£2) it is not difficult to see that the
map € — s p(P(e,9)) is continuous. However, since A ,(£2) may not have a unique positive
minimizer, one cannot expect this map to be differentiable. We therefore rely on determining
the right derivative of € — A;,(P(e,Q)) from which we derive differentiability whenever
As,p(€2) admits a unique positive minimizer, thereby extending the classical Hadamard shape
derivative formula for the first Dirichlet eigenvalue.

In this paper, we consider a function §, which coincides with the signed distance function
dist(-, RN \ Q) — dist(-, ) in a neighborhood of Q. Moreover, we suppose that d is positive
in Q, negative in RV \ Q and § € CHL(RY).

(1.5)

Our first main result is the following.

Theorem 1.1. Let A; ,(Q2) be given by (L)) and consider a family of deformations ®. satis-
fying (LX). Then the map € — 6(e) := A5 p(P(Q)) is right differentiable at € = 0. Moreover

9,6(0) = min {m +5)2 /m

where v denotes the interior unit normal on 0N, H is the set of positive minimizers for
Asp(R), and X = 8E‘E:0<I>€.

(w/0°)*X -vdz, ue€ 7-[} ; (1.6)

Here the function u/é° is defined as a limit. Namely for xg € 09,
5—72(:50) = lim %(m).
e

We point out that, on 0f2, the interior unit normal v coincides with V§. We also note that
u/6® € C*(Q), for some a > 0, see e.g [22]. Moreover the expression u/d*, restricted on
092, plays the role of a normal derivative, compared to the local case. In fact, we have that
§175Vu - V6 = su/d* on 05, see [9].

A one sided shape derivative in the case of degenerate eigenvalue was recently obtained in [10],
where the authors considered the first nonzero Neuman eigenvalue which is not in general
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simple. We observe that the constant I'(1 + s)? appears also in the fractional Pohozaev iden-
tity, see e.g. [23]. This is, to some extend, not surprising at least in the classical case since
Pohozav’s identity can be obtained using techniques of domain variation, see e.g. [26].

A natural consequence of Theorem [[LT]is that the map € — 0(c) := \s ,(®(e,Q?)) is differen-
tiable whenever A ,(£2) admits a unique positive minimizer. Indeed, applying Theorem [IT]

to the map € — 0(g) := X ,(P(—¢,Q)) yields

d_6(0) = —9,6(0) = max {F(l + 8)2/ (w/6°)X -vdzr, ue ’H} .
o0
As a consequence, we obtain the following result.

Corollary 1.2. Let A;,(Q2) be given by (1) and consider a family of deformations ®.
satisfying (L5)). Suppose that \s () admits a unique positive minimizer u € H*(RN). Then
the map € — 6(c) := A p(®(e,Q)) is differentiable at € = 0. Moreover

G(0) = T(1 + 5)2 /m(u/asfx vz, (1.7)

where X := 0.9(0,-).

As mentioned earlier, for p = 1 or p = 2, A;,(2) admits a unique positive minimizer
u € H*(RY). Therefore Corollary extends the classical Hadamard formula, for the
first Dirichlet eigenvalue Aj2(€2), in the fractional setting. We recall, see e.g. [17], that
the Hadamard formula, is given by
a A2(®(g,Q)) = / |Vul|?X - vdz. (1.8)
dele=0 7 o0
We point out that, prior to this paper, a Hadamard formula in the fractional setting of the
type (L) was obtained in [7] for the special case p = 1, s = %, N =2 and Q of class C.
We are not aware of any other previous work related to Theorem [Tl or in the fractional
setting. An analogue of Corollary [L.2] for the case of the local p-Laplace operator was obtained
in [2114].
Our next result provides a characterization of local minima of Q — As ().

Corollary 1.3. Let p € {1} U[2,00). Suppose that Q, an open set of class C3, is a volume
constrained local minimum for Q w— As ,(2). Then Q is a ball.

Here we call 2 a constrained local minimum for Q — X ,(Q) if for all families of deformations
. satisfying (LH) and the volume invariance condition |®.()| = || for e € (—1,1), there
ezists g € (0,1) such that As ,(P(g,82)) > A () for e € (—eo,€0).

Corollary [[3lis a consequence of Theorem [[L1] from which we derive that if €2 is a constraint
local minimum then any element u € H satisfies the overdetermined condition u/é* = Const
on 0f. Therefore by the rigidity result in [13] we find that © must be a ball.

We recall that the authors in [7] considered also shape minimization problem of A, for p =1,
5= %, N = 2 and among domains  of class C*°. They showed in [7] that such minimizers
are discs.

Next we consider the optimization problem of Q — A ,(Q2) for p € {1, 2} and © a punctured
ball, with the hole having the shape of ball. We show that, as the hole moves in € then X, ,(€2)
is maximal when the two balls are concentric. This problem was first solved by Hersch [I8] in
the case s = 1 and N = 2; for subsequent generalizations in the local case s = 1; see [516120].



4 A FRACTIONAL HADAMARD FORMULA AND APPLICATIONS
Theorem 1.4. Let p € {1,2}, B1(0) be the unit centered ball and T € (0,1). Define
A:={a € B;(0) : B;(a) C B1(0)}.

Then the map A — R, a+— Asp(B1(0) \ Br(a)) takes its maximum at a = 0.

The proof of Theorem [[.4] is inspired by the argument given in [16,20] for the local case
s = 1. It uses the fractional Hadamard formula in Corollary and maximum principles for
anti-symmetric functions. Our proof also shows that the map a +— A; ,(B1(0) \ B-(a)) takes
its minimum when the boundary of the ball B;(a) touches the one of B;(0), see Section
below.

The proof of Theorem [[Tlis inspired by [10]. It is mainly based on the use of test functions
in the variational characterization of A5 ,(£2) and A ,(®(g,2)). In the case of A\ ,(®(e,2)), it
is important to make a change of variable so that As ,(®(e,€2)) is determined by minimizing
an e-dependent family of seminorms among functions u € H*(R") vanishing outside the fixed
set €1, see Section 2] below. An obvious choice of test functions are minimizers v and v, for
Asp(2) and g p(®(e,Q2)), respectively. However, due to the fact that u is only of class C*
up to the boundary, we cannot obtain a boundary integral term directly from the divergence
theorem. In particular, the integration by parts formula given in [23] Theorem 1.9] does not
apply to general vector fields X which appear in (L.6)). Hence, we need to replace u with fku,
where (j, is a cut-off function vanishing in a %—neighborhood of 0€Q). This leads to upper and
lower estimates of As ,(®(e,2)) up to order o(e), where the first order term is given by an
integral involving (—A)*({xu) and V((xu). We refer the reader to Section @ below for more
precise information. A highly nontrivial task is now to pass to the limit as & — oo in order
to get boundary integrals involving ¢ := u/0®. This is most difficult part of the paper. We
refer to Proposition 2.4] and Section [6 below for more details.

The paper is organized as follows. In Section 2, we provide preliminary results on con-
vergence properties of integral functional, inner approximations of functions in H{(€2) and
on properties of minimizers of (I.I]). In Section [3] we introduce notation related to domain
deformations and related quantities.

In Section ] we establish a preliminary variant of Theorem [I.J] which is given in Propo-
sition @Il In this variant, the constant I'(1 + s)? in (L6) is replaced by an implicitly given
value which still depends on cut-off data. The proofs of the main results, as stated in this
introduction, are then completed in Section Bl Finally, Section [f] is devoted to the proof of
the main technical ingredient of the paper, which is given by Proposition 2.4

Acknowledgements: This work is supported by DAAD and BMBF (Germany) within
the project 57385104. The authors would like to thank Sven Jarohs for helpful discussions.
M.M Fall’s work is supported by the Alexander von Humboldt foundation.

2. NOTATIONS AND PRELIMINARY RESULTS

We start with an elementary but useful observation.

Lemma 2.1. Let p € L®(RYN x RY), and let (vi,)i be a sequence in H*(RN) with v, — v in
H*(RN). Then we have

lim

(wi(@) = o) w@y) , o [ (@) = o(y) ulz,y)
k—oo Jpan - ’x_k::y’N+2S d:Edy—/RQN dxdy.

|z — y|N+2s
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Proof. We have
[ ) = = Ol) o)
R2N

|z — y|N+2s

< |l o /RQN (v () — v (y))? — (v(x) — v(y))2’d:17dy,

‘Z’ _ y‘N+2s

where

[ o)l le) = o,
R2N

|z — y|N+2s

[ lote) = vt~ ) =oe(e) ot = 0x0) + N,
R2N

|z — y|N+2s

2
< — vk — Vg @™y [k + V] gy — 0 as k — oo.
bN,s

O

Throughout the remainder of this paper, we fix p € C°(—2,2), with0 < p <1, p=1on
(—1,1), and we define

Ct)y=1—=p(t), pr(t)=pkt) and ((t) =1— pr(t) fort e R, k € N. (2.1)

Lemma 2.2. Let Q C RY be a bounded Lipschitz domain and let u € H{ (). Moreover, for
ke N, let u, € H§(?) denote inner approzimations of u defined by ux(z) = u(x)((6(x)) for
xz € RN, Then we have

Up — U in H(RYN).

Proof. In the following, we let 8 := pp 06 : RV — R for k € N. Moreover, the letter C' > 0
stands for various constants independent of k. Clearly, it suffices to show that

uf € Ho(2) for k sufficiently large and [uBk] s rrvy — 0 as k — oo. (2.2)

For ¢ > 0, we put A, = {z € Q : §(z) < }. Since uf vanishes in]RN\Az 0<pBr<1on
RN and |8 (z) — Br(y)| < len{k]a: - \ 1} for x,y € RN, we observe that

1 u(y)Br(y))
i) = /RN/RN e

u(y)Bu(w)]” o
/A4 /4 \x—y]N”s kY aiyd:zH—/A2 u(z)? B (x)? /RN\AA% 1z — y| 7N dydz

k

— Br(y)) + Bry) (ulz) —u(y))]?
=3 /A4 /A4 |z — y|N+2s dyd
+C u(z)?dist(z, RN\ A4)"2dx (2.3)
As k
) (Br(x) — Bi(y))? (u(@) —u(@)?,
< /A w(e) /A g Wt /A /A gz W

+C/A u(x)2672% (x)dx

o
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<C/<;2/ uz(az)/ |z — y|?72 Ndydx—i—C/ / lz — y| N "2 dydx
By (x) Ag RM\B ()

1
k

/A /A ]g;_y’N+2)s) dydz + C y w(x)?6™% (z)dx (2.4)

§C’k:28/ dm—l—/ / ))ddx—l—C/ w(z)267% (x)dx
Ay A4 % ‘x_y‘N+2s A% ( ) ( )

k

<0/ )6 % (x d:z:+/ / ()? ~ 7 dydx. 2.5
% A4 A4 |N+2s ( )

Now, since 2 has a Lipschitz boundary, using fRN\Q |z —y|~N"25 dy ~ §7%(x) see e.g [3], we

get
/ 2(0)6-2 () da <c/ /RN\Q YN dyde < Cluly vy,

and therefore
/ u?(2)d7%% (x)dz — 0 as k — oo. (2.6)
Ay

Moreover, since also

2 2
[ vt <

/A /A = y|N+2)) dydr — 0 as k — oo. (2.7)
4 4

Combining (2.5)), (2.6]) and (IZH), we obtain (2.2)), as required. O
From now on, we fix a bounded C''-domain Q C RY, and we let
Co@)={weC*Q):w=0 in R¥\Q}.
We recall the following regularlty properties for (positive) minimizers for A ,(2).
Lemma 2.3. Let u € H§(Q) be a positive minimizer for Asp(2). Then v € C*(2) N

C§(Q). Moreover, ¢ = 4 € C*(Q) for some a € (0,1), and there exists a constant ¢ =
¢(N,s,Q,a,p) > 0 such that

we have

[Vl e < c (2.8)
and
|V (x)| < e6 () for all x € Q. (2.9)

Proof. By standard arguments in the calculus of variations, u is a weak solution of (L3).
By [24, Proposition 1.3] we have that u € L>*(2). Then u € C*(Q2) follows by interior
regularity theory (see e.g. [2I]) and the fact that the function ¢ + tP~! is of class C™ on
(0,00). Moreover, the regularity up to the boundary u € C§(Q) is proved in [22], where also
the C*-bound for the function 9 := 45 is established for some o > 0. Finally, ([2.9)) is proved
in [9]. O

The computation of one-sided shape derivatives as given in Theorem [I.1] will be carried
out in Section [ and it requires the following key technical proposition. Since its proof is
long and quite involved, we postpone the proof to Section [6] below.
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Proposition 2.4. Let X € CO(Q,RY), and let u € C§(Q) N CH(Q) be a function such that
V= 5 : Q — R satisfies 2.8) and 23). Moreover, put Uy, := u[(x 0 6] € CHY Q). Then

lim /QVUk : X<u(—A)s[(k 0 6] — I(u,C o 5)) de = —ks | V’X -vdz,

k—00

o0
where
e e — /R W) =AY R dr  with h(r) = r.C(r) = max(r,0)°C(r),  (2.10)
and where we use the notation
T(w,0)(z) = by /R ) _’z(f);%(fg; @) 4, (2.11)

foru € C3(RY), v € COYRY) and z € RV.

Remark 2.5. The minus sign in the definition of the constant ks in (210 might appear a
bit strange at first glance. We shall see later that, defined in this way, ks has a positive value.
A priori it is not clear that the value of ks does not depend on the particular choice of the
function ¢. This follows a posteriori once we have established in Proposition [{.1] below that
this constant appears in Theorem [L1l. This will then allow us to show that ks = L;FSF by
applying the resulting shape derivative formula to a one-parameter family of concentric balls,
see Section [3 below. A more direct, but quite lengthy computation of ks is possible via the
logarithmic Laplacian, which has been introduced in [{]].

3. DOMAIN PERTURBATION AND THE ASSOCIATED VARIATIONAL PROBLEM

We fix amap @ : (—1,1) x RN — R satisfying (L5)). Moreover, for € € (—1,1), we write
®.(z) = ®(e,z). As in the introduction, we then define 2, = ®.(€2). In order to study the
dependence of X, ,,(€2.) on ¢, it is convenient to pull back the problem on the fixed domain

via a change of variable. For this we let Jace, denote the Jacobian determinant of the map
. € CH(RYN), and we define the kernels

._ Jace, (x)Jace. (y) B 1
K€(x7 y) L bN,S|¢€($) o ée(y)|N+2s and KO(IE7 y) - bN,S|$ _y|N+2s (31)

Then (LA gives rise to the well known expansions

Jace, (z) = 1 + edivX (z) + O(e?), d-Jace, () = divX(z) + O(e) (3.2)
uniformly in z € RY, where X := 8€|€:0<I>€ € COY(RY;RY) and therefore div.X is a.e. defined
on RY. From (5], we also get

—N-2s —N-2s L —

@< () = D=(y)[ VT = o -y <1 + 2f:ﬁ Py (z,y) + O(s%) :
and
x J—

0L10.(a) = 0.()| 2 = o = oV (2.

uniformly in z,y € RV, x # y with

Px € L®RY x RY), Px(z,y) =
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Moreover by ([3.2) and the fact that 9.®., X € C%'(RY), we have that

Ke(w,y) = Ko(w,y) +€0:|_ Ke(w,y) + O(*)Ko(w,y), (3.3)
and
O0-Ke(w,y) = 0| _ Ke(z,y) + O()Kolz, y), (34)
uniformly in z,y € RV, x # y, where
0| Kelw,y) = [(N—|—2s)ﬁ - Px(a,y)—(divX (z) + dvX ()| Ko(z,y).  (3.5)

In particular, it follows from (B3] and ([B.5]) that there exist g9, C' > 0 such that
1
5K0(a:,y) < K. (z,y) < CKy(x,y) for all z,y € RN, 2 # y and € € (—£¢,20).  (3.6)

For v € H*(RY) and ¢ € (—¢g,¢0), we now define
1
V)= 5 [ (0@~ 0(0)* Kooy dady. (37
R2N

Then, by (L)), (I5) and a change of variable, we have the following variational characteri-
zation for A ,(€):

Aop = Asp(e) = inf{[u]és(RN) s € H(Qe), |ulP dx = 1}

Qe
= inf {Vv(e) s v € HH (D), / |v|PJace, (x) dr = 1} for € € (—eo,0). (3.8)
Q

As mentioned earlier, we prefer to use (B8] from now on where the underlying domain is
fixed and the integral terms depend on ¢ instead. It follows from (B.3)) and (3.4) that, for
given v € H*(RY), the function V, : (—¢,e) — R is of class C' with

Vi) =5 [ (@) = o)oKl y)dady, (39

2
where 8€‘€:0K€(x,y) is given in (3.5,
V.(0)| < C[U]%IS(RN) with a constant C' > 0 (3.10)
and we have the expansions

Vo(e) = Vu(0) +eVi(0) + O Wl mnys Vile) = V(0) +O()[0lfpemny  (3.11)

with O(e), O(¢?) independent of v. From ([B.2)), (3.6) and the variational characterization
(3.8)), it is easy to see that

1
c < )\;p <C for all € € (—ep,e0) with some constant C' > 0.
Using this and (3.2]), (3:6]) once more, we can show that
1 1
c < vellpr) < C and c < ”'Ua”Hs(RN) <C. (3.12)

for every e € (—ep,e0) and every minimizer v, € H{(Q) for (B.8)) with a constant C' > 0.
The following lemma, is essentially a corollary of Lemma 2,11



A FRACTIONAL HADAMARD FORMULA AND APPLICATIONS 9

Lemma 3.1. Let (v), be a sequence in H*(RN) with vy, — v in H*(RY). Then we have
klim Vi (0) = V,(0) and lim V{)k (0) = V. (0).
—00

Proof. The first limit is trivial since V,(0) = [v]3,, (RN for v € H*(RY). The second limit
follows from Lemma 21} (5] and ([33) by noting that u € L>®(RY x RY) for the function

w(x,y) = (N + 2s) Ty - Px(z,y) — (divX(z) + divX(y)).

|z — yl

4. ONE-SIDED SHAPE DERIVATIVE COMPUTATIONS

We keep using the notation of the previous sections, and we recall in particular the varia-
tional characterization of A{ , given in (3.8]). The aim of this section is to prove the following
result.

Proposition 4.1. We have
o )\ip:inf{mfs/ (u/és)zX-ydx,uEH},
e=0 " o0

where H is the set of positive minimizers for Agp = A p(), X = 8€|E:0<I>5 and kg s given
by (2.10).

The proof of Proposition ] requires several preliminary results. We start with a formula
for the derivative of the function given by (B.7)).

Lemma 4.2. Let U € Co'(Q). Then
V(0)=—-2 [ VU X(—A)*Udx. (4.1)

RN
Proof. By (B.5) and (3.11)),

o) =— 2N [ () — 0y p B RO g

1

+ 3 / (U(z) — U(y))*Ko(x, y)(divX (z) + divX (y))dzdy.
R2N

Using that V|z|™V 2% = —(N + 2s)z|2|7V 2572 and the divergence theorem, we obtain

Vi (0) = —(N 4 28)by s (z—y) (X(z) — X))

1'm/ Uz) —U(y))? dzdy
2 p=0 \x—y\>u( ) ) |z — y|NF+2st2

45 [, W) = Uw)PKole,p)(dvX @) + divX (y)dady
R2N

=5 lm (U(2) = Uy))* Kolw, y)(divX (z) + divX (y))dady
H=0 Jz—y|>p

- lim o (U(x) = Uy)(VU(z) - X(2) + VU(y) - X(y)) Ko(z,y)dzdy
T—yY|>p

y—x
T lim /R ) /| W) U)X ) Ko, ) doty) da

H=0 |z — |

45 [ @) = V) Kolo,)(divX (z) + divX (y))dady.
R2N
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We thus get
VO =~ lim [ (U6 - U@)TUE) X+ TUG) - X)) Ko vy
T—Y| >
. 2 y—x
whim [ 00 U@ X)) () do s

= —2}1}_}1110 RN(—A)ZU(J;)VU(&;) - X(z)dx

w7 ] 0 U)X @) - X)) - Do) e (12

where

(—A)5U(x) = by,s / Un(@) — Urly)

o—yl>p T — Y[V
bn,s 2Ux (%) — Ug(z —y) — Uz + y)
= / HiaE dy. (4.3)
lyl>n Yy

Using that U, X € C%(RY), we find that
‘/l | (U(z) ~U)*(X(z) = X(y)) - (y — 2) do(y)| < Ou"*?
a—yl=p

with a constant C' > 0 independent of x. Moreover, since U is compactly supported in {2,
setting N,(Q) := {z € RN : §(z) > —u} for u > 0, we conclude that

/]RN /| = (U(.Z') - U(y))Q(X(x) — X(y)) . (y _ LZ') dO’(y) de

—[ [ 0@ - U)X @) - X)) - (5 2)doly) = O asp 0,
N2u(Q) Jz—yl=p
Going back to ([4.2]), we thus see that
Vi (0) = —2 lim (=A)U(z)VU(2) - X (). (4.4)
u—0 JpN
On the other hand, since U € C2(€2), we have that
sup [[(=A),Ulpe@mny <oo and VU-X € c% (),
ne(0,1)
so we can apply the dominated convergence theorem to obtain
lim (=A)U(z)VU(z) - X(v)dz = / (=AU (2)VU(x) - X (z) dx.
u—0 JpN RN
Combining this with (44]), we obtain the claim. O

We cannot apply Lemmald.2]directly to minimizers u € H§(£2) of A ,(€2) since these are not
contained in C2'(€). The aim is therefore to apply Lemma to Uy := u[(y 0 0] € Co(Q)
with ( given in (2J]) and to use Proposition 24l This leads to the following derivative
formula which plays a key role in the proof of Proposition .11

Lemma 4.3. Let u € H§(Q2) be a positive minimizer for \s ,(2). Then we have
2X ()

Vi(0) = 7/ uPdiv X dx + 2/45/ (u/6°)*X - vdx.
p Q o0
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Proof. To simplify notation, we put @i := (06 for £ € N. By Lemma [2.3] and since €2 is

of class C11, we have Uy, := ugpy, € Ca'(Q) C HE(Q) for k € N, and Uy, — u in H5(RY) by

Lemma Consequently, V/,(0) = klim V5, (0) by Corollary 311 so it remains to show that
—00

2X5.(2
lim Vy;, (0) = 2hsp() / uPdivX dx + 2/43/ (u/6°)*X - vdx. (4.5)
k—o0 p Q Zlo)

Applying Lemma to Uy, we find that
Vi, (0) = =2 VU, - X(—=A)*Updx  for k € N.
RN

By the standard product rule for the fractional Laplacian, we have (—A)*U, = u(—A) ¢k +
or(—A)u — I(u, pr) with I(u, @) given by (ZI1). We thus obtain

Vi, (0) = —2/ VU - Xop(—A)’udx — 2/ (VU - X|u(—=A) ¢ dz (4.6)
RN RN
+2 VU - X1(u,pr)dz
RN

- —2As,p(9)/ VU - Xl L de —2 | VU X<u(—A)S<pk — I(u, cpk)> dz,
Q

RN

where we used that (—A)Su = A ,(Q)uP~! in Q. Consequently, Proposition 2.4 yields that
lim Vj;, (0) = —2X,(Q) lim | VU, - XopuP™'da + 26 [ *X -vde.  (4.7)
k—o0 k—oo Jq 90

Moreover, integration by parts, we obtain, for £ € N,
1
/ VU, XppuP~tde = ~ / VuP - X2 dx + / Vi - XppuP dr
Q pJa Q

1 2
= ——/ uPdivX s dr — —/ uPor X - Vi dx +/ Vi - XppuP de. (4.8)
pPJa b Ja Q
Since uP € C§(Q) by Lemma 23 it is easy to see from the definition of ¢y that the last two
terms in (4.8) tend to zero as k — oo, whereas

lim [ wPdivXy;de = / uPdivX dx.
Q

k—oo Jo
Hence
kli_)n(f)lo/QVUk - XopuPde = —% /Q uPdivX dz.
Plugging this into (4.7, we obtain (L5l), as required. O

Our next lemma provides an upper estimate for 9

15
€:0A57p.

Lemma 4.4. Let u € H§(QQ) be a positive minimizer for /\gm = A5 p(Q2). Then
€ 0

A
limsup% §2/~£s/ (u/6%)2X - vdx. (4.9)
o0

e—0+

Proof. For € € (—ep,0), we define

2/p
jle) = B—U(S) for k €e Nwith 7(¢) := </Q |ulPJace, () da:) .
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By (B.8), we then have A , < j(¢) for € € (—ep,€0). Moreover,

2P 2 _ o Yu(0)
7(0) = ”uHLpp(Q) =1, Wu(0) = [U]HS(RN) = )‘Sm(Q) and j(0) = 7(0) = )‘s,p7
which implies that
of|_ s i@ =20 [ (w/spx v,
e=0 7 o0
by Lemma [4.3] as claimed. O
Next, we shall prove a lower estimate for 97 0)\;!,.
e=
Lemma 4.5. We have
X — )0
liminf 22— %P > ipf {2/63/ (w/6°)2X -vdx : u € ’H} .
e\O0t 3 oN
Proof. Let (e,)n be a sequence of positive numbers converging to zero such that
en _ )0 AE — )\
lim —#—=F = liminf —£—>F. (4.10)
n—o0 g e\,0t g

For n € N, we let v,,, be a positive minimizer corresponding to the variational characterization
P . .
of A\57, given in (3.8, i.e. we have

en _
Aoy = Ve,

(en) and / vl Jace,, dv = 1. (4.11)
Q

Since v, remains bounded in H§(2) by [BI2), we may pass to a sub-sequence such that
Ve, — u in H{(Q2) for some u € H(Q2). Moreover,v., — u in LP(2) as n — oo since the
embedding H;(Q) — LP(QQ) is compact. In the following, to keep the notation simple, we

write ¢ in place of ¢,. By (BI1) and (£IIl), we have
Vi (0) =V, (€) — 6VLE (0) + 0(62)[1)5]?{5([&1\;) =A5p— 5V{,E(0) + O(e?) (4.12)
and therefore

Vu(o) = [u]%{s(RN) < lilen_jélf[%]?qs(RN) = hIEn_Eélf V'Us (O) < limj(l)lp )\i,p < )\(s],p7 (4'13)
€

where the last inequality follows from Lemmald4l In view of ([8.2]) and the strong convergence
ve — u in LP(Q), we see that

1= / vPJace, dr = / VP (1 + edivX)de + O(e?) = / uP dx + o(1) (4.14)
Q Q Q
as ¢ — 0, and hence |lulz»() = 1. Combining this with [I3), we see that u € H is a

minimizer for \Y . and that equality must hold in all inequalities of (@I3). From this we

deduce that S7p,
ve — u strongly in H*(RY). (4.15)
Now (@I2) and the variational characterization of A , imply that
2/p
A, < /Q vgd;n> <V (0) = Agp(Q) — £V, (0) + O(e%) (4.16)
whereas by ([£I4]) we have

/ vdr =1-— 5/ vPdivXde 4+ O(e?) = 1 — 5/ uPdivXdz + o(e)
Q Q ")
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and therefore
2/p 2¢
(/ vé’da:) =1—— | vPdivXdz + o(e). (4.17)
Q P Jo
Plugging this into (£.10)), we get the inequality

2
A, > (1 - f /Q updiVde) A0+ eVl (0) + ofe).

Since, moreover, V,_(0) — V,,(0) as € — 0 by Corollary B.I] and ([@.I5), it follows that

2X9,
—’/updiVde) +o(¢)
Q

e 1O > / _
Xop =A%, = 2 (Vi(0) .

and therefore
2, A0 > %, /a (W/FPX - vdatofe)
by Lemma [£3l We thus conclude that
A — )\0
lim 22 —%P > 2/13/ (u/6°)X - vda.
e—07t € a0
Taking the infinimum over u € H in the RHS of this inequality and using ([4.I0]), we get the
result. (]

Proof of Proposition [{.1] (completed). Proposition ] is a consequence of Lemma [£.4] and
Lemma Indeed, let

A () := inf {2/18/ (w/6°)2X -vdx : u € 7-[} .
o0

Thanks to (2.8) the infinimum A, ,(Q) is attained. Finally by Lemma 4 and Lemma 5] we
get

€ 0

c N )‘s,p - )‘s,p
—0)\5”’ > liminf ——= > A, ,(22).

Aspl) 2 02 e= eN0 €

5. PROOF OF THE MAIN RESULTS
In this section we complete the proofs of the main results stated in the introduction.

Proof of Theorem [I1l (completed). In view of Proposition 1] the proof of Theorem [I.1] is
complete once we show that
2ks = (1 + 5)?, (5.1)
where I' is the usual Gamma function. In view of (2.10), the constant ks does not depend
on N, p and Q, we consider the case N = p = 1 and the family of diffeomorphisms ®. on RY
given by ®.(x) = (1+¢)zx, e € (—1,1), so that X := 8€|€:0<I>€ is simply given by X (z) = x.
Letting Qo := (—1,1), we define Q. = ®.(2) = (-1 — &,1 + ). Moreover, we consider
w: € H§(Q2) NCH([—1 — &,1 + ¢€]) given by
—2s

welm) = (1422 — 22} with (= r(s2+ 1/5)%% 5 (62

It is well known that w, is the unique solution of the problem

(=A)’we. =1 in Q, w. =0 onRY\Q,,
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see e.g. [23] or [13]. Recalling (I.3)), we thus deduce that u. = Ag 1(€2:)w; is the unique positive
minimizer corresponding to (L) in the case N = p = 1, which implies that |[uc| 1) =1
and therefore

s () = llwell gy = (1+6)7 D ol i - (5.3)

Moreover, by standard properties of the Gamma function,
l[woll £ (r _e/ (1 — |z|?) d:p-%/ (1—1r?) dr_e/t—m t)* dt
L(1/2)0(s+1) L(1/2)(s+1) 22T (s+1)?
T T T(s+3/2)  CG+1/2T(+1/2) s+1/2
By differentiating (5.3]), we get

2s+1

0 As1(Qe) = -7 5.4

“le=0 1) [woll 1 (m) (5:4)

On the other hand, by Proposition [4.1] and the fact that ug is the unique positive minimizer
for As 1, we deduce that

16 £2
OF| A1) = =2r4[(u0/8°)*(1) + (u0/8°)* (= 1)] = 27 ¥ ks £2 X1 (Q0)? = —%
e=0 HwOHLl(R)
We thus conclude that
(25 + 1)[Jwol 21 (w) 5
Thus, by Proposition 4.1}, we get the result as stated in the theorem. O

Proof of Corollary[L3. Let h € C*(09), with [, hdz = 0. Then it is well known (see
e.g. [10, Lemma 2.2]) that there exists a family of diffeomorphisms ®, : RN — RN ¢ € (—1,1)
satisfying (L3 and having the following properties:

|®.(Q)] = || for e € (—1,1), and X := ae\ez(]@e equals hv on 0. (5.5)

By assumption, there exists eg € (0, 1) with As p(Pc(2)) > A5 p(2) for € € (—ep,€0). Applying
Theorem [[T] and noting that X - v = h on 092 by (B.5]), we get

min {F(l + 5)? /m(u/és)tha:, u € 7—[} >0

By the same argument applied to —h, we get

max {m + 8)2/ (/5" 2hde, e ’H} <. (5.6)
o0
We thus conclude that

/ (u/6%)2hdx =0 for every u € H and for all h € C3(9Q), with hdz = 0.
o0 o0

By a standard argument, this implies that u/d° is constant on 9€2. Now, since u solves (L3])
and p € {1} U[2,00), we deduce from [I3, Theorem 1.2] that € is a ball. O
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Proof of Theorem [1.7] Consider the unit centered ball By = B;(0). For 7 € (0,1) and t €
(1 — 1,1 — 7), we define B! := B,(te;), where e; is the first coordinate direction. To prove
Theorem [[.4] we can take advantage of the invariance under rotations of the problem and
may restrict our attention to domains of the form Q(t) = B; \ Bf. We define

0:(r—1,1—-71) =R, 0(t) == As p(2(2)). (5.7)
We claim that 6 is differentiable and satisfies
0'(t) <0 fort € (0,1 —17). (5.8)

For this we fix ¢t € (1 — 1,1 — 7) and a vector field X : RY — R given by X (z) = p(z)es,
where p € C2°(B) satisfies p = 1 in a neighborhood of B!. For € € (—1,1), we then define
. : RNV — RN by &_(x) = x + 6eX (), where § > 0 is chosen sufficiently small to guarantee
that @, e € (—1,1) is a family of diffeomorphisms satisfying (I.5]) and satisfying ®.(B1) = By
for € € (—1,1). Then, by construction, we have

o.(Q(t)) = D, (Bl \E) — B1\ B(BY) = By \ BF% = Q(t + 0e). (5.9)

Next we recall that, since p € {1,2}, there exists a unique positive minimizer v € H§(Q(t))
corresponding to the variational characterization (LI of A ,(€2(t)). Hence, by Corollary [I.2]
the map € — A ,(P-(2(¢))) is differentiable at ¢ = 0. In view of (5.9), we thus find that the
map 0 in (5.7) is differentiable at ¢, and

1d u\ 2 U\ 2
0'(t) = =—|  Aep(®(Qt))) =T(1 2/ —) X-vdx=T(1 2/ — d
(0) = 5 | e @O =T+ | (5] Xovde =T+ | (5) vida

(5.10)
by (7). Here v denotes the interior unit normal on 0€(¢) which coincides with the exterior
unit normal to B(t) on 0B(t), and we used that

X =e; on 0B(t), X =0 ondB; =09(t) \ 0B(t)

to get the last equality in (B.I0). Next, for fixed ¢ € (0,1 — 7), let H be the hyperplane
defined by H = {z € RN : z-e; =t},and let © = {x €¢ RN : z-¢; > t} NQ(t). We also
let 7 : RV — RY be the reflection map with respect to he hyperplane H. For z € RV, we
denote Z := ry(x), u(x) := u(Z). Using these notations, we have

0'(t) = T(1 + s)* /E)Bt (%)2 vy dx

—T(1 +s)2/aBtm@ ((g)z () — <%>2(x)> v da. (5.11)

Let w =17 —u € H*(RY). Then w is a (weak) solution of the problem

(=A)w = A p(Q)) T — A\ p(Ut))uP ™ = cpw in O, (5.12)
where
cp = A5 p(Q2)) for p =2,
cp =0 for p=1.

Moreover, by definition, w =% > 0 in H \ ©, and w =% > 0 in the subset [ry(B) N H]\ ©
which has positive measure since ¢ > 0. Using that w is anti-symmetric with respect to H
and the fact that As ,(©) > ¢,, we can apply the weak maximum principle for antisymmetric
functions (see [13] Proposition 3.1] or [19, Proposition 3.5]) to deduce that w > 0 in ©.
Moreover, since w # 0 in RY, it follows from the strong maximum principle for antisymmetric
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functions given in [19] Proposition 3.6] that w > 0 in ©. Now by the fractional Hopf lemma
(see [13| Proposition 3.3]) we conclude that

w u U u U

0>§:§—§ and therefore §<§§0 on 0B; N O.

From this and (5.11]) we get (5.8]), since v; > 0 on 0B; N ©.
To conclude, we observe that the function ¢ — A ,(t) = s ,(2(t)) is even, thanks to the
invariance of the problem under rotations. Therefore the function # attains its maximum
uniquely at ¢t = 0. (]

6. PROOF OF PROPOSITION 2.4]

The aim of this section is to prove Proposition 2.4l For the readers convenience, we repeat
the statement here.

Proposition 6.1. Let X € CO(Q,RY), and let u € C5(Q) N CHR) be a function such that
V= 55 : Q = R satisfies 2.8) and 23). Moreover, put Uy, := u[(j 0 6] € CeY(Q). Then

lim /QVUk : X(u(—A)S[gk o8] — I(u, G0 5)) de = —ry | ¢2X -vdz,  (6.1)

k—o00 o0
where
o = — /R W) (—AYPh(r)dr  with h(r) == 15.C(r), (6.2)
and where we use the notation
T o)@) = [ (ula) = u(w))(0(a) = o(0) Ko(a ) dy (63)

foru € C3(RN), v € COYRY) and z € RV.

The remainder of this section is devoted to the proof of this proposition. For k € N, we
define

g = VU X (u(=A) [0 8] — I(u,Ge08)) = Q>R (6.4)
For € > 0, we put
Qf = {z e RN : |§(x)] < e} and QL ={zecRY:0<d(z)<e} ={r€Q:d(x) <e}
For every € > 0, we then have

lim grdr = 0. (6.5)
k—o0 O\Qe
To see this, we first note that ¢z o 6 — 1 pointwise on RY \ 9Q, and therefore a.e. on RV,
Moreover, choosing a compact neighborhood K C Q of Q \ Q¢ we have

(=A)*[Ck 0 d](x) = bN7s/ 1 — [k 0 0(y)

— "y for x € Q\ QF and k sufficiently large,
rM\K | =y

where |1|;_[C;|<1>§}+(2ys)l < 1+|y?N+23 forz € Q\ Q% y € RY\ K and C > 0 independent of
z and y. Consequently, [[(—A)*[Ck © ]|z (\qs) remains bounded independently of k and
(—A)*[¢k 0 0] — 0 pointwise on Q \ Q° by the dominated convergence theorem. Similarly,
we see that ||I(u, (x 0 6)||fe(@\0<) remains bounded independently of & and I(u,(; o) — 0
pointwise on 2\ Q°. Consequently, we find that

19k || oo (2\@¢) 15 bounded independently of k and g — 0 pointwise on 2\ Q.
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Hence (6.5]) follows again by the dominated convergence theorem. As a consequence,

lim [ grxdr = lim gr(x) dx for every ¢ > 0. (6.6)
k—oo J k—o00 Qs

Let, as before, v : 90 — RY denotes the unit interior normal vector field on Q. Since we
assume that 99 is of class C!, the map v is Lipschitz, which means that the derivative
dv : TOQ — RY is a.e. well defined and bounded. Moreover, we may fix € > 0 from now on
such that the map

U900 x (—g,e) = OQF, (o,7) = ¥(o,r) =0+ rv(o) (6.7)

is a bi-lipschitz map with W(0Q x (0,¢)) = Q5. In particular, ¥ is a.e. differentiable.
Moreover, for 0 < &’ < ¢, it follows from (G.6]) that

lim [ gpdr= hm g dr = lim / / Jacy (o, 7)gr (¥ (o, 7)) drdo
oN

k—oo Jq Qs k—o0

where we define

Jr(o,r) = Jacy(o, %) for a.e. 0 €00, 0<r < ke.

We note that

|7k |l Lo (902 [0,k ”JaC\IjHLoo .) <oo for all k, and
lim Ji (o, ) cy(0,0) =1 for ae. o €08, r>0. (6.9)
k—00
Moreover, we write g = g2(gi — g7) with the functions
R=VU-X, g =u(-A)P[¢od and  gi=1I(u,(o00), (6.10)

which are all defined on Q. We provide estimates for the functions g,g, g,i, g,% separately in the
following lemmas.

Lemma 6.2. Let a € (0,1) be given by Lemmal2.3. Then we have

k51 g0 (o, £)| < O(rsh g psmite forkeN,0<r <ke (6.11)
with a constant C' > 0, and
lim k0o, g) = W (W) [X(0) v(o)] foroed r>0 (6.12)
—00

with the function r — h(r) = r*((r) given in ([6.2)).
Proof. Since u = 1§°, we have
Vu = s6* 1PV + 8°Vip = s6° 1V + 065~ 17)  in Q
by Lemma [2.3] and therefore
VU, = <s< o (kS) + kd¢' o (k6)>¢55_1V5 L OB YY) Q.
Consequently,

[(Vur) 0 W](0,7) = (sC(kr) + kr' (k) (o + rv(@))r* " V(o + (@) + O(r* 1)
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for 0 € 99, 0 < r < & with O(r*~17%) independent of k, and therefore
r r r r s s
R0, 7)) = (5¢() +7¢' () )ilo + v(0)Vo(o + 21(0)) - X (o + Zv(o)k' !
+ Elmsme0(rsm1ite) for 0 € 00, 0 < r < ke.
Since a > 0, we deduce that
_ T .
B0, 2) = (sC(r) +7¢(r) ) $(0) Vo(0) - X (o)™
= h'(r)y(0)X (o) - v(o) as k — oo
for o € 992, r > 0, while
kg0 (o, %)] < C(r*™t 57 for ke N,0<r <ke
with a constant C' > 0 independent of k and r, as claimed. O
Next we consider the functions gi defined in (6.10), and we first state the following estimate.

Lemma 6.3. There exists ¢’ > 0 with the property that

—2s s r C
F=2 (AP G 0(U(o, I < gaes forkeN, 0<r< ke’ (6.13)
with a constant C' > 0. Moreover,
klim k=25 (=A)*[Ck 0 0](F (o, %)) = (=A)*¢(r) foro € dQ, r > 0. (6.14)
—00

Before giving the somewhat lengthy proof of this lemma, we infer the following corollary
related to the functions gi.

Corollary 6.4. There exists € > 0 with the property that
r Cr®

—s 1 /
with a constant C' > 0. Moreover,
lim kg (¥ (o, %)) = (o) (—A)E(r)  for o € AQ, r > 0. (6.16)
— 00

Proof. Since u = ¢0° we have u(¥(o, 1)) = k~* (0 + zv(o))r® for k € N, 0 <r < ke, and

T

kl1_)no10 Eu(¥(o, E)) =(o)r® for o € 0Q, r>0.
Since moreover ||¢||z~(.) < oo, the claim now follows from Lemma by noting that
gh = u(—A)* [y 03], 0
Proof of Lemmal6.3. We start with some preliminary considerations. We define
1
an,s := /szl mdz (6.17)
and we recall that
b san,s = b1 s, (6.18)

where by s is given in (L.2)), see e.g. [I1]. Since 99 is of class C1! by assumption, there exists
an open ball B C RV~ centered at the origin and, for any fixed o € 09, a parametrization

fo : B — 09
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of class C™! such that f,(0) = o and df,(0) : R¥=! — R¥ is a linear isometry. For z € B
we then have

F(0) = f(2) = —dfy(0)z + O(I2])

and therefore

1£(0) = F(2)] = |df+ (0)2]> + O(|2°) = |2|* + O(|z), (6.19)
(f(0) = £(2)) - v(0) = =dfs(0)z - v(o) + O(|2]*) = O(|2]), (6.20)
(6.21)

where we used in (6.20) that df,(0)z belongs to the tangent space 7,09 = {v(o)}*. Here
and in the following, the term O(7) stands for a function depending on 7 and possibly other
quantities but satisfying |O(7)| < C7 with a constant C' > 0. By (6.19]), we can make B
smaller if necessary to guarantee that

50) ~ FE)P > 312 (6:22)

Recalling the definition of the map ¥ in ([6.7) and writing v,(2) := v(f,(2)) for z € B, we
now define

U, :(—g,e) x B— Q°, U, (r,z) = U(fe(2),7) = fo(z) +1V6(2). (6.23)

Then ¥, is a bi-lipschitz map which maps (—¢, €) x B onto a neighborhood of o. Consequently,
there exists ¢’ € (0, 5) with the property that

o —y| > 3¢ for all y € RV \ ¥, ((—¢,¢) x B). (6.24)

Moreover, &' can be chosen independently of o € 99Q. For fixed o € 9Q, r € [0,¢'), we can
now write

(—A)°[Gy 0 0)( (e, )| = bw,s (Ak(e,7) + By(o,)) (6.25)
with
o Cr(r) — G(0(y))
Axloyr) = /1/[,((—575)@) |¥(o,r) — y|NT2s I
and

Ce(r) — Ce(6(y))
By(o,r) = / Y.
k(o) RN\ W, ((—e,)xB) |Y(0,7) — y|VF2s
By (624)) and since r < €, we then have

(o, 7) —y|=|o—y+rv(o) >|o—y|—r > +¢ foryeRY\ U, ((—¢,¢) x B)

lo —yl
3

and therefore

|Bi(o,7)| < / lp(kr) — p(ké(y))]

RMN\W, (=2,e)xB) |P(0,7) —y[NF2s

—N—-2s _N—2¢
< 3N+2s‘p(]m«)‘/ (\a—y! +3€’) dy + (¢') N2 / p(kd(y))| dy
RN RY

< C(Ipthkn)| +1921) < C(Io(kr)] + 7).
Here and in the following, the letter C' stands for various positive constants. Consequently,

klim k=% |By(o, %)] =0 for every 0 € 2, r > 0, (6.26)
—00
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and, since p has compact support in R,
k=2 Bi(o, 1) < Ok~ (|p(r)] + k7" (6.27)

C
—1-2s
ST ok S 1q

Hence it remains to estimate A (o, 7). By definition of ¥, we have
U, (r,0) = Up(r +t,2) = f(0) — f(2) — tre(0) + (r + ) (s (0) — v4(2))

for z € B, r € (0,¢') and t € (—e — r,e — r). Therefore using that (v,(0) — v(2)) - v, (0) =
2|6 (0) — v (2)|? and (6.20), we get

[Uo(r,0) = Uo(r + £, 2)]* = £+ |£(0) = f(2)* + (r + )15 (0) — v (2)/*

= 2t(f(0) = £(2)) - v (0) — t(r + )5 (0) — vo(2)]* +2(r + )(£(0) = £(2)) - ((0) — vr(2))
=2+ 1£(0) = f(2)P +7(r +)|ve(0) — vo(2)?

= 2t(£(0) = f(2)) - o (0) + 2(r + 1) (£ (0) = f(2)) - (v5(0) — vo(2))

=2+ [f(0) = F(2)]° + ao(r,2) + tpo(r,2) = 2+ [f(0) = F(2)* + (t + r)O(|2[*) (6.28)
for z € B, r € (0,¢') and t € (—e — r,e — r), where

4o (1, 2) 1= 12|06 (0) = o (2)” + 2r(f(0) — f(2)) - (o (0) — vo(2))

for ke N, 0<r < ke, oecon.

and
Po(r,2) = r|ve(0) — vo (2)]* + 2(£(0) = £(2)) - (15 (0) — vo(2)).
We note that there exists a constant Cy > 0, depending only on 2, with the property that
4o (7, 2)| < TCol2%,  |pe(r,2)| < Colz|? forz€ B,r € (0,¢)and t € (—e — 71,6 — 1),
By (6.22]), this implies that

[To(r,0) ~ Tolr +1,2)P > 24 (3 — (r+0)C0) 2 = 2 4 (5 (& +1)C0) |2

for z € B, r € (0,¢') and t € (—e — r,e —r) with a constant Cj > 0 depending only on €.

Making &’ > 0 smaller if necessary, we thus have

24 (1 —tCp)|z?
2

t
|U,(r,0) — Wy (r+t,2)> > for € B,r € (0,¢) and t € (—e —r,e — 1)

and therefore
_ N+42s

W0 (r,0) = Wo(r+£,2)| N2 < N4 (24 (1 —1Cy)|22) (6.29)

forze B,re (0,¢')and t € (—e—r,e—r), |t| < C . Moreover, combining (6.19]) and (6.28)
gives

_N+2s
[Wo(r,0) — Uo(r +t,2)| V72 = (2 + |22 + g5 (r, 2) + (J2| +)O(|2)) " 2

= (24 22 4 (2t 0)0(?) (6.30)

for z € B, r € (0,¢') and t € (—e — r,e — r). Moreover, we note that, as a bi-lipschitz map,
W, is a.e. differentiable, and d¥, is given by

dVo(r,2)(r', 2") = [dfs(2) + rdve(2)]2" +1'v5(2) = dfs(0)2" +1'v5(0) + O (r + 1) (I'] + |r'])
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for (r,z) € (0,€') x B, (r',2') € R x R¥=L. Since df,(0) is an isometry and df,(0)v,(0) = 0,
we thus infer that

Jacy, (r+t,2) =14+ 0(r +t+|z|). (6.31)
We now define the kernel K on (0,¢’) x R x B by
Jacy, (r+t,2)|Ua(r,0) — Uy(r +t,2)| V725, te(—e—re—r),
K(rt, z) =
0, tg (—e—mre—r).
(6.32)
We then have that
Alo,r) = / ) / Jacy, (z,7) Ce(r) — Gk () dzdF (6.33)
R . Y W, (r,0) — W, (F, 2)|[ N 25 '

// Cr(r) = Cu(r + 8))K(r, t, 2) dzdt

// (2¢k(r) — Ce(r+1t) — C(r — 1) [K(r, t, 2) + K(r, —t, z)]dtdz
—I-Z/R/B(ﬁk(r+t)—Ck(r—t))[lC(r,t,z)—K(r,—t,z)]dzdt
S P — Colr + 1) — G (r — rt, |tz r,—t, |t|z))dz
Sk /%B(m() Gulr +£) = Gulr — ) (K(r, 1, [t]2) + K, —t, [t]2)) ddt

3 || @l 0= Gt = 00t t2) — Kt 2t

= k2 (S o) + TE(e,)). (6.34)
where, by a further change of variable,
/tN 1/1 (26k(r) = Ge(r +1) = Gel(r = 1)) (K., [t]2) + K(r,r — t,[t]2)) dtdz

\t\
~ £t t |t
- W/RW 1/%B(2C(k‘7")—C(k‘r+t)—C(k‘r—t))(/C(T,E,%Z)+/C(r,—E,%z))dtdz

Jk o,7r) 1725

and
JE(o,r) = 0% / / (Ce(r+1t) — C(r—t)[K(r, t,2) — K(r, —t, 2)]dtdz.
By (6.30)) we have
(W (r,0) = W (r + 1, [H2)] 572 = 475725 (1 4 [22 4 O(t][2] + 7+ [H)]22) 7
for r € (0,¢'), t € (—e —r,e —r) \ {0} and z € 1 B and therefore, by (631,

N+2s

[N [t2) = (L+ O + [t + [¢ll2]) (1+ |21 + O(tll] + 7 + [¢)]=*) =

Hence

r t ]t! N

b iNt2s Tt

for every r > 0,t € R (6.35)

while by (629]) and (6.31)) there exists C' > 0 such that, for k sufficiently large,

r ot |t| N42s

Ll S O e

b Livease L (6.36)
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for r € (—ke', ke’), t € R\ {0} and z € £ B. Using this, we get

Tel

2¢(r r+t)—((r—t 1
|Jk |<C/ ‘ t1+2)5 ( )’dt/ —Mdz
i RV (14 [2[2) 75
2p(r) — p(r +1t) — p(r — )| Cans
~ Cay. /R o e (6.37)

for k sufficiently large, r € (—ke',ke’), t € R\ {0} and z € @B. Here we used p=1—-( €
C2°(R) in the last step. Moreover, by (6.35]) and the dominated convergence theorem, we
find that

lim Jj (o, 7‘)

k—ro0 "k

_ L 20r) ) —Clr—t) s rotoft ro_t ot

-7, IR (i, I /I;B(’“E’p?)*’C%"pzz))“)dt
L s . s N-+2s Z:aN’s AV :(—A)SC(T)

= lEAY o [ ) e = Sy = SE, (6.39)

where we used (G.I8]) in the last equality.
Next, to deal with JZ(o, ), we have to estimate the kernel difference |K(r,t, 2)—K(r, —t, 2)|.
For this we note that by (6.30) we have

_ N+42s

(0o (r,0) = Wo(r 4 £,2)| V72 = (B4 2P+ g,(r,2)) * (14 O0(t] +|2)

and therefore

Ot + |2

N42s
(4 |2 + qo(r,2))
for € B,r € (0,¢) and t € (—e +7r,e — 7).

‘|\IIU(T7 0) — Uy(r+t,2) V72 — [Wy(r,0) — Uy(r —t,2)| N2 =

C(|t| + |Z|)1—N—28

Moreover,
|Jac\1,0(7‘ +t,2) — Jacy, (r — t, z)‘ < C(]t] + ]2\)
for z € B, r € (0,¢') and t € (—e + r,e — r) by (6.3I)). From this we deduce that

KC(r,t,2) — K(r,—t,2)] < C(t] + [2))' "2

for € B,r € (0,¢/) and t € (—e +r,e — 7).
Moreover, we have
IK(r,t,z) — K(r,—t,2)] =0 fort e R\ (—e —r,e +71),

while for t € (—e —r,—e + 1)U (¢ —r,e + 1) we have [t| > ¢ — & > 5 and therefore

K (r,t,2)] < C(e + |2]) V2.
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Consequently,
1 e+r
TR (o,7)] < 4k25/ Ck(r + 1) — Ge(r —t) y/ (r,t,2) — K(r, —t, 2))dzdt

g(ﬁhﬁs/f rKk&—kﬂ——Q(r—tﬂ/@ﬂﬂ%—le_N_%duﬁ

—e+r

e+r
4-0@48/’ Kur+t>—<Mr—tn/2@—+vn‘N‘%dmﬁ

—e—r

< Ck_28</a—r |Ck(7‘+7f) B Ck(T _t)|dt—|—€_1_2s /E+T |Ck(7‘+t) _ Ck(r —t)|dt)

—e+r |t|2s —e—r

C(% /R |p(kr + t)‘t‘;sp(’”’ ~ Ol 1 (eryr-2 /R Ipkr -+ £) = pr(kr — 1)]dt)

1R, 1—2 (kr+1)!-% 1—2
< - —4S8 —1—48 < —1—48
< C(k /_kr_4 [t]"~*%dt + (ek) ) < C<7k + (k) )

IN

and therefore

1 1-2s
\J,f(a,%)] gC(%—l—(slﬂ)_l_zs) forkeN,0<r<¢g.

From this we deduce that

2 T C /
|Jk(O-’E)| S m for kGN, 0§7"<k’€ (639)
and .
Jim. |J2 (o, Pl =0 forallr>0. (6.40)

In view of (6.25]), the bound (IB:I:{I) follows by combining ([6.27)), (6.37) and (6.39]), while the
pointwise limit equality (6.14]) follows from (6.20)), [6.38 and (6.40]).

Lemma 6.5. There exists € > 0 with the property that the function g]% = I(u,(i00) satisfies
C

—s 2 r /
with a constant C > 0. Moreover,
lim k*g2(¥(o, —)) = (o)L (r) (6.42)
k—oo k

with
dr.

1) = by, [ L2 )

|7= _ ?|1+2s

Proof. We keep using the notation of the proof of Lemma We then have

G2 ((0,7)) = b (Alo,r) + Br(or)) (6.43)
with
i o (w(¥(o, 1)) — uly)) (G (r) — G(6(y)))
A= / ((—&,6)xB) |V (o,7) — y|N+2s @y
and

Bi(o,r) = (u(¥(o, 7)) — u(y))(Cr(r) = G(3(y))) ,

.
/RN\\I!U((—E,a)XB) |W(o,7) — y|NF2s
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As noted in the proof of Lemma [6.3], we have

[W(a,7)

—y| > \a;y\ +¢ fory € RN\ U, ((—¢,¢) x B).

Therefore, since u € L®°(R"Y), we may estimate as in the proof of Lemma to get

Bu(or)| < 2l |

lp(kr) — p(kd(y))|
RM\W, ((—e,e)xB) |P(0,7) —y[NF2s

< c<\p(m)\ + k‘l).

Here and in the following, the letter C' stands for various positive constants. Consequently,

lim k~*|By(o, z)| =0 for every o € Q, r > 0,
k—o0 k

and, since p has compact support in R,

F 1B, )l < Ok (o) +671) < O (s + 671

C

_1+T1+s fOTkGN,0§T<k‘€/,J€8&'2.

Hence it remains to estimate Ay, (o,7). For this we note that

[ . (u(¥(7,0)) = u(We(F, 2)))(G(5) — (7))
)_/—5/ Jacy, (z,7)

_ /]R /B ((u(w

with K given as in the proof of Lemma m and therefore, by a change of variables,

with

wi(r,t, z) == (

For k sufficiently large,

by (6:36]) and

tim (1)vezepe

k—oo k

7,

12l
k

G

r
k’

]

0, (2,0) — Uy (7, 2) |V 25 dedr

0)) = u(Wo (1 +1.2))(C(r) = C(r + k) )K(5 1, ) dzd

2s C T + t)
=k / ‘t‘1+2s /iB wi(r,t, z) dzdt

[t]

. r T+t otz rt
PV (o (7, 00) = (o (= )R o )

t s
)N+2SUC(£’E % )‘ < C(l—i—\z] ) szLz
t |t s
e ‘k‘ 2) = (1-1-\2]2)_]\[32 for every r > 0, t € R

by (6.35). Moreover, since u € C*(RY),

[u(Wa (1,0))

2]\
k

and consequently

<CO(+

)"+

0

[tz

_u(\IIU(TZt ’t’ 2)| <C’<mm{(‘ ‘) }—I—mm{(’t—;’)s,l})

)T < CEP 1P+ [2]°)

wi (r,t, 2)| < CK™[¢*(1+ )7~

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)
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where the function z — (1 + |z|) 7V =% is integrable over R¥~1. We conclude that

i [€(r) = ¢(r+1)] /!p p(r +1)| s
< < <
Ao, D)l < Ch™ / \t\”s ds < Ok~ \t\”s ds < CK* .

Combining this with (6.43) and (6.45), we get (6.41). Moreover, since v € C*(RY) and
Y = £ € C°Q), we have that

,0)) — u(\I/U(T Z t, %z))} = P(o)(r® = (r+1t)°) as k — 00 (6.50)

I [u(\pg(

which by (6.48)) implies that

N+25

ESwy(r,t, 2) — (o) (r® — (r 4+ 1)) (1 + |2*)” . (6.51)
Hence, by ([6.46]), [6.49), (.51 and the dominated convergence theorem, we find that

Ao, ) s ole) [ IR S D [ oy

|t|1+2s

%zﬁ(a)f(r) as k — oo.
1,s

Combining this with (6.18)), ([6.43) and (6.44)), we obtain (6.42]). O

We are now ready to complete the

Proof of Proposition [61. Combining (6.11]), (6.I5) and (6.41]), we see that there exists &/ > 0
such that the functions gj defined in (€.4]) satisfy

1 r Ts—l _|_Ts—1+a ,

with a constant C' > 0 independent of k and r. Since s, € (0,1), the RHS of this inequality
is integrable over [0, 00). Moreover,

L(W(o, 1)) = [X(0) - (o)W o)W (1) (r (~A)°C(r) — 1(r) (653

for every r > 0, 0 € 0N as k — oco. Here we note that, by a standard computation,

(—A)h(r) = (AP [r3¢(r)] = C(r) (= A)rs + 5 (=A)%¢(r) = I(r) = ri.(=A)*¢(r) _({3(?4)
for r > 0 since r} is an s-harmonic function on (0, 00) see e.g [1]. ‘

Hence, by (6.8)), [€8), (652), [€53]), (654) and the dominated convergence theorem, we

conclude that
Jim [ gude = / B (1) (=AY h(r)dr /a X(0) - o)) (0)do
= [Wwaramar [ o) vonwoy,

as claimed in (G.]). O
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