
ar
X

iv
:2

00
2.

07
71

9v
1 

 [
m

at
h.

A
P]

  1
8 

Fe
b 

20
20

A FRACTIONAL HADAMARD FORMULA AND APPLICATIONS

SIDY MOCTAR DJITTE, MOUHAMED MOUSTAPHA FALL, TOBIAS WETH

Abstract. We consider the domain dependence of the best constant in the subcritical
fractional Sobolev constant,

λs,p(Ω) := inf
{

[u]2Hs(RN ), u ∈ C
∞
c (Ω), ‖u‖Lp(Ω) = 1

}

,

where s ∈ (0, 1), Ω is bounded of class C1,1 and p ∈ [1, 2N
N−2s

) if 2s < N , p ∈ [1,∞)
if 2s ≥ N = 1. Explicitly, we derive formula for the one-sided shape derivative of the
mapping Ω 7→ λs,p(Ω) under domain perturbations. In the case where λs,p(Ω) admits a
unique positive minimizer (e.g. p = 1 or p = 2), our result implies a nonlocal version of
the classical variational Hadamard formula for the first eigenvalue of the Dirichlet Laplacian
on Ω. Thanks to the formula for our one-sided shape derivative, we characterize smooth
local minimizers of λs,p(Ω) under volume-preserving deformations, and we find that they are
balls if p ∈ {1} ∪ [2,∞). Finally, we consider the maximization problem for λs,p(Ω) among

annular-shaped domains of fixed volume of the type B \B
′
, where B is a fixed ball and B′ is

ball whose position is varied within B. We prove that, for p ∈ {1, 2}, the value λs,p(B \B
′
)

is maximal when the two balls are concentric.

1. Introduction

Let s ∈ (0, 1) and Ω a bounded open subset of RN of class C1,1. The best constant in the
subcritical fractional Sobolev inequality is given by

λs,p(Ω) := inf
{
[u]2Hs(RN ), u ∈ Hs

0(Ω), ‖u‖Lp(Ω) = 1
}
, (1.1)

where p ∈ [1, 2N
N−2s) if 2s < N and p ∈ [1,∞) if 2s ≥ N = 1. Here and in the following, we

consider the square of the fractional seminorm

[u]2Hs(RN ) =
bN,s

2

∫

RN×RN

(u(x)− u(y))2

|x− y|N+2s
dxdy,

where the normalization constant is given by

bN,s = s(1− s)π−N/24s
Γ(N2 + s)

Γ(2− s)
, (1.2)

so that [u]2
Hs(RN )

=
∫
RN |ξ|2s|û(ξ)|2dξ with û the Fourier transform of u. Moreover, Hs

0(Ω) is

defined as the space of functions w ∈ Hs(RN ) with w ≡ 0 on R
N \ Ω. We note that, since

Ω has a continuous boundary by assumption, the space Hs
0(Ω) is equivalently given as the

closure of C∞
c (Ω) in Hs(RN ), see e.g. [15, Theorem 1.4.2.2].
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2 A FRACTIONAL HADAMARD FORMULA AND APPLICATIONS

Thanks to the compact embeddingHs
0(Ω) →֒ Lp(Ω), a direct minimization argument shows

that λs,p(Ω) admits a positive minimizer u ∈ Hs
0(Ω) with ‖u‖Lp(Ω) = 1. Moreover, every such

minimizer solves, in the weak sense, the semilinear problem

(−∆)su = λs,p(Ω)u
p−1 in Ω and u = 0 in R

N \ Ω, (1.3)

where (−∆)s stands for the fractional Laplacian. Recall that for smooth functions ϕ ∈

C1,1
c (RN ), the fractional Laplacian is given by

(−∆)sϕ(x) = bN,sPV

∫

RN

ϕ(x)− ϕ(y)

|x− y|N+2s
dy =

bN,s

2

∫

RN

2ϕ(x) − ϕ(x+ y)− ϕ(x− y)

|y|N+2s
dy.

(1.4)
Of particular interest are the cases p = 1 and p = 2 which correspond to the fractional torsion
rigidity problem and the first Dirichlet fractional eigenvalue problem, respectively. In these
cases λs,p(Ω) possesses a unique positive minimizer.
Our goal in this paper is to derive a formula for a one-sided shape derivative of Ω 7→ λs,p(Ω).
More precisely, we consider a family of deformation Φε, ε ∈ (−1, 1) with the following prop-
erties:

Φε ∈ C1,1(RN ;RN ) for ε ∈ (−1, 1), Φ0 = idRN , and

the map (−1, 1) → C0,1(RN ,RN ), ε→ Φε is of class C2.
(1.5)

We note that (1.5) implies that Φε : RN → R
N is a global diffeomorphism if |ε| is small

enough. From the variational characterization of λs,p(Ω) it is not difficult to see that the
map ε 7→ λs,p(Φ(ε,Ω)) is continuous. However, since λs,p(Ω) may not have a unique positive
minimizer, one cannot expect this map to be differentiable. We therefore rely on determining
the right derivative of ε 7→ λs,p(Φ(ε,Ω)) from which we derive differentiability whenever
λs,p(Ω) admits a unique positive minimizer, thereby extending the classical Hadamard shape
derivative formula for the first Dirichlet eigenvalue.

In this paper, we consider a function δ, which coincides with the signed distance function
dist(·,RN \Ω)− dist(·,Ω) in a neighborhood of ∂Ω. Moreover, we suppose that δ is positive
in Ω, negative in R

N \ Ω and δ ∈ C1,1(RN ).

Our first main result is the following.

Theorem 1.1. Let λs,p(Ω) be given by (1.1) and consider a family of deformations Φε satis-
fying (1.5). Then the map ε 7→ θ(ε) := λs,p(Φε(Ω)) is right differentiable at ε = 0. Moreover

∂+θ(0) = min

{
Γ(1 + s)2

∫

∂Ω
(u/δs)2X · ν dx, u ∈ H

}
, (1.6)

where ν denotes the interior unit normal on ∂Ω, H is the set of positive minimizers for
λs,p(Ω), and X := ∂ε

∣∣
ε=0

Φε.

Here the function u/δs is defined as a limit. Namely for x0 ∈ ∂Ω,
u

δs
(x0) = lim

x→x0
x∈Ω

u

δs
(x).

We point out that, on ∂Ω, the interior unit normal ν coincides with ∇δ. We also note that
u/δs ∈ Cα(Ω), for some α > 0, see e.g [22]. Moreover the expression u/δs, restricted on
∂Ω, plays the role of a normal derivative, compared to the local case. In fact, we have that
δ1−s∇u · ∇δ = su/δs on ∂Ω, see [9].
A one sided shape derivative in the case of degenerate eigenvalue was recently obtained in [10],
where the authors considered the first nonzero Neuman eigenvalue which is not in general



A FRACTIONAL HADAMARD FORMULA AND APPLICATIONS 3

simple. We observe that the constant Γ(1+ s)2 appears also in the fractional Pohozaev iden-
tity, see e.g. [23]. This is, to some extend, not surprising at least in the classical case since
Pohozav’s identity can be obtained using techniques of domain variation, see e.g. [26].
A natural consequence of Theorem 1.1 is that the map ε 7→ θ(ε) := λs,p(Φ(ε,Ω)) is differen-
tiable whenever λs,p(Ω) admits a unique positive minimizer. Indeed, applying Theorem 1.1

to the map ε 7→ θ̃(ε) := λs,p(Φ(−ε,Ω)) yields

∂−θ(0) = −∂+θ̃(0) = max

{
Γ(1 + s)2

∫

∂Ω
(u/δs)2X · ν dx, u ∈ H

}
.

As a consequence, we obtain the following result.

Corollary 1.2. Let λs,p(Ω) be given by (1.1) and consider a family of deformations Φε

satisfying (1.5). Suppose that λs,p(Ω) admits a unique positive minimizer u ∈ Hs(RN ). Then
the map ε 7→ θ(ε) := λs,p(Φ(ε,Ω)) is differentiable at ε = 0. Moreover

θ′(0) = Γ(1 + s)2
∫

∂Ω
(u/δs)2X · ν dx, (1.7)

where X := ∂εΦ(0, ·).

As mentioned earlier, for p = 1 or p = 2, λs,p(Ω) admits a unique positive minimizer
u ∈ Hs(RN ). Therefore Corollary 1.2 extends the classical Hadamard formula, for the
first Dirichlet eigenvalue λ1,2(Ω), in the fractional setting. We recall, see e.g. [17], that
the Hadamard formula, is given by

d

dε

∣∣∣
ε=0

λ1,2(Φ(ε,Ω)) =

∫

∂Ω
|∇u|2X · ν dx. (1.8)

We point out that, prior to this paper, a Hadamard formula in the fractional setting of the
type (1.7) was obtained in [7] for the special case p = 1, s = 1

2 , N = 2 and Ω of class C∞.
We are not aware of any other previous work related to Theorem 1.1 or 1.2 in the fractional
setting. An analogue of Corollary 1.2 for the case of the local p-Laplace operator was obtained
in [2, 14].

Our next result provides a characterization of local minima of Ω 7→ λs,p(Ω).

Corollary 1.3. Let p ∈ {1} ∪ [2,∞). Suppose that Ω, an open set of class C3, is a volume
constrained local minimum for Ω 7→ λs,p(Ω). Then Ω is a ball.
Here we call Ω a constrained local minimum for Ω 7→ λs,p(Ω) if for all families of deformations
Φε satisfying (1.5) and the volume invariance condition |Φε(Ω)| = |Ω| for ε ∈ (−1, 1), there
exists ε0 ∈ (0, 1) such that λs,p(Φ(ε,Ω)) ≥ λs,p(Ω) for ε ∈ (−ε0, ε0).

Corollary 1.3 is a consequence of Theorem 1.1, from which we derive that if Ω is a constraint
local minimum then any element u ∈ H satisfies the overdetermined condition u/δs ≡ Const
on ∂Ω. Therefore by the rigidity result in [13] we find that Ω must be a ball.
We recall that the authors in [7] considered also shape minimization problem of λs,p for p = 1,

s = 1
2 , N = 2 and among domains Ω of class C∞. They showed in [7] that such minimizers

are discs.
Next we consider the optimization problem of Ω 7→ λs,p(Ω) for p ∈ {1, 2} and Ω a punctured

ball, with the hole having the shape of ball. We show that, as the hole moves in Ω then λs,p(Ω)
is maximal when the two balls are concentric. This problem was first solved by Hersch [18] in
the case s = 1 and N = 2; for subsequent generalizations in the local case s = 1; see [5,16,20].



4 A FRACTIONAL HADAMARD FORMULA AND APPLICATIONS

Theorem 1.4. Let p ∈ {1, 2}, B1(0) be the unit centered ball and τ ∈ (0, 1). Define

A := {a ∈ B1(0) : Bτ (a) ⊂ B1(0)}.

Then the map A → R, a 7→ λs,p(B1(0) \Bτ (a)) takes its maximum at a = 0.

The proof of Theorem 1.4 is inspired by the argument given in [16, 20] for the local case
s = 1. It uses the fractional Hadamard formula in Corollary 1.2 and maximum principles for
anti-symmetric functions. Our proof also shows that the map a 7→ λs,p(B1(0) \Bτ (a)) takes
its minimum when the boundary of the ball Bτ (a) touches the one of B1(0), see Section 5
below.

The proof of Theorem 1.1 is inspired by [10]. It is mainly based on the use of test functions
in the variational characterization of λs,p(Ω) and λs,p(Φ(ε,Ω)). In the case of λs,p(Φ(ε,Ω)), it
is important to make a change of variable so that λs,p(Φ(ε,Ω)) is determined by minimizing

an ε-dependent family of seminorms among functions u ∈ Hs(RN ) vanishing outside the fixed
set Ω, see Section 2 below. An obvious choice of test functions are minimizers u and vε for
λs,p(Ω) and λs,p(Φ(ε,Ω)), respectively. However, due to the fact that u is only of class Cs

up to the boundary, we cannot obtain a boundary integral term directly from the divergence
theorem. In particular, the integration by parts formula given in [23, Theorem 1.9] does not

apply to general vector fields X which appear in (1.6). Hence, we need to replace u with ζ̃ku,

where ζ̃k is a cut-off function vanishing in a 1
k -neighborhood of ∂Ω. This leads to upper and

lower estimates of λs,p(Φ(ε,Ω)) up to order o(ε), where the first order term is given by an
integral involving (−∆)s(ζku) and ∇(ζku). We refer the reader to Section 4 below for more
precise information. A highly nontrivial task is now to pass to the limit as k → ∞ in order
to get boundary integrals involving ψ := u/δs. This is most difficult part of the paper. We
refer to Proposition 2.4 and Section 6 below for more details.

The paper is organized as follows. In Section 2, we provide preliminary results on con-
vergence properties of integral functional, inner approximations of functions in Hs

0(Ω) and
on properties of minimizers of (1.1). In Section 3, we introduce notation related to domain
deformations and related quantities.

In Section 4 we establish a preliminary variant of Theorem 1.1, which is given in Propo-
sition 4.1. In this variant, the constant Γ(1 + s)2 in (1.6) is replaced by an implicitly given
value which still depends on cut-off data. The proofs of the main results, as stated in this
introduction, are then completed in Section 5. Finally, Section 6 is devoted to the proof of
the main technical ingredient of the paper, which is given by Proposition 2.4.

Acknowledgements: This work is supported by DAAD and BMBF (Germany) within
the project 57385104. The authors would like to thank Sven Jarohs for helpful discussions.
M.M Fall’s work is supported by the Alexander von Humboldt foundation.

2. Notations and preliminary results

We start with an elementary but useful observation.

Lemma 2.1. Let µ ∈ L∞(RN ×R
N ), and let (vk)k be a sequence in Hs(RN ) with vk → v in

Hs(RN ). Then we have

lim
k→∞

∫

R2N

(vk(x)− vk(y))
2µ(x, y)

|x− y|N+2s
dxdy =

∫

R2N

(v(x)− v(y))2µ(x, y)

|x− y|N+2s
dxdy.
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Proof. We have
∣∣∣
∫

R2N

(vk(x)− vk(y))
2 − (v(x)− v(y))2µ(x, y)

|x− y|N+2s
dxdy

∣∣∣

≤ ‖µ‖L∞

∫

R2N

|(vk(x)− vk(y))
2 − (v(x) − v(y))2|

|x− y|N+2s
dxdy,

where
∫

R2N

|(vk(x)− vk(y))
2 − (v(x)− v(y))2|

|x− y|N+2s
dxdy

=

∫

R2N

|[(vk(x)− v(x))− (vk(y)− v(y))][(vk(x) + v(x)) − (vk(y) + v(y))]|

|x− y|N+2s
dxdy

≤
2

bN,s
[vk − v]Hs(RN )[vk + v]Hs(RN ) → 0 as k → ∞.

�

Throughout the remainder of this paper, we fix ρ ∈ C∞
c (−2, 2), with 0 ≤ ρ ≤ 1, ρ ≡ 1 on

(−1, 1), and we define

ζ(t) = 1− ρ(t), ρk(t) = ρ(kt) and ζk(t) = 1− ρk(t) for t ∈ R, k ∈ N. (2.1)

Lemma 2.2. Let Ω ⊂ R
N be a bounded Lipschitz domain and let u ∈ Hs

0(Ω). Moreover, for
k ∈ N, let uk ∈ Hs

0(Ω) denote inner approximations of u defined by uk(x) = u(x)ζk(δ(x)) for
x ∈ R

N . Then we have

uk → u in Hs(RN ).

Proof. In the following, we let βk := ρk ◦ δ : R
N → R for k ∈ N. Moreover, the letter C > 0

stands for various constants independent of k. Clearly, it suffices to show that

uβk ∈ Hs
0(Ω) for k sufficiently large and [uβk]Hs(RN ) → 0 as k → ∞. (2.2)

For ε > 0, we put Aε = {x ∈ Ω : δ(x) < ε}. Since uβk vanishes in R
N \ A 2

k
, 0 ≤ βk ≤ 1 on

R
N and |βk(x)− βk(y)| ≤ Cmin{k|x− y|, 1} for x, y ∈ R

N , we observe that

1

bN,s
[βku]

2
Hs(RN ) =

1

2

∫

RN

∫

RN

[u(x)βk(x)− u(y)βk(y)]
2

|x− y|N+2s
dydx

=
1

2

∫

A 4
k

∫

A 4
k

[u(x)βk(x)− u(y)βk(y)]
2

|x− y|N+2s
dydx+

∫

A 2
k

u(x)2βk(x)
2

∫

RN\A 4
k

|x− y|−N−2s dydx

≤
1

2

∫

A 4
k

∫

A 4
k

[
u(x)

(
βk(x)− βk(y)

)
+ βk(y)

(
u(x)− u(y)

)]2

|x− y|N+2s
dydx

+ C

∫

A 2
k

u(x)2dist(x,RN \ A 4
k
)−2sdx (2.3)

≤

∫

A 4
k

u2(x)

∫

A 4
k

(βk(x)− βk(y))
2

|x− y|N+2s
dydx+

∫

A 4
k

∫

A 4
k

(u(x)− u(y))2

|x− y|N+2s
dydx

+ C

∫

A 2
k

u(x)2δ−2s(x)dx
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≤ Ck2
∫

A 4
k

u2(x)

∫

B 1
k
(x)

|x− y|2−2s−Ndydx+ C

∫

A 4
k

u2(x)

∫

RN\B 1
k
(x)

|x− y|−N−2sdydx

+

∫

A 4
k

∫

A 4
k

(u(x)− u(y))2

|x− y|N+2s
dydx+ C

∫

A 2
k

u(x)2δ−2s(x)dx (2.4)

≤ Ck2s
∫

A 4
k

u2(x)dx+

∫

A 4
k

∫

A 4
k

(u(x)− u(y))2

|x− y|N+2s
dydx+ C

∫

A 2
k

u(x)2δ−2s(x)dx

≤ C

∫

A 4
k

u2(x)δ−2s(x)dx+

∫

A 4
k

∫

A 4
k

(u(x)− u(y))2

|x− y|N+2s
dydx. (2.5)

Now, since Ω has a Lipschitz boundary, using
∫
RN\Ω |x− y|−N−2s dy ∼ δ−2s(x) see e.g [3], we

get ∫

Ω
u2(x)δ−2s(x)dx ≤ C

∫

Ω
u2(x)

∫

RN\Ω
|x− y|−N−2s dydx ≤ C[u]2Hs(RN ),

and therefore ∫

A 4
k

u2(x)δ−2s(x)dx → 0 as k → ∞. (2.6)

Moreover, since also
∫

Ω

∫

Ω

(u(x)− u(y))2

|x− y|N+2s
dydx ≤

2

bN,s
[u]2Hs(RN ),

we have ∫

A 4
k

∫

A 4
k

(u(x)− u(y))2

|x− y|N+2s
dydx→ 0 as k → ∞. (2.7)

Combining (2.5), (2.6) and (2.7), we obtain (2.2), as required. �

From now on, we fix a bounded C1,1-domain Ω ⊂ R
N , and we let

Cs
0(Ω) =

{
w ∈ Cs(Ω) : w = 0 in R

N \ Ω
}
.

We recall the following regularity properties for (positive) minimizers for λs,p(Ω).

Lemma 2.3. Let u ∈ Hs
0(Ω) be a positive minimizer for λs,p(Ω). Then u ∈ C∞(Ω) ∩

Cs
0(Ω). Moreover, ψ := u

δs ∈ Cα(Ω) for some α ∈ (0, 1), and there exists a constant c =
c(N, s,Ω, α, p) > 0 such that

‖ψ‖Cα(Ω) ≤ c (2.8)

and
|∇ψ(x)| ≤ cδα−1(x) for all x ∈ Ω. (2.9)

Proof. By standard arguments in the calculus of variations, u is a weak solution of (1.3).
By [24, Proposition 1.3] we have that u ∈ L∞(Ω). Then u ∈ C∞(Ω) follows by interior
regularity theory (see e.g. [21]) and the fact that the function t 7→ tp−1 is of class C∞ on
(0,∞). Moreover, the regularity up to the boundary u ∈ Cs

0(Ω) is proved in [22], where also
the Cα-bound for the function ψ := u

δs is established for some α > 0. Finally, (2.9) is proved
in [9]. �

The computation of one-sided shape derivatives as given in Theorem 1.1 will be carried
out in Section 4, and it requires the following key technical proposition. Since its proof is
long and quite involved, we postpone the proof to Section 6 below.
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Proposition 2.4. Let X ∈ C0(Ω,RN ), and let u ∈ Cs
0(Ω) ∩ C

1(Ω) be a function such that

ψ := u
δs : Ω → R satisfies (2.8) and (2.9). Moreover, put Uk := u[ζk ◦ δ] ∈ C1,1

c (Ω). Then

lim
k→∞

∫

Ω
∇Uk ·X

(
u(−∆)s[ζk ◦ δ]− I(u, ζk ◦ δ)

)
dx = −κs

∫

∂Ω
ψ2X · ν dx,

where

κs := −

∫

R

h′(r)(−∆)sh(r) dr with h(r) := rs+ζ(r) = max(r, 0)sζ(r), (2.10)

and where we use the notation

I(u, v)(x) := bN,s

∫

RN

(u(x) − u(y))(v(x) − v(y))

|x− y|N+2s
dy (2.11)

for u ∈ Cs
c (R

N ), v ∈ C0,1(RN ) and x ∈ R
N .

Remark 2.5. The minus sign in the definition of the constant κs in (2.10) might appear a
bit strange at first glance. We shall see later that, defined in this way, κs has a positive value.
A priori it is not clear that the value of κs does not depend on the particular choice of the
function ζ. This follows a posteriori once we have established in Proposition 4.1 below that

this constant appears in Theorem 1.1. This will then allow us to show that κs = Γ(1+s)2

2 by
applying the resulting shape derivative formula to a one-parameter family of concentric balls,
see Section 5 below. A more direct, but quite lengthy computation of κs is possible via the
logarithmic Laplacian, which has been introduced in [4].

3. Domain perturbation and the associated variational problem

We fix a map Φ : (−1, 1)× R
N → R

N satisfying (1.5). Moreover, for ε ∈ (−1, 1), we write
Φε(x) = Φ(ε, x). As in the introduction, we then define Ωε = Φε(Ω). In order to study the
dependence of λs,p(Ωε) on ε, it is convenient to pull back the problem on the fixed domain Ω
via a change of variable. For this we let JacΦε denote the Jacobian determinant of the map
Φε ∈ C1,1(RN ), and we define the kernels

Kε(x, y) := bN,s
JacΦε(x)JacΦε(y)

|Φε(x)− Φε(y)|N+2s
and K0(x, y) = bN,s

1

|x− y|N+2s
. (3.1)

Then (1.5) gives rise to the well known expansions

JacΦε(x) = 1 + εdivX(x) +O(ε2), ∂εJacΦε(x) = divX(x) +O(ε) (3.2)

uniformly in x ∈ R
N , whereX := ∂ε

∣∣
ε=0

Φε ∈ C0,1(RN ;RN ) and therefore divX is a.e. defined

on R
N . From (1.5), we also get

|Φε(x)− Φε(y)|
−N−2s = |x− y|−N−2s

(
1 + 2ε

x− y

|x− y|
· PX(x, y) +O(ε2)

)−N+2s
2

,

and

∂ε|Φε(x)− Φε(y)|
−N−2s = |x− y|−N−2s

(
(N + 2s)

x− y

|x− y|
· PX(x, y) +O(ε)

)
,

uniformly in x, y ∈ R
N , x 6= y with

PX ∈ L∞(RN × R
N ), PX(x, y) =

X(x) −X(y)

|x− y|
.
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Moreover by (3.2) and the fact that ∂εΦε, X ∈ C0,1(RN ), we have that

Kε(x, y) = K0(x, y) + ε∂ε

∣∣∣
ε=0

Kε(x, y) +O(ε2)K0(x, y), (3.3)

and

∂εKε(x, y) = ∂ε

∣∣∣
ε=0

Kε(x, y) +O(ε)K0(x, y), (3.4)

uniformly in x, y ∈ R
N , x 6= y, where

∂ε

∣∣∣
ε=0

Kε(x, y) =
[
(N + 2s)

x− y

|x− y|
· PX(x, y)−(divX(x) + divX(y))

]
K0(x, y). (3.5)

In particular, it follows from (3.3) and (3.5) that there exist ε0, C > 0 such that

1

C
K0(x, y) ≤ Kε(x, y) ≤ CK0(x, y) for all x, y ∈ R

N , x 6= y and ε ∈ (−ε0, ε0). (3.6)

For v ∈ Hs(RN ) and ε ∈ (−ε0, ε0), we now define

Vv(ε) :=
1

2

∫

R2N

(v(x) − v(y))2Kε(x, y)dxdy. (3.7)

Then, by (1.1), (1.5) and a change of variable, we have the following variational characteri-
zation for λs,p(Ωε):

λεs,p := λs,p(Ωε) = inf

{
[u]2Hs(RN ) : u ∈ Hs

0(Ωε),

∫

Ωε

|u|p dx = 1

}

= inf

{
Vv(ε) : v ∈ Hs

0(Ω),

∫

Ω
|v|pJacΦε(x) dx = 1

}
for ε ∈ (−ε0, ε0). (3.8)

As mentioned earlier, we prefer to use (3.8) from now on where the underlying domain is
fixed and the integral terms depend on ε instead. It follows from (3.3) and (3.4) that, for
given v ∈ Hs(RN ), the function Vv : (−ε, ε) → R is of class C1 with

V ′
v(0) =

1

2

∫

R2N

(v(x) − v(y))2∂ε
∣∣
ε=0

Kε(x, y)dxdy, (3.9)

where ∂ε
∣∣
ε=0

Kε(x, y) is given in (3.5),

|V ′
v(0)| ≤ C[v]2Hs(RN ) with a constant C > 0 (3.10)

and we have the expansions

Vv(ε) = Vv(0) + εV ′
v(0) +O(ε2)[v]2Hs(RN ), V ′

v(ε) = V ′
v(0) +O(ε)[v]2Hs(RN ) (3.11)

with O(ε), O(ε2) independent of v. From (3.2), (3.6) and the variational characterization
(3.8), it is easy to see that

1

C
≤ λεs,p ≤ C for all ε ∈ (−ε0, ε0) with some constant C > 0.

Using this and (3.2), (3.6) once more, we can show that

1

C
≤ ‖vε‖Lp(Ω) ≤ C and

1

C
≤ ‖vε‖Hs(RN ) ≤ C. (3.12)

for every ε ∈ (−ε0, ε0) and every minimizer vε ∈ Hs
0(Ω) for (3.8) with a constant C > 0.

The following lemma is essentially a corollary of Lemma 2.1.
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Lemma 3.1. Let (vk)k be a sequence in Hs(RN ) with vk → v in Hs(RN ). Then we have

lim
k→∞

Vvk(0) = Vv(0) and lim
k→∞

V ′
vk
(0) = V ′

v(0).

Proof. The first limit is trivial since Vv(0) = [v]2
Hs(RN )

for v ∈ Hs(RN ). The second limit

follows from Lemma 2.1, (3.5) and (3.9) by noting that µ ∈ L∞(RN × R
N ) for the function

µ(x, y) = (N + 2s)
x− y

|x− y|
· PX(x, y)− (divX(x) + divX(y)).

�

4. One-sided Shape derivative computations

We keep using the notation of the previous sections, and we recall in particular the varia-
tional characterization of λεs,p given in (3.8). The aim of this section is to prove the following
result.

Proposition 4.1. We have

∂+ε

∣∣∣
ε=0

λεs,p = inf

{
2κs

∫

∂Ω
(u/δs)2X · ν dx, u ∈ H

}
,

where H is the set of positive minimizers for λ0s,p := λs,p(Ω), X := ∂ε
∣∣
ε=0

Φε and κs is given
by (2.10).

The proof of Proposition 4.1 requires several preliminary results. We start with a formula
for the derivative of the function given by (3.7).

Lemma 4.2. Let U ∈ C1,1
c (Ω). Then

V ′
U (0) = −2

∫

RN

∇U ·X(−∆)sUdx. (4.1)

Proof. By (3.5) and (3.11),

V ′
U (0) =

−(N + 2s)bN,s

2

∫

R2N

(U(x)− U(y))2
(x− y) · (X(x)−X(y))

|x− y|N+2s+2
dxdy

+
1

2

∫

R2N

(U(x) − U(y))2K0(x, y)(divX(x) + divX(y))dxdy.

Using that ∇|z|−N−2s = −(N + 2s)z|z|−N−2s−2 and the divergence theorem, we obtain

V ′
U(0) =

−(N + 2s)bN,s

2
lim
µ→0

∫

|x−y|>µ
(U(x) − U(y))2

(x− y) · (X(x) −X(y))

|x− y|N+2s+2
dxdy

+
1

2

∫

R2N

(U(x)− U(y))2K0(x, y)(divX(x) + divX(y))dxdy

=−
1

2
lim
µ→0

∫

|x−y|>µ
(U(x)− U(y))2K0(x, y)(divX(x) + divX(y))dxdy

− lim
µ→0

∫

|x−y|>µ
(U(x)− U(y))(∇U(x) ·X(x) +∇U(y) ·X(y))K0(x, y)dxdy

+ lim
µ→0

∫

RN

∫

|x−y|=µ
(U(x)− U(y))2(X(x) −X(y)) ·

y − x

|x− y|
K0(x, y) dσ(y) dx

+
1

2

∫

R2N

(U(x)− U(y))2K0(x, y)(divX(x) + divX(y))dxdy.
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We thus get

V ′
U (0) = − lim

µ→0

∫

|x−y|>µ
(U(x)− U(y))(∇U(x) ·X(x) +∇U(y) ·X(y))K0(x, y)dxdy

+ lim
µ→0

∫

RN

∫

|x−y|=µ
(U(x) − U(y))2(X(x)−X(y)) ·

y − x

|x− y|
K0(x, y) dσµ(y)dx

= −2 lim
µ→0

∫

RN

(−∆)sµU(x)∇U(x) ·X(x) dx

+ bN,s lim
µ→0

µ−N−1−2s

∫

RN

∫

|x−y|=µ
(U(x) − U(y))2(X(x)−X(y)) · (y − x) dσ(y) dx (4.2)

where

(−∆)sµUk(x) = bN,s

∫

|x−y|≥µ

Uk(x)− Uk(y)

|x− y|N+2s
dy

=
bN,s

2

∫

|y|>µ

2Uk(x)− Uk(x− y)− Uk(x+ y)

|y|N+2s
dy. (4.3)

Using that U,X ∈ C0,1(RN ), we find that
∣∣∣
∫

|x−y|=µ
(U(x)− U(y))2(X(x)−X(y)) · (y − x) dσ(y)

∣∣∣ ≤ CµN+3

with a constant C > 0 independent of x. Moreover, since U is compactly supported in Ω,
setting Nµ(Ω) := {x ∈ R

N : δ(x) > −µ} for µ > 0, we conclude that
∫

RN

∫

|x−y|=µ
(U(x)− U(y))2(X(x) −X(y)) · (y − x) dσ(y) dx

=

∫

N2µ(Ω)

∫

|x−y|=µ
(U(x) − U(y))2(X(x) −X(y)) · (y − x) dσ(y) = O(µN+3) as µ→ 0.

Going back to (4.2), we thus see that

V ′
U (0) = −2 lim

µ→0

∫

RN

(−∆)sµU(x)∇U(x) ·X(x). (4.4)

On the other hand, since U ∈ C1,1
c (Ω), we have that

sup
µ∈(0,1)

‖(−∆)sµU‖L∞(RN ) <∞ and ∇U ·X ∈ C0,1
c (Ω),

so we can apply the dominated convergence theorem to obtain

lim
µ→0

∫

RN

(−∆)sµU(x)∇U(x) ·X(x) dx =

∫

RN

(−∆)sU(x)∇U(x) ·X(x) dx.

Combining this with (4.4), we obtain the claim. �

We cannot apply Lemma 4.2 directly to minimizers u ∈ Hs
0(Ω) of λs,p(Ω) since these are not

contained in C1,1
c (Ω). The aim is therefore to apply Lemma 4.2 to Uk := u[ζk ◦ δ] ∈ C1,1

c (Ω)
with ζk given in (2.1) and to use Proposition 2.4. This leads to the following derivative
formula which plays a key role in the proof of Proposition 4.1.

Lemma 4.3. Let u ∈ Hs
0(Ω) be a positive minimizer for λs,p(Ω). Then we have

V ′
u(0) =

2λs,p(Ω)

p

∫

Ω
updivX dx+ 2κs

∫

∂Ω
(u/δs)2X · ν dx.
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Proof. To simplify notation, we put ϕk := ζk ◦ δ for k ∈ N. By Lemma 2.3 and since Ω is
of class C1,1, we have Uk := uϕk ∈ C1,1

c (Ω) ⊂ Hs
0(Ω) for k ∈ N, and Uk → u in Hs(RN ) by

Lemma 2.2. Consequently, V ′
u(0) = lim

k→∞
V ′
Uk
(0) by Corollary 3.1, so it remains to show that

lim
k→∞

V ′
Uk
(0) =

2λs,p(Ω)

p

∫

Ω
updivX dx+ 2κs

∫

∂Ω
(u/δs)2X · ν dx. (4.5)

Applying Lemma 4.2 to Uk, we find that

V ′
Uk
(0) = −2

∫

RN

∇Uk ·X(−∆)sUkdx for k ∈ N.

By the standard product rule for the fractional Laplacian, we have (−∆)sUk = u(−∆)sϕk +
ϕk(−∆)su− I(u, ϕk) with I(u, ϕk) given by (2.11). We thus obtain

V ′
Uk
(0) = −2

∫

RN

∇Uk ·Xϕk(−∆)su dx− 2

∫

RN

[∇Uk ·X]u(−∆)sϕk dx (4.6)

+ 2

∫

RN

∇Uk ·XI(u, ϕk) dx

= −2λs,p(Ω)

∫

Ω
∇Uk ·Xϕku

p−1 dx− 2

∫

RN

∇Uk ·X
(
u(−∆)sϕk − I(u, ϕk)

)
dx,

where we used that (−∆)su = λs,p(Ω)u
p−1 in Ω. Consequently, Proposition 2.4 yields that

lim
k→∞

V ′
Uk
(0) = −2λs,p(Ω) lim

k→∞

∫

Ω
∇Uk ·Xϕku

p−1 dx+ 2κs

∫

∂Ω
ψ2X · ν dx. (4.7)

Moreover, integration by parts, we obtain, for k ∈ N,
∫

Ω
∇Uk·Xϕku

p−1 dx =
1

p

∫

Ω
∇up ·Xϕ2

k dx+

∫

Ω
∇ϕk ·Xϕku

p dx

= −
1

p

∫

Ω
updivXϕ2

k dx−
2

p

∫

Ω
upϕkX · ∇ϕk dx+

∫

Ω
∇ϕk ·Xϕku

p dx. (4.8)

Since up ∈ Cs
0(Ω) by Lemma 2.3, it is easy to see from the definition of ϕk that the last two

terms in (4.8) tend to zero as k → ∞, whereas

lim
k→∞

∫

Ω
updivXϕ2

k dx =

∫

Ω
updivX dx.

Hence

lim
k→∞

∫

Ω
∇Uk ·Xϕku

p−1 dx = −
1

p

∫

Ω
updivX dx.

Plugging this into (4.7), we obtain (4.5), as required. �

Our next lemma provides an upper estimate for ∂+ε

∣∣∣
ε=0

λεs,p.

Lemma 4.4. Let u ∈ Hs
0(Ω) be a positive minimizer for λ0s,p = λs,p(Ω). Then

lim sup
ε→0+

λεs,p − λ0s,p
ε

≤2κs

∫

∂Ω
(u/δs)2X · ν dx. (4.9)

Proof. For ε ∈ (−ε0, ε0), we define

j(ε) :=
Vu(ε)

τ(ε)
for k ∈ N with τ(ε) :=

(∫

Ω
|u|pJacΦε(x) dx

)2/p

.
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By (3.8), we then have λεs,p ≤ j(ε) for ε ∈ (−ε0, ε0). Moreover,

τ(0) = ‖u‖
2/p
Lp(Ω) = 1, Vu(0) = [u]2Hs(RN ) = λs,p(Ω) and j(0) =

Vu(0)

τ(0)
= λ0s,p,

which implies that

∂+ε

∣∣∣
ε=0

λεs,p ≤ j′(0) = 2κs

∫

∂Ω
(u/δs)2X · ν dx,

by Lemma 4.3, as claimed. �

Next, we shall prove a lower estimate for ∂+ε

∣∣∣
ε=0

λεs,p.

Lemma 4.5. We have

lim inf
εց0+

λεs,p − λ0s,p
ε

≥ inf

{
2κs

∫

∂Ω
(u/δs)2X · ν dx : u ∈ H

}
.

Proof. Let (εn)n be a sequence of positive numbers converging to zero such that

lim
n→∞

λεns,p − λ0s,p
ε

= lim inf
εց0+

λεs,p − λ0s,p
ε

. (4.10)

For n ∈ N, we let vεn be a positive minimizer corresponding to the variational characterization
of λεns,p given in (3.8), i.e. we have

λεns,p = Vvεn (εn) and

∫

Ω
vpεnJacΦεn

dx = 1. (4.11)

Since vεn remains bounded in Hs
0(Ω) by (3.12), we may pass to a sub-sequence such that

vεn ⇀ u in Hs
0(Ω) for some u ∈ Hs

0(Ω). Moreover,vεn → u in Lp(Ω) as n → ∞ since the
embedding Hs

0(Ω) → Lp(Ω) is compact. In the following, to keep the notation simple, we
write ε in place of εn. By (3.11) and (4.11), we have

Vvε(0) = Vvε(ε)− εV ′
vε(0) +O(ε2)[vε]

2
Hs(RN ) = λεs,p − εV ′

vε(0) +O(ε2) (4.12)

and therefore

Vu(0) = [u]2Hs(RN ) ≤ lim inf
ε→0

[vε]
2
Hs(RN ) = lim inf

ε→0
Vvε(0) ≤ lim sup

ε→0
λεs,p ≤ λ0s,p, (4.13)

where the last inequality follows from Lemma 4.4. In view of (3.2) and the strong convergence
vε → u in Lp(Ω), we see that

1 =

∫

Ω
vpεJacΦεdx =

∫

Ω
vpε(1 + εdivX)dx+O(ε2) =

∫

Ω
up dx+ o(1) (4.14)

as ε → 0, and hence ‖u‖Lp(Ω) = 1. Combining this with (4.13), we see that u ∈ H is a

minimizer for λ0s,p, and that equality must hold in all inequalities of (4.13). From this we
deduce that

vε → u strongly in Hs(RN ). (4.15)

Now (4.12) and the variational characterization of λ0s,p imply that

λ0s,p

(∫

Ω
vpεdx

)2/p

≤ Vvε(0) = λs,p(Ωε)− εV ′
vε(0) +O(ε2) (4.16)

whereas by (4.14) we have
∫

Ω
vpε dx = 1− ε

∫

Ω
vpεdivXdx+O(ε2) = 1− ε

∫

Ω
updivXdx+ o(ε)
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and therefore (∫

Ω
vpεdx

)2/p

= 1−
2ε

p

∫

Ω
updivXdx+ o(ε). (4.17)

Plugging this into (4.16), we get the inequality

λεs,p ≥
(
1−

2ε

p

∫

Ω
updivXdx

)
λ0s,p + εV ′

vε(0) + o(ε).

Since, moreover, V ′
vε(0) → V ′

u(0) as ε→ 0 by Corollary 3.1 and (4.15), it follows that

λεs,p − λ0s,p ≥ ε
(
V ′
u(0) −

2λ0s,p
p

∫

Ω
updivXdx

)
+ o(ε)

and therefore

λεs,p − λ0s,p ≥ 2εκs

∫

∂Ω
(u/δs)2X · ν dx+ o(ε)

by Lemma 4.3. We thus conclude that

lim
ε→0+

λεs,p − λ0s,p
ε

≥ 2κs

∫

∂Ω
(u/δs)2X · ν dx.

Taking the infinimum over u ∈ H in the RHS of this inequality and using (4.10), we get the
result. �

Proof of Proposition 4.1 (completed). Proposition 4.1 is a consequence of Lemma 4.4 and
Lemma 4.5. Indeed, let

As,p(Ω) := inf

{
2κs

∫

∂Ω
(u/δs)2X · ν dx : u ∈ H

}
.

Thanks to (2.8) the infinimum As,p(Ω) is attained. Finally by Lemma 4.4 and Lemma 4.5 we
get

As,p(Ω) ≥ ∂+ε

∣∣∣
ε=0

λεs,p ≥ lim inf
εց0

λεs,p − λ0s,p
ε

≥ As,p(Ω).

�

5. Proof of the main results

In this section we complete the proofs of the main results stated in the introduction.

Proof of Theorem 1.1 (completed). In view of Proposition 4.1, the proof of Theorem 1.1 is
complete once we show that

2κs = Γ(1 + s)2, (5.1)

where Γ is the usual Gamma function. In view of (2.10), the constant κs does not depend
on N , p and Ω, we consider the case N = p = 1 and the family of diffeomorphisms Φε on R

N

given by Φε(x) = (1 + ε)x, ε ∈ (−1, 1), so that X := ∂ε
∣∣
ε=0

Φε is simply given by X(x) = x.
Letting Ω0 := (−1, 1), we define Ωε = Φε(Ω0) = (−1 − ε, 1 + ε). Moreover, we consider
wε ∈ Hs

0(Ωε) ∩ C
s
0([−1− ε, 1 + ε]) given by

wε(x) = ℓs((1 + ε)2 − |x|2)s+ with ℓs :=
2−2sΓ(1/2)

Γ(s+ 1/2)Γ(1 + s)
. (5.2)

It is well known that wε is the unique solution of the problem

(−∆)swε = 1 in Ωε, wε ≡ 0 on R
N \ Ωε,
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see e.g. [23] or [13]. Recalling (1.3), we thus deduce that uε = λs,1(Ωε)wε is the unique positive
minimizer corresponding to (1.1) in the case N = p = 1, which implies that ‖uε‖L1(R) = 1
and therefore

λs,1(Ωε) = ‖wε‖
−1
L1(R)

= (1 + ε)−(2s+1)‖w0‖
−1
L1(R)

. (5.3)

Moreover, by standard properties of the Gamma function,

‖w0‖L1(R) = ℓs

∫ 1

−1
(1− |x|2)s dx = 2ℓs

∫ 1

0
(1− r2) dr = ℓs

∫ 1

0
t−1/2(1− t)s dt

= ℓs
Γ(1/2)Γ(s + 1)

Γ(s+ 3/2)
= ℓs

Γ(1/2)Γ(s + 1)

(s+ 1/2)Γ(s + 1/2)
=

22s ℓ2s Γ(s+ 1)2

s+ 1/2
.

By differentiating (5.3), we get

∂ε

∣∣∣
ε=0

λs,1(Ωε) = −
2s+ 1

‖w0‖L1(R)
. (5.4)

On the other hand, by Proposition 4.1 and the fact that u0 is the unique positive minimizer
for λs,1, we deduce that

∂+ε

∣∣∣
ε=0

λs,1(Ωε) = −2κs[(u0/δ
s)2(1) + (u0/δ

s)2(−1)] = 22+2sκs ℓ
2
s λs,1(Ω0)

2 = −
16κs ℓ

2
s

‖w0‖2L1(R)

.

We thus conclude that

2κs =
(2s + 1)‖w0‖L1(R)

21+2sℓ2s
= Γ(s+ 1)2.

Thus, by Proposition 4.1, we get the result as stated in the theorem. �

Proof of Corollary 1.3. Let h ∈ C3(∂Ω), with
∫
∂Ω hdx = 0. Then it is well known (see

e.g. [10, Lemma 2.2]) that there exists a family of diffeomorphisms Φε : R
N → R

N , ε ∈ (−1, 1)
satisfying (1.5) and having the following properties:

|Φε(Ω)| = |Ω| for ε ∈ (−1, 1), and X := ∂ε
∣∣
ε=0

Φε equals hν on ∂Ω. (5.5)

By assumption, there exists ε0 ∈ (0, 1) with λs,p(Φε(Ω)) ≥ λs,p(Ω) for ε ∈ (−ε0, ε0). Applying
Theorem 1.1 and noting that X · ν ≡ h on ∂Ω by (5.5), we get

min

{
Γ(1 + s)2

∫

∂Ω
(u/δs)2hdx, u ∈ H

}
≥ 0.

By the same argument applied to −h, we get

max

{
Γ(1 + s)2

∫

∂Ω
(u/δs)2hdx, u ∈ H

}
≤ 0. (5.6)

We thus conclude that
∫

∂Ω
(u/δs)2hdx = 0 for every u ∈ H and for all h ∈ C3(∂Ω), with

∫

∂Ω
hdx = 0.

By a standard argument, this implies that u/δs is constant on ∂Ω. Now, since u solves (1.3)
and p ∈ {1} ∪ [2,∞), we deduce from [13, Theorem 1.2] that Ω is a ball. �
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Proof of Theorem 1.4. Consider the unit centered ball B1 = B1(0). For τ ∈ (0, 1) and t ∈
(τ − 1, 1 − τ), we define Bt := Bτ (te1), where e1 is the first coordinate direction. To prove
Theorem 1.4, we can take advantage of the invariance under rotations of the problem and
may restrict our attention to domains of the form Ω(t) = B1 \Bt. We define

θ : (τ − 1, 1− τ) → R, θ(t) := λs,p(Ω(t)). (5.7)

We claim that θ is differentiable and satisfies

θ′(t) < 0 for t ∈ (0, 1 − τ). (5.8)

For this we fix t ∈ (τ − 1, 1 − τ) and a vector field X : RN → R
N given by X(x) = ρ(x)e1,

where ρ ∈ C∞
c (B1) satisfies ρ ≡ 1 in a neighborhood of Bt. For ε ∈ (−1, 1), we then define

Φε : R
N → R

N by Φε(x) = x+ δεX(x), where δ > 0 is chosen sufficiently small to guarantee
that Φε, ε ∈ (−1, 1) is a family of diffeomorphisms satisfying (1.5) and satisfying Φε(B1) = B1

for ε ∈ (−1, 1). Then, by construction, we have

Φε(Ω(t)) = Φε

(
B1 \Bt

)
= B1 \ Φε(Bt) = B1 \Bt+δε = Ω(t+ δε). (5.9)

Next we recall that, since p ∈ {1, 2}, there exists a unique positive minimizer u ∈ Hs
0(Ω(t))

corresponding to the variational characterization (1.1) of λs,p(Ω(t)). Hence, by Corollary 1.2,
the map ε 7→ λs,p(Φε(Ω(t))) is differentiable at ε = 0. In view of (5.9), we thus find that the
map θ in (5.7) is differentiable at t, and

θ′(t) =
1

δ

d

dε

∣∣∣
ε=0

λs,p(Φε(Ω(t))) = Γ(1+s)2
∫

∂Ω(t)

( u
δs

)2
X ·ν dx = Γ(1+s)2

∫

∂B(t)

( u
δs

)2
ν1 dx

(5.10)
by (1.7). Here ν denotes the interior unit normal on ∂Ω(t) which coincides with the exterior
unit normal to B(t) on ∂B(t), and we used that

X ≡ e1 on ∂B(t), X ≡ 0 on ∂B1 = ∂Ω(t) \ ∂B(t)

to get the last equality in (5.10). Next, for fixed t ∈ (0, 1 − τ), let H be the hyperplane
defined by H = {x ∈ R

N : x · e1 = t}, and let Θ = {x ∈ R
N : x · e1 > t} ∩ Ω(t). We also

let rH : RN → R
N be the reflection map with respect to he hyperplane H. For x ∈ R

N , we
denote x̄ := rH(x), u(x) := u(x). Using these notations, we have

θ′(t) = Γ(1 + s)2
∫

∂Bt

( u
δs

)2
ν1 dx

= Γ(1 + s)2
∫

∂Bt∩Θ

(( u
δs

)2
(x)−

(
u

δs

)2

(x)

)
ν1 dx. (5.11)

Let w = u− u ∈ Hs(RN ). Then w is a (weak) solution of the problem

(−∆)sw = λs,p(Ω(t))u
p−1 − λs,p(Ω(t))u

p−1 = cpw in Θ, (5.12)

where {
cp := λs,p(Ω(t)) for p = 2,

cp = 0 for p = 1.

Moreover, by definition, w ≡ u ≥ 0 in H \Θ, and w ≡ u > 0 in the subset [rH(B1) ∩H] \Θ
which has positive measure since t > 0. Using that w is anti-symmetric with respect to H
and the fact that λs,p(Θ) > cp, we can apply the weak maximum principle for antisymmetric
functions (see [13, Proposition 3.1] or [19, Proposition 3.5]) to deduce that w ≥ 0 in Θ.
Moreover, since w 6≡ 0 in R

N , it follows from the strong maximum principle for antisymmetric
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functions given in [19, Proposition 3.6] that w > 0 in Θ. Now by the fractional Hopf lemma
(see [13, Proposition 3.3]) we conclude that

0 >
w

δs
=

u

δs
−
u

δs
and therefore

u

δs
<

u

δs
≤ 0 on ∂Bt ∩Θ.

From this and (5.11) we get (5.8), since ν1 > 0 on ∂Bt ∩Θ.
To conclude, we observe that the function t 7→ λs,p(t) = λs,p(Ω(t)) is even, thanks to the
invariance of the problem under rotations. Therefore the function θ attains its maximum
uniquely at t = 0. �

6. Proof of Proposition 2.4

The aim of this section is to prove Proposition 2.4. For the readers convenience, we repeat
the statement here.

Proposition 6.1. Let X ∈ C0(Ω,RN ), and let u ∈ Cs
0(Ω) ∩ C

1(Ω) be a function such that

ψ := u
δs : Ω → R satisfies (2.8) and (2.9). Moreover, put Uk := u[ζk ◦ δ] ∈ C1,1

c (Ω). Then

lim
k→∞

∫

Ω
∇Uk ·X

(
u(−∆)s[ζk ◦ δ]− I(u, ζk ◦ δ)

)
dx = −κs

∫

∂Ω
ψ2X · ν dx, (6.1)

where

κs := −

∫

R

h′(r)(−∆)sh(r) dr with h(r) := rs+ζ(r), (6.2)

and where we use the notation

I(u, v)(x) :=

∫

RN

(u(x)− u(y))(v(x) − v(y))K0(x, y) dy (6.3)

for u ∈ Cs
c (R

N ), v ∈ C0,1(RN ) and x ∈ R
N .

The remainder of this section is devoted to the proof of this proposition. For k ∈ N, we
define

gk := ∇Uk ·X
(
u(−∆)s[ζk ◦ δ] − I(u, ζk ◦ δ)

)
: Ω → R. (6.4)

For ε > 0, we put

Ωε = {x ∈ R
N : |δ(x)| < ε} and Ωε

+ = {x ∈ R
N : 0 < δ(x) < ε} = {x ∈ Ω : δ(x) < ε}.

For every ε > 0, we then have

lim
k→∞

∫

Ω\Ωε

gk dx = 0. (6.5)

To see this, we first note that ζk ◦ δ → 1 pointwise on R
N \ ∂Ω, and therefore a.e. on R

N .
Moreover, choosing a compact neighborhood K ⊂ Ω of Ω \ Ωε, we have

(−∆)s[ζk ◦ δ](x) = bN,s

∫

RN\K

1− [ζk ◦ δ](y)

|x− y|N+2s
dy for x ∈ Ω \ Ωε and k sufficiently large,

where |1−[ζk◦δ](y)|
|x−y|N+2s ≤ C

1+|y|N+2s for x ∈ Ω \ Ωε, y ∈ R
N \ K and C > 0 independent of

x and y. Consequently, ‖(−∆)s[ζk ◦ δ]‖L∞(Ω\Ωε) remains bounded independently of k and
(−∆)s[ζk ◦ δ] → 0 pointwise on Ω \ Ωε by the dominated convergence theorem. Similarly,
we see that ‖I(u, ζk ◦ δ)‖L∞(Ω\Ωε) remains bounded independently of k and I(u, ζk ◦ δ) → 0
pointwise on Ω \ Ωε. Consequently, we find that

‖gk‖L∞(Ω\Ωε) is bounded independently of k and gk → 0 pointwise on Ω \ Ωε.
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Hence (6.5) follows again by the dominated convergence theorem. As a consequence,

lim
k→∞

∫

Ω
gk dx = lim

k→∞

∫

Ωε
+

gk(x) dx for every ε > 0. (6.6)

Let, as before, ν : ∂Ω → R
N denotes the unit interior normal vector field on Ω. Since we

assume that ∂Ω is of class C1,1, the map ν is Lipschitz, which means that the derivative
dν : T∂Ω → R

N is a.e. well defined and bounded. Moreover, we may fix ε > 0 from now on
such that the map

Ψ : ∂Ω× (−ε, ε) → Ωε, (σ, r) 7→ Ψ(σ, r) = σ + rν(σ) (6.7)

is a bi-lipschitz map with Ψ(∂Ω × (0, ε)) = Ωε
+. In particular, Ψ is a.e. differentiable.

Moreover, for 0 < ε′ ≤ ε, it follows from (6.6) that

lim
k→∞

∫

Ω
gk dx = lim

k→∞

∫

Ωε′
+

gk dx = lim
k→∞

∫

∂Ω

∫ ε′

0
JacΨ(σ, r)gk(Ψ(σ, r)) drdσ

= lim
k→∞

1

k

∫

∂Ω

∫ kε′

0
jk(σ, r)gk(Ψ(σ,

r

k
)) drdσ, (6.8)

where we define

jk(σ, r) = JacΨ(σ,
r

k
) for a.e. σ ∈ ∂Ω, 0 ≤ r < kε.

We note that
‖jk‖L∞(∂Ω×[0,kε)) ≤ ‖JacΨ‖L∞(Ωε) <∞ for all k, and

lim
k→∞

jk(σ, r) = JacΨ(σ, 0) = 1 for a.e. σ ∈ ∂Ω, r > 0.
(6.9)

Moreover, we write gk = g0k(g
1
k − g2k) with the functions

g0k = ∇Uk ·X, g1k = u(−∆)s[ζk ◦ δ] and g2k = I(u, ζk ◦ δ), (6.10)

which are all defined on Ω. We provide estimates for the functions g0k, g
1
k, g

2
k separately in the

following lemmas.

Lemma 6.2. Let α ∈ (0, 1) be given by Lemma 2.3. Then we have

ks−1|g0k(σ,
r

k
)| ≤ C(rs−1 + rs−1+α) for k ∈ N, 0 ≤ r < kε (6.11)

with a constant C > 0, and

lim
k→∞

ks−1g0k(σ,
r

k
) = h′(r)ψ(σ)[X(σ) · ν(σ)] for σ ∈ ∂Ω, r > 0 (6.12)

with the function r 7→ h(r) = rsζ(r) given in (6.2).

Proof. Since u = ψδs, we have

∇u = sδs−1ψ∇δ + δs∇ψ = sδs−1ψ∇δ +O(δs−1+α) in Ω

by Lemma 2.3, and therefore

∇Uk =
(
sζ ◦ (kδ) + kδζ ′ ◦ (kδ)

)
ψδs−1∇δ +O(δs−1+α) in Ω.

Consequently,
[(
∇uk

)
◦Ψ
]
(σ, r) =

(
sζ(kr) + krζ ′(kr)

)
ψ(σ + rν(σ))rs−1∇δ(σ + rν(σ)) +O(rs−1+α)
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for σ ∈ ∂Ω, 0 ≤ r < ε with O(rs−1+α) independent of k, and therefore

g0k(Ψ(σ,
r

k
)) =

(
sζ(r) + rζ ′(r)

)
ψ(σ +

r

k
ν(σ))∇δ(σ +

r

k
ν(σ)) ·X(σ +

r

k
ν(σ))k1−srs−1

+ k1−s−αO(rs−1+α) for σ ∈ ∂Ω, 0 ≤ r < kε.

Since α > 0, we deduce that

ks−1g0k(Ψ(σ,
r

k
)) →

(
sζ(r) + rζ ′(r)

)
ψ(σ)∇δ(σ) ·X(σ)rs−1

= h′(r)ψ(σ)X(σ) · ν(σ) as k → ∞

for σ ∈ ∂Ω, r > 0, while

ks−1|g0k(σ,
r

k
)| ≤ C(rs−1 + rs−1+α) for k ∈ N, 0 ≤ r < kε

with a constant C > 0 independent of k and r, as claimed. �

Next we consider the functions g1k defined in (6.10), and we first state the following estimate.

Lemma 6.3. There exists ε′ > 0 with the property that

|k−2s(−∆)s[ζk ◦ δ](Ψ(σ,
r

k
))| ≤

C

1 + r1+2s
for k ∈ N, 0 ≤ r < kε′ (6.13)

with a constant C > 0. Moreover,

lim
k→∞

k−2s(−∆)s[ζk ◦ δ](Ψ(σ,
r

k
)) = (−∆)sξ(r) for σ ∈ ∂Ω, r > 0. (6.14)

Before giving the somewhat lengthy proof of this lemma, we infer the following corollary
related to the functions g1k.

Corollary 6.4. There exists ε′ > 0 with the property that

|k−sg1k(Ψ(σ,
r

k
))| ≤

Crs

1 + r1+2s
for k ∈ N, 0 ≤ r < kε′ (6.15)

with a constant C > 0. Moreover,

lim
k→∞

k−sg1k(Ψ(σ,
r

k
)) = ψ(σ)rs(−∆)sξ(r) for σ ∈ ∂Ω, r > 0. (6.16)

Proof. Since u = ψδs we have u(Ψ(σ, rk )) = k−sψ(σ + r
kν(σ))r

s for k ∈ N, 0 ≤ r < kε, and

lim
k→∞

ksu(Ψ(σ,
r

k
)) = ψ(σ)rs for σ ∈ ∂Ω, r > 0.

Since moreover ‖ψ‖L∞(Ωε) < ∞, the claim now follows from Lemma 6.3 by noting that

g1k = u(−∆)s[ζk ◦ δ]. �

Proof of Lemma 6.3. We start with some preliminary considerations. We define

aN,s :=

∫

RN−1

1

(1 + |z|2)
N+2s

2

dz (6.17)

and we recall that

bN,saN,s = b1,s, (6.18)

where bN,s is given in (1.2), see e.g. [11]. Since ∂Ω is of class C1,1 by assumption, there exists
an open ball B ⊂ R

N−1 centered at the origin and, for any fixed σ ∈ ∂Ω, a parametrization

fσ : B → ∂Ω
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of class C1,1 such that fσ(0) = σ and dfσ(0) : R
N−1 → R

N is a linear isometry. For z ∈ B
we then have

f(0)− f(z) = −dfσ(0)z +O(|z|2)

and therefore

|f(0)− f(z)|2 = |dfσ(0)z|
2 +O(|z|3) = |z|2 +O(|z|3), (6.19)

(f(0)− f(z)) · ν(σ) = −dfσ(0)z · ν(σ) +O(|z|2) = O(|z|2), (6.20)

(6.21)

where we used in (6.20) that dfσ(0)z belongs to the tangent space Tσ∂Ω = {ν(σ)}⊥. Here
and in the following, the term O(τ) stands for a function depending on τ and possibly other
quantities but satisfying |O(τ)| ≤ Cτ with a constant C > 0. By (6.19), we can make B
smaller if necessary to guarantee that

|f(0)− f(z)|2 ≥
3

4
|z|2. (6.22)

Recalling the definition of the map Ψ in (6.7) and writing νσ(z) := ν(fσ(z)) for z ∈ B, we
now define

Ψσ : (−ε, ε) ×B → Ωε, Ψσ(r, z) = Ψ(fσ(z), r) = fσ(z) + rνσ(z). (6.23)

Then Ψσ is a bi-lipschitz map which maps (−ε, ε)×B onto a neighborhood of σ. Consequently,
there exists ε′ ∈ (0, ε2) with the property that

|σ − y| ≥ 3ε′ for all y ∈ R
N \Ψσ((−ε, ε) ×B). (6.24)

Moreover, ε′ can be chosen independently of σ ∈ ∂Ω. For fixed σ ∈ ∂Ω, r ∈ [0, ε′), we can
now write

(−∆)s[ζk ◦ δ](Ψ(σ, r))| = bN,s

(
Ak(σ, r) +Bk(σ, r)

)
(6.25)

with

Ak(σ, r) :=

∫

Ψσ((−ε,ε)×B)

ζk(r)− ζk(δ(y))

|Ψ(σ, r)− y|N+2s
dy

and

Bk(σ, r) =

∫

RN\Ψσ((−ε,ε)×B)

ζk(r)− ζk(δ(y))

|Ψ(σ, r)− y|N+2s
dy.

By (6.24) and since r < ε′, we then have

|Ψ(σ, r)− y| = |σ − y + rν(σ)| ≥ |σ − y| − r ≥
|σ − y|

3
+ ε′ for y ∈ R

N \Ψσ((−ε, ε) ×B)

and therefore

|Bk(σ, r)| ≤

∫

RN\Ψσ((−ε,ε)×B)

|ρ(kr)− ρ(kδ(y))|

|Ψ(σ, r) − y|N+2s
dy

≤ 3N+2s|ρ(kr)|

∫

RN

(
|σ − y|+ 3ε′

)−N−2s
dy +

(
ε′
)−N−2s

∫

RN

|ρ(kδ(y))| dy

≤ C
(
|ρ(kr)|+ |Ω 2

k
|
)
≤ C

(
|ρ(kr)|+ k−1

)
.

Here and in the following, the letter C stands for various positive constants. Consequently,

lim
k→∞

k−2s|Bk(σ,
r

k
)| = 0 for every σ ∈ Ω, r ≥ 0, (6.26)
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and, since ρ has compact support in R,

k−2s|Bk(σ,
r

k
)| ≤ Ck−2s

(
|ρ(r)|+ k−1

)
(6.27)

≤
C

1 + r1+2s
+ k−1−2s ≤

C

1 + r1+2s
for k ∈ N, 0 ≤ r < kε′, σ ∈ ∂Ω.

Hence it remains to estimate Ak(σ, r). By definition of Ψσ we have

Ψσ(r, 0) −Ψσ(r + t, z) = f(0)− f(z)− tνσ(0) + (r + t)(νσ(0)− νσ(z))

for z ∈ B, r ∈ (0, ε′) and t ∈ (−ε − r, ε − r). Therefore using that (νσ(0) − νσ(z)) · νσ(0) =
1
2 |νσ(0)− νσ(z)|

2 and (6.20), we get

|Ψσ(r, 0) −Ψσ(r + t, z)|2 = t2 + |f(0)− f(z)|2 + (r + t)2|νσ(0)− νσ(z)|
2

− 2t(f(0)− f(z)) · νσ(0)− t(r + t)|νσ(0) − νσ(z)|
2 + 2(r + t)(f(0)− f(z)) · (νσ(0)− νσ(z))

= t2 + |f(0)− f(z)|2 + r(r + t)|νσ(0)− νσ(z)|
2

− 2t(f(0)− f(z)) · νσ(0) + 2(r + t)(f(0)− f(z)) · (νσ(0)− νσ(z))

= t2 + |f(0)− f(z)|2 + qσ(r, z) + tpσ(r, z) = t2 + |f(0)− f(z)|2 + (t+ r)O(|z|2) (6.28)

for z ∈ B, r ∈ (0, ε′) and t ∈ (−ε− r, ε − r), where

qσ(r, z) := r2|νσ(0)− νσ(z)|
2 + 2r(f(0)− f(z)) · (νσ(0)− νσ(z))

and

pσ(r, z) = r|νσ(0)− νσ(z)|
2 + 2(f(0)− f(z)) · (νσ(0)− νσ(z)).

We note that there exists a constant C0 > 0, depending only on Ω, with the property that

|qσ(r, z)| ≤ rC0|z|
2, |pσ(r, z)| ≤ C0|z|

2 for z ∈ B, r ∈ (0, ε′) and t ∈ (−ε− r, ε− r),

By (6.22), this implies that

|Ψσ(r, 0) −Ψσ(r + t, z)|2 ≥ t2 +
(3
4
− (r + t)C0

)
|z|2 ≥ t2 +

(3
4
− (ε′ + t)C0

)
|z|2

for z ∈ B, r ∈ (0, ε′) and t ∈ (−ε − r, ε − r) with a constant C0 > 0 depending only on Ω.
Making ε′ > 0 smaller if necessary, we thus have

|Ψσ(r, 0) −Ψσ(r + t, z)|2 ≥
t2 + (1− tC0)|z|

2

2
for z ∈ B, r ∈ (0, ε′) and t ∈ (−ε− r, ε− r)

and therefore

|Ψσ(r, 0) −Ψσ(r + t, z)|−N−2s ≤ 2N+2s
(
t2 + (1− tC0)|z|

2
)−N+2s

2
(6.29)

for z ∈ B, r ∈ (0, ε′) and t ∈ (−ε− r, ε− r), |t| < 1
C0

. Moreover, combining (6.19) and (6.28)
gives

|Ψσ(r, 0) −Ψσ(r + t, z)|−N−2s =
(
t2 + |z|2 + qσ(r, z) + (|z|+ t)O(|z|2)

)−N+2s
2

=
(
t2 + |z|2 + (|z|+ r + t)O(|z|2)

)−N+2s
2 (6.30)

for z ∈ B, r ∈ (0, ε′) and t ∈ (−ε − r, ε − r). Moreover, we note that, as a bi-lipschitz map,
Ψσ is a.e. differentiable, and dΨσ is given by

dΨσ(r, z)(r
′, z′) = [dfσ(z) + rdνσ(z)]z

′ + r′νσ(z) = dfσ(0)z
′ + r′νσ(0) +O

(
r + |z|

)
(|z′|+ |r′|)
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for (r, z) ∈ (0, ε′)×B, (r′, z′) ∈ R× R
N−1. Since dfσ(0) is an isometry and dfσ(0)νσ(0) = 0,

we thus infer that

JacΨσ(r + t, z) = 1 +O(r + t+ |z|). (6.31)

We now define the kernel K on (0, ε′)× R×B by

K(r, t, z) =

{
JacΨσ(r + t, z)|Ψσ(r, 0) −Ψσ(r + t, z)|−N−2s, t ∈ (−ε− r, ε − r),

0, t 6∈ (−ε− r, ε − r).

(6.32)
We then have that

Ak(σ, r) =

∫ ε

−ε

∫

B
JacΨσ(z, r̃)

ζk(r)− ζk(r̃)

|Ψσ(r, 0) −Ψσ(r̃, z)|N+2s
dzdr̃ (6.33)

=

∫

R

∫

B

(
ζk(r)− ζk(r + t)

)
K(r, t, z) dzdt

=
1

4

∫

R

∫

B
(2ζk(r)− ζk(r + t)− ζk(r − t))[K(r, t, z) +K(r,−t, z)]dtdz

+
1

4

∫

R

∫

B
(ζk(r + t)− ζk(r − t))[K(r, t, z) −K(r,−t, z)]dzdt

=
1

4

∫

R

tN−1

∫

1
|t|

B

(
2ζk(r)− ζk(r + t)− ζk(r − t)

)(
K(r, t, |t|z) +K(r,−t, |t|z)

)
dzdt

+
1

4

∫

R

∫

B
(ζk(r + t)− ζk(r − t))[K(r, t, z) −K(r,−t, z)]dzdt,

= k2s
(
J1
k (σ, r) + J2

k (σ, r)
)
, (6.34)

where, by a further change of variable,

J1
k (σ, r) :=

1

4k2s

∫

R

tN−1

∫

1
|t|

B

(
2ζk(r)− ζk(r + t)− ζk(r − t)

)(
K(r, t, |t|z) +K(r, r − t, |t|z)

)
dtdz

=
1

4kN+2s

∫

R

tN−1

∫

k
|t|

B

(
2ζ(kr)− ζ(kr + t)− ζ(kr − t)

)(
K(r,

t

k
,
|t|

k
z) +K(r,−

t

k
,
|t|

k
z)
)
dtdz

and

J2
k (σ, r) :=

1

4k2s

∫

R

∫

B
(ζk(r + t)− ζk(r − t))[K(r, t, z) −K(r,−t, z)]dtdz.

By (6.30) we have

|Ψσ(r, 0) −Ψσ(r + t, |t|z)|−N−2s = t−N−2s
(
1 + |z|2 +O(|t||z| + r + |t|)|z|2

)−N+2s
2 .

for r ∈ (0, ε′), t ∈ (−ε− r, ε − r) \ {0} and z ∈ 1
tB and therefore, by (6.31),

|t|N+2sK(r, t, |t|z) = (1 +O(r + |t|+ |t||z|))
(
1 + |z|2 +O(|t||z| + r + |t|)|z|2)

)−N+2s
2 .

Hence

lim
k→∞

|
t

k
|N+2sK(

r

k
,
t

k
,
|t|

k
z) = (1 + |z|2)−

N+2s
2 for every r ≥ 0, t ∈ R (6.35)

while by (6.29) and (6.31) there exists C > 0 such that, for k sufficiently large,

|
t

k
|N+2s|K(

r

k
,
t

k
,
|t|

k
z)| ≤ C(1 + |z|2)−

N+2s
2 . (6.36)
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for r ∈ (−kε′, kε′), t ∈ R \ {0} and z ∈ k
|t|B. Using this, we get

|J1
k (σ,

r

k
)| ≤ C

∫

R

|2ζ(r)− ζ(r + t)− ζ(r − t)|

|t|1+2s
dt

∫

RN−1

1

(1 + |z|2)
N+2s

2

dz

= CaN,s

∫

R

|2ρ(r) − ρ(r + t)− ρ(r − t)|

|t|1+2s
dt ≤

CaN,s

1 + r1+2s
(6.37)

for k sufficiently large, r ∈ (−kε′, kε′), t ∈ R \ {0} and z ∈ |k|
t B. Here we used ρ = 1 − ζ ∈

C∞
c (R) in the last step. Moreover, by (6.35) and the dominated convergence theorem, we

find that

lim
k→∞

J1
k (σ,

r

k
)

=
1

4

∫

R

2ζ(r)− ζ(r + t)− ζ(r − t)

|t|1+2s

(
lim
k→∞

|
t

k
|N+2s

∫

k
|t|

B

(
K(
r

k
,
t

k
,
|t|

k
z) +K(

r

k
,−

t

k
,
|t|

k
z)
)
dz
)
dt

=
1

b1,s
[(−∆)sζ(r)]

∫

RN−1

(1 + |z|2)−
N+2s

2 dz =
aN,s

b1,s
[(−∆)sζ(r)] =

(−∆)sζ(r)

bN,s
, (6.38)

where we used (6.18) in the last equality.
Next, to deal with J2

k (σ, r), we have to estimate the kernel difference |K(r, t, z)−K(r,−t, z)|.
For this we note that by (6.30) we have

|Ψσ(r, 0) −Ψσ(r + t, z)|−N−2s =
(
t2 + |z|2 + qσ(r, z)

)−N+2s
2
(
1 +O(|t|+ |z|)

)

and therefore

∣∣∣|Ψσ(r, 0) −Ψσ(r + t, z)|−N−2s − |Ψσ(r, 0) −Ψσ(r − t, z)|−N−2s
∣∣∣ =

O(|t|+ |z|)
(
t2 + |z|2 + qσ(r, z)

)N+2s
2

≤ C
(
|t|+ |z|

)1−N−2s
for z ∈ B, r ∈ (0, ε′) and t ∈ (−ε+ r, ε − r).

Moreover,
∣∣JacΨσ(r + t, z)− JacΨσ(r − t, z)

∣∣ ≤ C
(
|t|+ |z|

)

for z ∈ B, r ∈ (0, ε′) and t ∈ (−ε+ r, ε − r) by (6.31). From this we deduce that

|K(r, t, z) −K(r,−t, z)| ≤ C
(
|t|+ |z|

)1−N−2s
for z ∈ B, r ∈ (0, ε′) and t ∈ (−ε+ r, ε − r).

Moreover, we have

|K(r, t, z) −K(r,−t, z)| = 0 for t ∈ R \ (−ε− r, ε+ r),

while for t ∈ (−ε− r,−ε+ r) ∪ (ε− r, ε + r) we have |t| ≥ ε− ε′ ≥ ε
2 and therefore

|K(r, t, z)| ≤ C(ε+ |z|)−N−2s.
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Consequently,

|J2
k (σ, r)| ≤

1

4k2s

∫ ε+r

−ε−r
|ζk(r + t)− ζk(r − t)|

∫

B

(
K(r, t, z) −K(r,−t, z)

)
dzdt

≤ Ck−2s

∫ ε−r

−ε+r
|ζk(r + t)− ζk(r − t)|

∫

B

(
|t|+ |z|

)1−N−2s
dzdt

+ Ck−2s

∫ ε+r

−ε−r
|ζk(r + t)− ζk(r − t)|

∫

B
(ε+ |z|)−N−2sdzdt

≤ Ck−2s
(∫ ε−r

−ε+r

|ζk(r + t)− ζk(r − t)|

|t|2s
dt+ ε−1−2s

∫ ε+r

−ε−r
|ζk(r + t)− ζk(r − t)|dt

)

≤ C
(1
k

∫

R

|ρ(kr + t)− ρ(kr − t)|

|t|2s
dt+ (εk)−1−2s

∫

R

|ρ(kr + t)− ρk(kr − t)|dt
)

≤ C
(1
k

∫ −kr+4

−kr−4
|t|1−2sdt+ (εk)−1−2s

)
≤ C

((kr + 1)1−2s

k
+ (εk)−1−2s

)

and therefore

|J2
k (σ,

r

k
)| ≤ C

((1 + r)1−2s

k
+ (εk)−1−2s

)
for k ∈ N, 0 ≤ r < ε′.

From this we deduce that

|J2
k (σ,

r

k
)| ≤

C

1 + r1+2s
for k ∈ N, 0 ≤ r < kε′ (6.39)

and

lim
k→∞

|J2
k (σ,

r

k
)| = 0 for all r ≥ 0. (6.40)

In view of (6.25), the bound (6.13) follows by combining (6.27), (6.37) and (6.39), while the
pointwise limit equality (6.14) follows from (6.26), 6.38 and (6.40). �

Lemma 6.5. There exists ε′ > 0 with the property that the function g2k = I(u, ζk ◦ δ) satisfies

|k−sg2k(Ψ(σ,
r

k
))| ≤

C

1 + r1+s
for k ∈ N, 0 ≤ r < kε′ (6.41)

with a constant C > 0. Moreover,

lim
k→∞

k−sg2k(Ψ(σ,
r

k
)) = ψ(σ)Ĩ(r) (6.42)

with

Ĩ(r) = b1,s

∫

R

(rs+ − r̃s+)(ζ(r)− ζ(r̃))

|r − r̃|1+2s
dr̃.

Proof. We keep using the notation of the proof of Lemma 6.3. We then have

g2k(Ψ(σ, r)) = bN,s

(
Ãk(σ, r) + B̃k(σ, r)

)
(6.43)

with

Ãk(σ, r) :=

∫

Ψσ((−ε,ε)×B)

(u(Ψ(σ, r)) − u(y))(ζk(r)− ζk(δ(y)))

|Ψ(σ, r)− y|N+2s
dy

and

B̃k(σ, r) =

∫

RN\Ψσ((−ε,ε)×B)

(u(Ψ(σ, r)) − u(y))(ζk(r)− ζk(δ(y)))

|Ψ(σ, r)− y|N+2s
dy.
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As noted in the proof of Lemma 6.3, we have

|Ψ(σ, r)− y| ≥
|σ − y|

3
+ ε′ for y ∈ R

N \Ψσ((−ε, ε) ×B).

Therefore, since u ∈ L∞(RN ), we may estimate as in the proof of Lemma 6.3 to get

|B̃k(σ, r)| ≤ 2‖u‖L∞

∫

RN\Ψσ((−ε,ε)×B)

|ρ(kr)− ρ(kδ(y))|

|Ψ(σ, r)− y|N+2s

≤ C
(
|ρ(kr)|+ k−1

)
.

Here and in the following, the letter C stands for various positive constants. Consequently,

lim
k→∞

k−s|B̃k(σ,
r

k
)| = 0 for every σ ∈ Ω, r ≥ 0, (6.44)

and, since ρ has compact support in R,

k−s|B̃k(σ,
r

k
)| ≤ Ck−s

(
|ρ(r)|+ k−1

)
≤ C

( 1

1 + r1+s
+ k−1−s

)
(6.45)

≤
C

1 + r1+s
for k ∈ N, 0 ≤ r < kε′, σ ∈ ∂Ω.

Hence it remains to estimate Ãk(σ, r). For this we note that

Ãk(σ,
r

k
) =

∫ ε

−ε

∫

B
JacΨσ(z, r̃)

(u(Ψ( rk , 0)) − u(Ψσ(r̃, z)))(ζk(
r
k )− ζk(r̃))

|Ψσ(
r
k , 0) −Ψσ(r̃, z)|N+2s

dzdr̃

=

∫

R

∫

B

(
(u(Ψσ(

r

k
, 0)) − u(Ψσ(

r

k
+ t, z)))(ζ(r) − ζ(r + kt))

)
K(
r

k
, t, z) dzdt

with K given as in the proof of Lemma 6.3, and therefore, by a change of variables,

Ãk(σ,
r

k
) = k2s

∫

R

ζ(r)− ζ(r + t)

|t|1+2s

∫

k
|t|

B
wk(r, t, z) dzdt (6.46)

with

wk(r, t, z) := (
|t|

k
)N+2s

(
u(Ψσ(

r

k
, 0)) − u(Ψσ(

r + t

k
,
|t|z

k
))
)
K(
r

k
,
t

k
,
|t|

k
z).

For k sufficiently large,

(
|t|

k
)N+2s|K(

r

k
,
t

k
,
|t|

k
z)| ≤ C(1 + |z|2)−

N+2s
2 (6.47)

by (6.36) and

lim
k→∞

(
|t|

k
)N+2sK(

r

k
,
t

k
,
|t|

k
z) = (1 + |z|2)−

N+2s
2 for every r ≥ 0, t ∈ R (6.48)

by (6.35). Moreover, since u ∈ Cs(RN ),

|u(Ψσ(
r

k
, 0))− u(Ψσ(

r + t

k
,
|t|

k
z)| ≤ C

(
min

{( |t|
k

)s
, 1
}
+min

{( |tz|
k

)s
, 1
})

≤ C
( |t|
k

)s
+
( |tz|
k

)s
≤ Ck−s|t|s(1 + |z|s)

and consequently

|wk(r, t, z)| ≤ Ck−s|t|s(1 + |z|)−N−s, (6.49)
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where the function z 7→ (1 + |z|)−N−s is integrable over RN−1. We conclude that

|Ãk(σ,
r

k
)| ≤ Ck−s

∫

R

|ζ(r)− ζ(r + t)|

|t|1+s
ds ≤ Ck−s

∫

R

|ρ(r)− ρ(r + t)|

|t|1+s
ds ≤ Ck−s 1

1 + rs
.

Combining this with (6.43) and (6.45), we get (6.41). Moreover, since u ∈ Cs(RN ) and
ψ = u

δs ∈ C0(Ω), we have that

ks
[
u(Ψσ(

r

k
, 0)) − u(Ψσ(

r + t

k
,
|t|

k
z))

]
→ ψ(σ)(rs − (r + t)s) as k → ∞ (6.50)

which by (6.48) implies that

kswk(r, t, z) → ψ(σ)(rs − (r + t)s)(1 + |z|2)−
N+2s

2 . (6.51)

Hence, by (6.46), (6.49), (6.51) and the dominated convergence theorem, we find that

k−sÃk(σ,
r

k
) → ψ(σ)

∫

R

(rs − (r + t)s)(ζ(r)− ζ(r + t))

|t|1+2s
dt

∫

RN−1

(1 + |z|2)−
N+2s

2 dz

=
aN,s

b1,s
ψ(σ)Ĩ(r) as k → ∞.

Combining this with (6.18), (6.43) and (6.44), we obtain (6.42). �

We are now ready to complete the

Proof of Proposition 6.1. Combining (6.11), (6.15) and (6.41), we see that there exists ε′ > 0
such that the functions gk defined in (6.4) satisfy

1

k
gk(Ψ(σ,

r

k
)) ≤ C

rs−1 + rs−1+α

1 + r1+s
for k ∈ N, 0 ≤ r < kε′ (6.52)

with a constant C > 0 independent of k and r. Since s, α ∈ (0, 1), the RHS of this inequality
is integrable over [0,∞). Moreover,

1

k
gk(Ψ(σ,

r

k
)) → [X(σ) · ν(σ)]ψ2(σ)h′(r)

(
rs(−∆)sζ(r)− Ĩ(r)

)
(6.53)

for every r > 0, σ ∈ ∂Ω as k → ∞. Here we note that, by a standard computation,

(−∆)sh(r) = (−∆)s[rs+ζ(r)] = ζ(r)(−∆)srs+ + rs+(−∆)sζ(r)− Ĩ(r) = rs+(−∆)sζ(r)− Ĩ(r)
(6.54)

for r > 0 since rs+ is an s-harmonic function on (0,∞) see e.g [1].
Hence, by (6.8), (6.8), (6.52), (6.53), (6.54) and the dominated convergence theorem, we

conclude that

lim
k→∞

∫

Ω
gkdx =

∫ ∞

0
h′(r)(−∆)sh(r)dr

∫

∂Ω
[X(σ) · ν(σ)]ψ2(σ)dσ

=

∫

R

h′(r)(−∆)sh(r)dr

∫

∂Ω
[X(σ) · ν(σ)]ψ2(σ)dσ,

as claimed in (6.1). �
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